Advertisement

Biochemistry and biophysics of viruses

  • W. M. Stanley

Abstract

Studies on the effect of different chemical and physical agents on the activity of viruses were in progress even before viruses were recognized as a separate group of infectious entities and have been continued to the present time. During the earlier work two objectives were sought, one the preparation of immunizing antigens and the other the elucidation of the nature of viruses. These have continued to remain as objectives and recently a third has been added; during the past few years studies on the effect of different agents on viruses have been made with a view towards establishing conditions and reagents that could be used in the purification and concentration of viruses. Considerable difficulty has been encountered, not only during the progress of the studies but also in the interpretation of the results that were obtained. Much of this has been due to the great variation in the physical and chemical properties of the different viruses and to an apparent variation in the properties of the same virus in different preparations. The latter appears to have been due to the presence of varying amounts of extraneous material in the different virus preparations. For a great many years the presence of extraneous material made it impossible to be certain that any given physical or chemical property was one of the virus itself. This point is discussed at somewhat greater length in the third section of this chapter. Recently the effect of enzymes on viruses has been studied in an effort to learn something of their nature. However, until very recently only crude enzyme preparations containing a mixture of materials were available, and there is considerable doubt concerning the significance of results obtained with such preparations, for Pirie’s work indicates that the inaetivation of some viruses was due to extraneous material rather than to the enzymes. The isolation within the past few years of several enzymes in crystalline and apparently pure form has made it possible to study more accurately the effect of enzymes on viruses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography for inactivation of viruses by different agents

  1. 1.
    Alexander, R. A.: Studies on the neurotropic virus of horse-sickness. II. Some physical and chemical properties. Onderstepoort J. vet. Sci. a. Animal Ind. 4, 323 (1935).Google Scholar
  2. 2.
    Allard, H. A.: Effects of various salts, acids, germicides, etc., upon the infectivity of the virus causing the mosaic disease of tobacco. J. agric. Res. 13, 619 (1918).Google Scholar
  3. 3.
    Anson, M. L. and A. E. Mirskt: Reversibility of protein coagulation. J. physic. Chem. 35, 185 (1931).Google Scholar
  4. 4.
    Appelmans, R.: Quelques applications de la méthode de dosage du bacteriophage. C. r. Soc. Biol. 86, 508 (1922).Google Scholar
  5. 5.
    Arnold, L. and E. Weiss: Bacterial protein-free bacteriophage prepared by tryptic digestion. J. Immunol. (Am.) 12, 393 (1926).Google Scholar
  6. 6.
    Arthur, J. M. and J. M. Newell: The killing of plant tissue and the inactivation of tobacco mosaic virus by ultra-violet radiation. Amer. J. Botany 16, 338 (1929).Google Scholar
  7. 7.
    Baker, S. L. and P. R. Peacock: The susceptibility of the infective agent of the Rous chicken-sarcoma to the action of ultra-violet rays. Brit. J. exper. Path. 7, 310 (1926).Google Scholar
  8. 8.
    Baker, S. L. and J. McIntosh: Influence of ferment action upon infectivity of Rous sarcoma. Brit. J. exper. Path. 8, 257 (1927).Google Scholar
  9. 9.
    Bald, J. G. and G. Samuel: Some factors affecting the inactivation rate of the virus of tomato spotted wilt. Ann. appl. Biol. 21, 179 (1934).Google Scholar
  10. 10.
    Basset, J., A. Gratia, M. Macheboeup, and P. Manil: Action of high pressures on plant viruses. Proc. Soc. exper. Biol. a. Med. (Am.) 38, 248 (1938).Google Scholar
  11. 11.
    Basset, J. et M. A. Macheboeuf: Etude sur les effets biologiques des ultrapressions. Resistance des bactéries, des diastases et des toxines aux pressions très élevées. C. r. Acad. Sci. 195, 1431 (1932).Google Scholar
  12. 12.
    Basset, J., S. Nicolau et M. A. Macheboeuf: L’action de l’ultrapression sur l’activité pathogène de quelques virus. C. r. Acad. Sci. 200, 1882 (1935).Google Scholar
  13. 13.
    Bawden, F. C. and N. W. Pirie: (1) Experiments on the chemical behaviour of potato virus “X”. Brit. J. exper. Path. 17, 64 (1936).Google Scholar
  14. — (2) Crystalline preparations of tomato bushy stunt virus. Brit. J. exper. Path. 19, 251 (1938).Google Scholar
  15. 14.
    Beard, J. W., H. Finkelstein, and R. W. G. Wyckoff: The pH stability range of the elementary bodies of vaccinia. Science 86, 331 (1937).PubMedGoogle Scholar
  16. 15.
    Beckwith, T. D., A.R. Olson, and E.J. Rose: The effect of X-ray upon bacteriophage and upon the bacterial organism. Proc. Soc. exper. Biol. a. Med. (Am.) 27, 285 (1930).Google Scholar
  17. 16.
    Bergmann, M. and C. Niemann: Newer biological aspects of protein chemistry. Science 86, 187 (1937).PubMedGoogle Scholar
  18. 17.
    Best, R. J. and G. Samuel: The reaction of the viruses of tomato spotted wilt and tobacco mosaic to the pH value of media containing them. Ann. appl. Biol. 23, 509 (1936).Google Scholar
  19. 18.
    Birkeland, J. M.: Photodynamic action of methylene blue on plant viruses. Science 80, 357 (1934).PubMedGoogle Scholar
  20. 19.
    Blaxall, F.R.: Rep. Med. Off. Loc. Govt. Bd. for 1900/01, S. 664. 1902.Google Scholar
  21. 20.
    Burnet, E.: Contribution à l’étude de l’epithelioma contagieux des oiseaux. Ann. Inst. Pasteur, Par. 20, 742 (1906).Google Scholar
  22. 21.
    Caldwell, J.: The physiology of virus diseases in plants. IV. The nature of the virus agent of aucuba or yellow mosaic of tomato. Ann. appl. Biol. 20, 100 (1933).Google Scholar
  23. 22.
    Claude, A. and J.B. Murphy: Transmissible tumors of the fowl. Physiol. Rev. (Am.) 13, 246 (1933).Google Scholar
  24. 23.
    Clifton, O. E.: Photodynamic action of certain dyes on the inactivation of staphylococcus bacteriophage. Proc. Soc. exper. Biol. a. Med. (Am.) 28, 745 (1931).Google Scholar
  25. 24.
    Clifton, C. E. and T. G. Lawler: Inactivation of staphylococcus bacteriophage by toluidine blue. Proc. Soc. exper. Biol. a. Med. (Am.) 27, 1041 (1930).Google Scholar
  26. 25.
    Fränkel, E.: Weitere Versuche zur Verimpfung des Rous-Sarkoms mit zellfreien Tumorzentrifugaten. Z. Krebsforsch. 33, 451 (1931).Google Scholar
  27. 26.
    Friedberger, E. u. E. Mironescu: Eine neue Methode, Vakzine ohne Zusatz von Desinfizientien unter Erhaltung der Virulenz keimfrei zu machen. II. Mitteilung über die Wirkung der ultravioletten Strahlen. Dtsch. med. Wschr. 40, 1203 (1914).Google Scholar
  28. 27.
    Galloway, I.A.: (1) Detailed report of work at the National Institute for Medical Research, Hampstead. In: 3rd Progr. Rep. Foot-and-Mouth Dis. Res. Committee, S. 104. 1928.Google Scholar
  29. — (2) The “fixed” virus of rabies: The antigenic value of the virus inactivated by the photodynamic action of methylene blue and proflavine. Brit. J. exper. Path. 15, 97 (1934).Google Scholar
  30. 28.
    Gates, F. L.: (1) A study of the bactericidal action of ultra violet light. I. The reaction to monochromatic radiations. J. gen. Physiol. (Am.) 13, 231 (1929).Google Scholar
  31. — (2) Results of irradiating Staphylococcus aureus bacteriophage with monochromatic ultraviolet light. J. exper. Med. (Am.) 60, 179 (1934).Google Scholar
  32. 29.
    Gildemeister, E.: Weitere Untersuchungen über das D’Herellesche Phänomen. Zbl. Bakter. usw., Abt. I, Orig. 89, 181 (1922).Google Scholar
  33. 30.
    Gordon, M. H.: Studies of the viruses of vaccinia and variola. Sp. Rep. Ser. Med. Res. Counc. Lond., Nr. 98 (1925).Google Scholar
  34. 31.
    Hirano, N.: On the attitudes of vaccinia virus against some ferments. Kitasato Arch, exper. Med. (e.) 8, 394 (1931).Google Scholar
  35. 32.
    Hodes, H. L., G. I. Lavin, and L. T. Webster: Antirabic immunization with culture virus rendered avirulent by ultra-violet light. Science 86, 447 (1937).PubMedGoogle Scholar
  36. 33.
    Hollaender, A. and B. M. Duggar: Irradiation of plant viruses and of micro-organisms with monochromatic light. II. Resistance of the virus of typical tobacco mosaic and Escherichia coli to radiation from λ 3000 to λ 2250 Å. Proc. nat. Acad. Sci. 22, 19 (1936).Google Scholar
  37. 34.
    Illingworth, C. F. W. and G.L. Alexander: The effect of ultra-violet rays on the Rous chicken sarcoma. J. Path. a. Bacter. 30, 365 (1927).Google Scholar
  38. 35.
    Johnson, E. M. and W. D. Valleau: Mosaic from tobacco one to fifty-two years old. Kentucky agric. exper. Sta. Bull. 361, 264 (1935).Google Scholar
  39. 36.
    Jouan, C. et A. Staub: Etude sur la peste aviaire. Ann. Inst. Pasteur, Par. 34, 343 (1920).Google Scholar
  40. 37.
    Krueger, A. P.: The nature of bacteriophage and its mode of action. Physiol. Rev. (Am.) 16, 129 (1936).Google Scholar
  41. 38.
    Krueger, A. P. and D.M. Baldwin: The reversible inactivation of bacteriophage by bichloride of mercury. J. gen. Physiol. (Am.) 17, 499 (1934).Google Scholar
  42. 39.
    Laidlaw, P. P. and G. W. Dunkin: Studies in dog-distemper. III. The nature of the virus. J. comp. Path. a. Ther. 39, 222 (1926).Google Scholar
  43. 40.
    Landsteiner, K. et C. Levaditi: Etude expérimentale de la poliomyélite aigue (maladie de Heine-Medin). Ann. Inst. Pasteur, Par. 24, 833 (1910).Google Scholar
  44. 41.
    Leiner, O. u. R. von Wiesner: Experimentelle Untersuchungen über Poliomyelitis acuta anterior. Wien. klin. Wschr. 22, 1698 (1909).Google Scholar
  45. 42.
    Levaditi, C. et S. Nicolau in C. Levaditi et P. Lépine: Les ultravirus des maladies humaines, S. 42. Paris: Librairie Maloine 1937.Google Scholar
  46. 43.
    Lojkin, M. and C. G. Vinson: Effect of enzymes upon the infectivity of the virus of tobacco mosaic. Contr. Boyce Thomp. Inst. 3, 147 (1931).Google Scholar
  47. 44.
    Macheboeuf, M. A. et J. Basset: Recherches biochimiques et biologiques effectuées grace aux ultra-pressions. Bull. Soc. Chim. biol. 18, 1181 (1936).Google Scholar
  48. 45.
    Maitland, H. B., Y. M. Burburt, T. Hare, and M. C. Maitland: Investigations on foot-and-mouth disease by means of experiments with small animals during 1926/27. J. comp. Path. a. Ther. 41, 123 (1928).Google Scholar
  49. 46.
    Matsumoto, T. and K. Somazawa: (1) Immunological studies of mosaic diseases. 1. Effect of formolization, trypsinization and heat-inactivation on the antigenic properties of tobacco mosaic juice. Part I. J. Soc. trop. Agric. 2, 223 (1930).Google Scholar
  50. — (2) Immunological studies of mosaic diseases. 1. Effect of formolization, trypsinization and heat-inactivation on the antigenic properties of tobacco mosaic juice. Part II. J. Soc. trop. Agric. 3, 24 (1931).Google Scholar
  51. — (3) Immunological studies of mosaic diseases. IV. Effects of acetone, lead subacetate, barium hydroxide, aluminium hydroxide, trypsin, and soils on the antigenic property of tobacco mosaic juice. J. Soc. trop. Agric. 6, 671 (1934).Google Scholar
  52. 47.
    McKinley, E. B., R. Fisher, and M. Holden: Action of ultra violet light upon bacteriophage and filterable viruses. Proc. Soc. exper. Biol. a. Med. (Am.) 23, 408 (1926).Google Scholar
  53. 48.
    Merrill, M. H.: Effect of purified enzymes on viruses and gram-negative bacteria. J. exper. Med. (Am.) 64, 19 (1936).Google Scholar
  54. 49.
    Olitsky, P. K. and. F. L. Gates: The reaction of vesicular stomatitis virus to ultra violet light. Proc. Soc. exper. Biol. a. Med. (Am.) 24, 431 (1927).Google Scholar
  55. 50.
    Parker, R. F. and T.M. Rivers: Immunological and chemical investigations of vaccine virus. III. Response of rabbits to inactive elementary bodies of vaccinia and to virus-free extracts of vaccine virus. J. exper. Med. (Am.) 63, 69 (1936).Google Scholar
  56. 51.
    Perdrau, J. R.: Inactivation and reactivation of the virus of herpes. Proc. roy. Soc, Lond., Ser. B: Biol. Sci. 109, 304 (1931).Google Scholar
  57. 52.
    Perdrau, J. R. and C. Todd: (1) The photodynamic action of methylene blue on certain viruses. Proc. roy. Soc, Lond., Ser. B: Biol. Sci. 112, 288 (1933).Google Scholar
  58. — (2) Canine distemper. The high antigenic value of the virus after photodynamic inactivation by methylene blue. J. comp. Path. a. Ther. 46, 78. (1933).Google Scholar
  59. 53.
    Pirie, A.: (1) The effect of enzymes on the pathogenicity of the Rous and Füjinami tumour viruses. Biochem. J. (Brit.) 27, 1894 (1933).Google Scholar
  60. — (2) The effect of extracts of pancreas on different viruses. Brit. J. exper. Path. 16, 497 (1935).Google Scholar
  61. 54.
    Price, W. C. and J. W. Gowen: Quantitative studies of tobacco-mosaic virus inactivation by ultra-violet light. Phytopathology 27, 267 (1937).Google Scholar
  62. 55.
    Rivers, T. M.: Effect of repeated freezing (−185°C.) and thawing on colon bacilli, virus III, vaccine virus, herpes virus, bacteriophage, complement, and trypsin. J. exper. Med. (Am.) 45, 11 (1927).Google Scholar
  63. 56.
    Rivers, T. M. and F. L. Gates: Ultra-violet light and vaccine virus. II. The effect of monochromatic ultra-violet light upon vaccine virus. J. exper. Med. (Am.) 47, 45 (1928).Google Scholar
  64. 57.
    Ross, A. F. and W. M. Stanley: (1) Partial reactivation of formolized tobacco mosaic virus protein. Proc Soc exper. Biol. a. Med. (Am.) 38, 260 (1938).Google Scholar
  65. — (2) The partial reactivation of formolized tobacco mosaic virus protein. J. gen. Physiol. (Am.) 22, 165 (1938).Google Scholar
  66. 58.
    Ross, A. F. and C. G. Vinson: Mosaic disease of tobacco. Missouri agric. exper. Sta. Res. Bull. 258 (1937).Google Scholar
  67. 59.
    Russ, S. and G. M. Scott: The effect of X-rays upon Rous chicken tumour. Lancet 1926 II, 374.Google Scholar
  68. 60.
    Sanderson, E. S.: Effect of freezing and thawing on the bacteriophage. Science 62, 377 (1925).PubMedGoogle Scholar
  69. 61.
    Schultz, E. W. and L. P. Gebhardt: Nature of formalin inactivation of bacteriophage. Proc. Soc. exper. Biol. a. Med. (Am.) 32, 1111 (1935).Google Scholar
  70. 62.
    Schultz, E. W. and E. A. Green: An endeavor to adapt a trypsin susceptible bacteriophage to the action of trypsin. Proc. Soc. exper. Biol. a. Med. (Am.) 26, 97 (1928).Google Scholar
  71. 63.
    Schultz, E. W. and A. P. Krueger: Inactivation of staphylococcus bacteriophage by methylene blue. Proc. Soc. exper. Biol. a. Med. (Am.) 26, 100 (1928).Google Scholar
  72. 64.
    Stanley, W. M.: (1) Chemical studies on the virus of tobacco mosaic. I. Some effects of trypsin. Phytopathology 24, 1055 (1934).Google Scholar
  73. — (2) Chemical studies on the virus of tobacco mosaic. II. The proteolytic action of pepsin. Phytopathology 24, 1269 (1934).Google Scholar
  74. — (3) Chemical studies on the virus of tobacco mosaic. IV. Some effects of different chemical agents on infectivity. Phytopathology 25, 899 (1935).Google Scholar
  75. — (4) The inactivation of crystalline tobacco-mosaic virus protein. Science 83, 626 (1936).PubMedGoogle Scholar
  76. 65.
    Stockman, S. and F. C. Minett: Researches on the virus of foot-and-mouth disease. J. comp. Path. a. Ther. 39, 1 (1926).Google Scholar
  77. 66.
    Sturm, E., F. L. Gates, and J. B. Murphy: Properties of the causative agent of a chicken tumor. II. The inactivation of the tumor-producing agent by monochromatic ultra-violet light. J. exper. Med. (Am.) 55, 441 (1932).Google Scholar
  78. 67.
    Turner, T. B.: The preservation of virulent Treponema pallidum and Treponema pertenue in the frozen state; with a note on the preservation of filtrable viruses. J. exper. Med. (Am.) 67, 61 (1938).Google Scholar
  79. 68.
    Vinson, C. G. and A. W. Petre: Mosaic disease of tobacco. Bot. Gaz. 87, 14 (1929).Google Scholar
  80. 69.
    Went, J. C.: The influence of various chemicals on the inactivation of tobacco virus 1. Phytopath. Z. 10, 480 (1937).Google Scholar
  81. 70.
    Wollman, E.: Recherches sur la bactériophagie (phénomène de Twort-d’Hérelle). Ann. Inst. Pasteur, Par. 39, 789 (1925).Google Scholar
  82. 71.
    Wyckoff, K. W. G. and J. W. Beard: pH stability of Shope papilloma virus and of purified papilloma virus protein. Proc. Soc. exper. Biol. a. Med. (Am.) 36, 562 (1937).Google Scholar
  83. 72.
    Zinsser, H. and C. V. Seastone: Further studies on herpes virus: the influence of oxidation and reduction on the virulence of herpes filtrates. J. Immunol. (Am.) 18, 1 (1930).Google Scholar
  84. 73.
    Zoeller, C.: Action des rayons ultra-violets sur une souche de bacteriophage. C. r. Soc. Biol. 89, 860 (1923).Google Scholar
  85. 1.
    Ainsworth, G. C.: Mosaic diseases of the cucumber. Ann. appl. Biol. 22, 55 (1935).Google Scholar
  86. 2.
    Allard, H. A.: Some properties of the virus of the mosaic disease of tobacco. J. agric. Res. 6, 649 (1916).Google Scholar
  87. 3.
    Alloway, J. L.: (1) The transformation in vitro of R pneumococci into S forms of different specific types by the use of filtered pneumococcus extracts. J. exper. Med. (Am.) 55, 91 (1932).Google Scholar
  88. — (2) Further observations on the use of pneumococcus extracts in effecting transformation of type in vitro. J. exper. Med. (Am.) 57, 265 (1933).Google Scholar
  89. 4.
    Arnold, L. and E. Weiss: Isolation of bacteriophage free from bacterial proteins. J. infect. Dis. (Am.) 37, 411 (1925).Google Scholar
  90. 5.
    Avert, O. T. and W. F. Goebel: Chemoimmuiiological studies on the soluble specific substance of pneumococcus. I. The isolation and properties of the acetyl polysaccharide of pneumococcus type 1. J. exper. Med. (Am.) 58, 731 (1933).Google Scholar
  91. 6.
    Barnard, J. E. and W. J. Elford: Causative organism in infectious ectromelia. Proc. roy. Soc, Lond., Ser. B: Biol. Sci. 109, 360 (1931).Google Scholar
  92. 7.
    Barton-Wright, E. and A. M. McBain: Possible chemical nature of tobacco mosaic virus. Nature (Brit.) 132, 1003 (1933).Google Scholar
  93. 8.
    Bauer, J. H. and E.G. Pickels: (1) A high speed centrifuge for study of viruses. J. Bacter. (Am.) 31, 53 (1936). Abstr.Google Scholar
  94. — (2) A high speed vacuum centrifuge suitable for the study of filterable viruses. J. exper. Med. (Am.) 64, 503 (1936).Google Scholar
  95. 9.
    Bawden, F. C. and N. W. Pirie: (1) The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus. Proc. roy. Soc, Lond., Ser. B: Biol. Sci. 123, 274 (1937).Google Scholar
  96. — (2) The relationships between liquid crystalline preparations of cucumber viruses 3 and 4 and strains of tobacco mosaic virus. Brit. J. exper. Path. 18, 275 (1937).Google Scholar
  97. — (3) A plant virus preparation in a fully crystalline state. Nature (Brit.) 141, 513 (1938).Google Scholar
  98. 10.
    Bawden, F. C, N. W. Pirie, J. D. Bernal, and I. Fankuchen: Liquid crystalline substances from virus-infected plants. Nature (Brit.) 138, 1051 (1936).Google Scholar
  99. 11.
    Beale, H. P.: Relation of Stanley’s crystalline tobacco-virus protein to intracellular crystalline deposits. Contr. Boyce Thomp. Inst. 8, 413 (1937).Google Scholar
  100. 12.
    Beams, J. W. and E. G. Pickels: The production of high rotational speeds. Rev. sci. Instr. 6, 299 (1935).Google Scholar
  101. 13.
    Beams, J. W., A. J. Weed, and E.G. Pickels: The ultracentrifuge. Science 78, 338 (1933).PubMedGoogle Scholar
  102. 14.
    Beard, J. W. and R. W. G. Wyckoff: The isolation of a homogeneous heavy protein from virus-induced rabbit papillomas. Science 85, 201 (1937).PubMedGoogle Scholar
  103. 15.
    Bechhold, H. u. M. Schlesinger: (1) Die Größenbestimmung von subvisiblem Virus durch Zentrifugieren. Die Größe des Pockenvakzine-und Hühnerpesterregers. Biochem. Z. 236, 387 (1931).Google Scholar
  104. — (2) Größe von Virus der Mosaikkrankheit der Tabakpflanze. Phytopath. Z. 6, 627 (1933).Google Scholar
  105. 16.
    Bedson, S. P. and G. T. Western: Observations on the virus of psittacosis. Brit. J. exper. Path. 11, 502 (1930).Google Scholar
  106. 17.
    Best, R. J.: Precipitation of the tobacco mosaic virus complex at its isoelectric point. Austral. J. exper. Biol. a. med. Sci. 14, 1 (1936).Google Scholar
  107. 18.
    Biscoe, J., E.G. Pickels, and R. W. G. Wyckoff: (1) Light metal rotors for the molecular ultracentrifuge. Rev. sci. Instr. 7, 246 (1936).Google Scholar
  108. — (2) An air-driven ultracentrifuge for molecular sedimentation. J. exper. Med. (Am.) 64, 39 (1936).Google Scholar
  109. 19.
    Bland, J. O.W.: Filter and centrifuge experiments with guinea-pig vaccinia virus. Brit. J. exper. Path. 9, 283 (1928).Google Scholar
  110. 20.
    Borrel, A.: Sur les inclusions de l’épithélioma contagieux des oiseaux (molluscum contagiosum). C. r. Soc. Biol. 57, 642 (1904).Google Scholar
  111. 21.
    Brewer, P. H., H. R. Kraybill, and M.W. Gardner: Purification of the virus of tomato mosaic. Phytopathology 17, 744 (1927). Abstr.Google Scholar
  112. 22.
    Brewer, P. H., H. R. Kraybill, R. W. Samson, and M. W. Gardner: Purification and certain properties of the virus of typical tomato mosaic. Phytopathology 20, 943 (1930).Google Scholar
  113. 23.
    Brown, H. and J. A. Kolmer: Attempted chemical isolation of the virus of poliomyelitis. Proc. Soc. exper. Biol. a. Med. (Am.) 37, 137 (1937).Google Scholar
  114. 24.
    Caldwell, J.: Possible chemical nature of tobacco mosaic virus. Nature (Brit.) 133, 177 (1934).Google Scholar
  115. 25.
    Clark, P. F., J. Schindler, and D.J. Roberts: Some properties of poliomyelitis virus. J. Bacter. (Am.) 20, 213 (1930).Google Scholar
  116. 26.
    Claude, A.: (1) Properties of the causative agent of a chicken tumor. X. Chemical properties of chicken tumor extracts. J. exper. Med. (Am.) 61, 27 (1935).Google Scholar
  117. — (2) Properties of the causative agent of a chicken tumor. XIII. Sedimentation of the tumor agent, and separation from the associated inhibitor. J. exper. Med. (Am.) 66, 59 (1937).Google Scholar
  118. — (3) Fractionation of chicken tumor extracts by high speed centrifugation. Amer. J. Canc. 30, 742 (1937).Google Scholar
  119. — (4) Concentration and purification of Chicken Tumor I agent. Science 87, 467 (1938).PubMedGoogle Scholar
  120. 27.
    Claude, A. and J.B. Murphy: Transmissible tumors of the fowl. Physiol. Rev. (Am.) 13, 246 (1933).Google Scholar
  121. 28.
    Clifton, C. E.: (1) A method for the purification of the bacteriophage. Proc. Soc. exper. Biol. a. Med. (Am.) 28, 32 (1930).Google Scholar
  122. — (2) Photodynamic action of certain dyes on the inactivation of staphylococcus bacteriophage. Proc. Soc. exper. Biol. a. Med. (Am.) 28, 745 (1931).Google Scholar
  123. 29.
    Craigie, J.: The nature of the vaccinia flocculation reaction, and observations on the elementary bodies of vaccinia. Brit. J. exper. Path. 13, 259 (1932).Google Scholar
  124. 30.
    Dawson, M. H.: The transformation of pneumococcal types. II. The interconvertibility of type-specific S pneumococci. J. exper. Med. (Am.) 51, 123 (1930).Google Scholar
  125. 31.
    Dawson, M. H. and R. H. P. Sia: In vitro transformation of pneumococcal types. I. A technique for inducing transformation of pneumococcal types in vitro. J. exper. Med. (Am.) 54, 681 (1931).Google Scholar
  126. 32.
    Duggar, B. M.: Standardization and relative purification technique with plant virus preparations. Proc. Soc. exper. Biol. a. Med. (Am.) 30, 1104 (1933).Google Scholar
  127. 33.
    Elford, W. J.: (1) A new series of graded collodion membranes suitable for general bacteriological use, especially in filterable virus studies. J. Path, a. Bacter. 34, 505 (1931).Google Scholar
  128. — (2) The principles of ultrafiltration as applied in biological studies. Proc. roy. Soc, Lond., Ser. B: Biol. Sci. 112, 384 (1933).Google Scholar
  129. — (3) Centrifugation studies: I. Critical examination of a new method as applied to the sedimentation of bacteria, bacteriophages and proteins. Brit. J. exper. Path. 17, 399 (1936).Google Scholar
  130. 34.
    Elford, W. J. and C. H. Andrewes: (1) The sizes of different bacteriophages. Brit. J. exper. Path. 13, 446 (1932).Google Scholar
  131. — (2) Estimation of the size of a fowl tumour virus by filtration through graded membranes. Brit. J. exper. Path. 16, 61 (1935).Google Scholar
  132. — (3) Centrifugation studies: II. The viruses of vaccinia, influenza and Rous sarcoma. Brit. J. exper. Path. 17, 422 (1936).Google Scholar
  133. 35.
    Eriksson-Quensel, I. and T. Svedberg: Sedimentation and electrophoresis of the tobacco-mosaic virus protein. J. amer. chem. Soc. 58, 1863 (1936).Google Scholar
  134. 36.
    Fränkel, E.: Investigations into the blastogenic principle in fowl sarcoma, and their significance in the theory of the origin of malignant tumours. Lancet 1929 II, 538.Google Scholar
  135. 37.
    Fraenkel, E. M. and C. A. Mawson: (1) Adsorption and elution of the Rous sarcoma agent. Brit. J. exper. Path. 16, 416 (1935).Google Scholar
  136. — (2) Further studies of the agent of the Rous fowl sarcoma: A. Ultra-centrifugation experiments; B. Experiments with the lipoid fraction. Brit. J. exper. Path. 18, 454 (1937).Google Scholar
  137. 38.
    Fränkel, E. u. E. Mislowitzer: Versuche zur Isolierung des blastogenen Prinzips beim Rous-Sarkom. Z. Krebsforsch. 29, 491 (1929).Google Scholar
  138. 39.
    Fränkel, E., E. Mislowitzer u. R. Simke: Untersuchungen über das Agens des Rous-Sarkoms. Z. Krebsforsch. 27, 477 (1928).Google Scholar
  139. 40.
    Girard, P. et V. Sertic: Action de hauts champs centrifuges sur diverses cellules bactériennes, sur différents bacteriophages et la lysine diffusible d’un bacteriophage. C. r. Soc. Biol. 118, 1286 (1935).Google Scholar
  140. 41.
    Goldstein, B.: (1) Cytological study of living cells of tobacco plants affected with mosaic disease. Bull. Torrey botan. Club 51, 261 (1924).Google Scholar
  141. — (2) A cytological study of the leaves and growing points of healthy and mosaic diseased tobacco plants. Bull. Torrey botan. Club 53, 499 (1926).Google Scholar
  142. 42.
    Gratia, A.: (1) La centrifugation des bacteriophages. C. r. Soc. Biol. 117, 1228 (1934).Google Scholar
  143. — (2) La centrifugation des bacteriophages. Bull. Soc. Chim. biol. (Fr.) 18, 208 (1936).Google Scholar
  144. — (3) Suite de la mise au point, pour les usages biologiques, de l’ultracentrifugeur à air comprimé de Henriot-Hugtjenard. C. r. Soc. Biol. 125, 1057 (1937).Google Scholar
  145. 43.
    Gratia, A. et P. Manil: De l’ultracentrifugation des virus des plantes. C. r. Soc. Biol. 126, 423 (1937).Google Scholar
  146. 44.
    Griffith, F.: Significance of pneumococcal types. J. Hyg. (Brit.) 27, 113 (1928).Google Scholar
  147. 45.
    Heidelberger, M. and O.T. Avery: (1) The soluble specific substance of pneumococcus. J. exper. Med. (Am.) 38, 73 (1923).Google Scholar
  148. — (2) The soluble specific substance of pneumococcus. Second paper. J. exper. Med. (Am.) 40, 301 (1924).Google Scholar
  149. 46.
    Henriot, E. et E. Huguenard: (1) Sur la realisation de très grandes vitesses de rotation. C. r. Acad. Sci. 180, 1389 (1925).Google Scholar
  150. — (2) Les grandes vitesses angulaires obtenues par les rotors sans axe solide. J. Physique et le Radium 8, 433 (1927).Google Scholar
  151. 47.
    d’Herelle, F.: Le bacteriophage: son role dans l’immunité. Paris: Masson et Cie. 1921.Google Scholar
  152. 48.
    Hoggan, I. A.: Cytological studies on virus diseases of solanaceous plants. J. agric. Res. 35, 651 (1927).Google Scholar
  153. 49.
    Holmes, F. O.: Local lesions in tobacco mosaic. Bot. Gaz. 87, 39 (1929).Google Scholar
  154. 50.
    Iwanowski, D.: Über die Mosaikkrankheit der Tabakspflanze. Z. Pflanzenkrkh. 13, 1 (1903).Google Scholar
  155. 51.
    Janssen, L. W.: Die Herstellung eines stark gereinigten Virus der Maul-und Klauenseuche. Z. Hyg. 119, 558 (1937).Google Scholar
  156. 52.
    Janssen, L. W. u. E. Bass: Das Niederschlagen des Virus der Maul-und Klauenseuche mit Alkohol und Äther. Münch. tierärztl. Wschr. 86, 373 (1935).Google Scholar
  157. 53.
    Jobling, J.W. and E. E. Sproul: (1) The transmissible agent in the Rous chicken sarcoma no. 1. Science 84, 229 (1936).Google Scholar
  158. — (2) Relation of certain viruses to the active agent of the Rous chicken sarcoma. Science 85, 270 (1937).PubMedGoogle Scholar
  159. 54.
    Johnson, B.: Concentration of the virus of the mosaic of tobacco. Amer. J. Botany 21, 42 (1934).Google Scholar
  160. 55.
    Kidd, J. G., J. W. Beard, and P. Rous: Serological reactions with a virus causing rabbit papillomas which become cancerous. I. Tests of the blood of animals carrying the papilloma. J. exper. Med. (Am.) 64, 63 (1936).Google Scholar
  161. 56.
    Kliglee, I. J. and L. Olitzki: (1) Studies on protein-free suspensions of viruses. I. The adsorption and elution of bacteriophage and fowl-pox virus. Brit. J. exper. Path. 12, 172 (1931).Google Scholar
  162. — (2) Purification of phage by adsorption and elution. Proc. Soc. exper. Biol. a. Med. (Am.) 30, 1365 (1933).Google Scholar
  163. 57.
    Kluyver, A. J.: Levens nevels. Handel. 26. nederlandsch. nat. gen. Cong., S. 82. 1937.Google Scholar
  164. 58.
    Krueger, A. P.: The nature of bacteriophage and its mode of action. Physiol. Rev. (Am.) 16, 129 (1936).Google Scholar
  165. 59.
    Krueger, A. P. and H. T. Tamada: The preparation of relatively pure bacteriophage. J. gen. Physiol. (Am.) 13, 145 (1929).Google Scholar
  166. 60.
    Larkum, N. W.: Relationship of bacteriophage to toxin and antitoxin. Proc. Soc. exper. Biol. a. Med. (Am.) 30, 1395 (1933).Google Scholar
  167. 61.
    Ledingham, J. C. G.: The aetiological importance of the elementary bodies in vaccinia and fowl-pox. Lancet 1931 II, 525.Google Scholar
  168. 62.
    Ledingham, J. C. G. and W. E. Gye: On the nature of the filterable tumour-exciting agent in avian sarcomata. Lancet 1935 I, 376.Google Scholar
  169. 63.
    Leitch, A.: On the pathogenesis of cancer. In: Report of the International Conference on Cancer, S. 20. London 1928.Google Scholar
  170. 64.
    Lewis, M. R.: Production of tumors by means of purified (protein removed) tumor extracts. Amer. J. Canc. (Suppl.) 15, 2248 (1931).Google Scholar
  171. 65.
    Lewis, M. R. and H. B. Andervont: The adsorption of certain viruses by means of particulate substances. Amer. J. Hyg. 7, 505 (1927).Google Scholar
  172. 66.
    Lewis, M. R. and W. Mendelsohn: Purified (protein free) virus of chicken tumor no. 1. Amer. J. Hyg. 13, 639 (1931).Google Scholar
  173. 67.
    Lojkin, M.: A study of ascorbic acid as an inactivating agent of tobacco mosaic virus. Contr. Boyce Thomp. Inst. 8, 445 (1937).Google Scholar
  174. 68.
    Lojkin, M. and C. G. Vinson: Effect of enzymes upon the infectivity of the virus of tobacco mosaic. Contr. Boyce Thomp. Inst. 3, 147 (1931).Google Scholar
  175. 69.
    Loring, H. S. and W. M. Stanley: Isolation of crystalline tobacco mosaic virus protein from tomato plants. J. biol. Chem. (Am.) 117, 733 (1937).Google Scholar
  176. 70.
    Loring, H. S. and R. W. G. Wyckoff: The ultracentrifugal isolation of latent mosaic virus protein. J. biol. Chem. (Am.) 121, 225 (1937).Google Scholar
  177. 71.
    MacCallum, W. G. and E. H. Oppenheimer: Differential centrifugalization; a method for the study of filterable viruses, as applied to vaccinia. J. amer. med. Assoc. 78, 410 (1922).Google Scholar
  178. 72.
    MacClement, D.: Purification of plant viruses. Nature (Brit.) 133, 760 (1934).Google Scholar
  179. 73.
    Martin, L. F., H. H. McKinney, and L.W. Boyle: Purification of tobacco mosaic virus and production of mesomorphic fibers by treatment with trypsin. Science 86, 380 (1937).PubMedGoogle Scholar
  180. 74.
    Maschmann, E. and B. Albrecht: The carcinogenic agent of the chicken sarcoma of P. Rous. Z. physiol. Chem. 196, 241 (1931).Google Scholar
  181. 75.
    McIntosh, J.: The sedimentation of the virus of Rous sarcoma and the bacteriophage by a high-speed centrifuge. J. Path. a. Bacter. 41, 215 (1935). Abstr.Google Scholar
  182. 76.
    McIntosh, J. and F. R. Selbie: The measurement of the size of viruses by high-speed centrifugalization. Brit. J. exper. Path. 18, 162 (1937).Google Scholar
  183. 77.
    McKinney, H. H.: Quantitative and purification methods in virus studies. J. agric. Res. 35, 13 (1927).Google Scholar
  184. 78.
    Milone, S.: Sull’assorbimento superficiale dell’agente del sarcoma dei polli di Peyton Rous. Arch. Sci. med. 52, 321 (1928).Google Scholar
  185. 79.
    Muramatsu, K.: Über die physikalische und chemische Beschaffenheit der Bakteriophagen. Jap. J. exper. Med. 9, 333 (1931).Google Scholar
  186. 80.
    Murphy, J. B., E. Sturm, A. Claude, and O. M. Helmer: Properties of the causative agent of a chicken tumor. III. Attempts at isolation of the active principle. J. exper. Med. (Am.) 56, 91 (1932).Google Scholar
  187. 81.
    Nakahara, W. and H. Nakajima: Adsorption and elution experiments on filterable agent of Rous chicken sarcoma. Gann (Jap.) 27, 202 (1933).Google Scholar
  188. 82.
    Neufeld, F. u. W. Levinthal: Beiträge zur Variabilität der Pneumokokken. Z. Immunit. forsch. 55, 324 (1928).Google Scholar
  189. 83.
    Northrop, J. H.: (1) Isolation and properties of pepsin and trypsin. In: The Harvey Lectures, 1934/35, The Williams and Wilkins Co., Baltimore, 30, 229 (1936).Google Scholar
  190. — (2) Concentration and partial purification of bacteriophage. Science 84, 90 (1936).PubMedGoogle Scholar
  191. — (3) Concentration and purification of bacteriophage. Collecting Net 12, 188 (1937).Google Scholar
  192. — (4) Concentration and purification of bacteriophage. J. gen. Physiol. (Am.) 21, 335 (1938).Google Scholar
  193. 84.
    Parker, R. F. and T. M. Rivers: Immunological and chemical investigations of vaccine virus. I. Preparation of elementary bodies of vaccinia. J. exper. Med. (Am.) 62, 65 (1935).Google Scholar
  194. 85.
    Paschen, E.: Was wissen wir über den Vakzineerreger? Münch. med. Wschr. 53, 2391 (1906).Google Scholar
  195. 86.
    Pentimalli, F.: Analisi spettrografica dell’agente del sarcoma dei polli. Tumori 22 (Ser. 2, 10), 14 (1936).Google Scholar
  196. 87.
    Petre, A. W.: Factors influencing the activity of tobacco mosaic virus preparations. Contr. Boyce Thomp. Inst. 7, 19 (1935).Google Scholar
  197. 88.
    Pirie, A.: Adsorption experiments with the Rous sarcoma virus. Brit. J. exper. Path. 12, 373 (1931).Google Scholar
  198. 89.
    Pollard, A. and C. R. Amies: An investigation of the alleged tumour-producing properties of lipoid material extracted from Rous sarcoma desiccates. Brit. J. exper. Path. 18, 198 (1937).Google Scholar
  199. 90.
    Price, W. C. and R. W. G. Wtckoff: The ultracentrifugation of the proteins of cucumber viruses 3 and 4. Nature (Brit.) 141, 685 (1938).Google Scholar
  200. 91.
    Pyl, G.: (1) Adsorptionsversuche mit Maul-und Klauenseuchevirus in Pufferlösungen. Zbl. Bakter. usw., Abt. I, Orig. 121, 10 (1931).Google Scholar
  201. — (2) Die Bedeutung der kolloidalen Träger für die Beständigkeit des Virus der Maul-und Klauenseuche. Z. physiol. Chem. 218, 249 (1933).Google Scholar
  202. — (3) Über eine zweite Form des Maul-und Klauenseuche-Virus. Z. physiol. Chem. 244, 209 (1936).Google Scholar
  203. 92.
    Rawlins, T. E. and J. Johnson: Cytological studies of the mosaic disease of tobacco. Amer. J. Botany 12, 19 (1925).Google Scholar
  204. 93.
    Rhoads, C. P.: Immunization with mixtures of poliomyelitis virus and aluminum hydroxide. J. exper. Med. (Am.) 53, 399 (1931).Google Scholar
  205. 94.
    Ross, A. F. and C. G. Vinson: Mosaic disease of tobacco. Missouri agric. exp. Sta. Res. Bull. 258 (1937).Google Scholar
  206. 95.
    Rous, P.: A sarcoma of the fowl transmissible by an agent separable from the tumor cells. J. exper. Med. (Am.) 13, 397 (1911).Google Scholar
  207. 96.
    Rous, P. and J. W. Beard: The progression to carcinoma of virus-induced rabbit papillomas (Shope). J. exper. Med. (Am.) 62, 523 (1935).Google Scholar
  208. 97.
    Sabin, A.B.: Experiments on the purification and concentration of the virus of poliomyelitis. J. exper. Med. (Am.) 56, 307 (1932).Google Scholar
  209. 98.
    Schlesinger, M.: (1) Die Bestimmung von Teilchengröße und spezifischem Gewicht des Bakteriophagen durch Zentrifugierversuche. Z. Hyg. 114, 161 (1932).Google Scholar
  210. — (2) Reindarstellung eines Bakteriophagen in mit freiem Auge sichtbaren Mengen. Biochem. Z. 264, 6 (1933).Google Scholar
  211. 99.
    Shope, R. E.: Infectious papillomatosis of rabbits. J. exper. Med. (Am.) 58, 607 (1933).Google Scholar
  212. 100.
    Sia, R. H. P. and M. H. Dawson: In vitro transformation of pneumococcal types. II. The nature of the factor responsible for the transformation of pneumococcal types. J. exper. Med. (Am.) 54, 701 (1931).Google Scholar
  213. 101.
    Sittenfield, M. J., B.A. Johnson, and J. W. Jobling: (1) Demonstration of a tumor-inhibiting substance in filtrate of Rous chicken sarcoma and in normal chicken sera. Proc. Soc. exper. Biol. a. Med. (Am.) 28, 517 (1931).Google Scholar
  214. — (2) Demonstration of inhibitory substances in filtrate of Rous chicken sarcoma and their separation from active agent. Amer. J. Canc. (Suppl.) 15, 2275 (1931).Google Scholar
  215. 102.
    Smadel, J. B. and M. J. Wall: Elementary bodies of vaccinia from infected chorio-allantoic membranes of developing chick embryos. J. exper. Med. (Am.) 66, 325 (1937).Google Scholar
  216. 103.
    Smith, F. F.: Some cytological and physiological studies of mosaic diseases and leaf variegations. Ann. Missouri botan. Gard. 13, 425 (1926).Google Scholar
  217. 104.
    Stanley, W. M.: (1) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81, 644 (1935).PubMedGoogle Scholar
  218. — (2) Isolation and properties of virus proteins. Erg. Physiol, usw. 39, 294 (1937).Google Scholar
  219. — (3) The isolation and properties of tobacco mosaic and other virus proteins. In: Harvey Lee. (Am.) 33, 170 (1938); Baltimore: The Williams and Wilkins Co., 1937/38; also in Bull. N. Y. Acad. Med. 14, 398 (1938).Google Scholar
  220. — (4) Recent advances in the study of viruses. In: The Sigma Xi Lectures. New Haven: The Yale University Press, 1938.Google Scholar
  221. 105.
    Stanley, W. M. and R. W. G. Wyckoff: The isolation of tobacco ring spot and other virus proteins by ultracentrifugation. Science 85, 181 (1937).PubMedGoogle Scholar
  222. 106.
    Sugiura, K. and S.R. Benedict: Fractionation of Rous chicken sarcoma. J. Canc. Res. (Am.) 11, 164 (1927).Google Scholar
  223. 107.
    Svedberg, T.: The ultra-centrifuge and the study of high-molecular compounds. Nature (Brit.) 139, 1051 (1937).Google Scholar
  224. 108.
    Takahashi, W. N. and T. E. Rawlins: Stream double refraction of preparations of crystalline tobacco-mosaic protein. Science 85, 103 (1937).PubMedGoogle Scholar
  225. 109.
    Tang, F.F., W. J. Elford, and I.A. Galloway: Centrifugation studies. IV. The megatherium bacteriophage and the viruses of equine encephalomyelitis and louping ill. Brit. J. exper. Path. 18, 269 (1937).Google Scholar
  226. 110.
    Vinson, C. G.: (1) Precipitation of the virus of tobacco mosaic. Science 66, 357 (1927).PubMedGoogle Scholar
  227. — (2) Mosaic diseases of tobacco: V. Decomposition of the safranin-virus precipitate. Phytopathology 22, 965 (1932).Google Scholar
  228. 111.
    Vinson, C. G. and A. W. Petre: (1) Mosaic disease of tobacco. Bot. Gaz. 87, 14 (1929).Google Scholar
  229. — (2) Mosaic disease of tobacco. II. Activity of the virus precipitated by lead acetate. Contr. Boyce Thomp. Inst. 3, 131 (1931).Google Scholar
  230. 112.
    Woodruff, C. E. and E.W. Goodpasture: (1) The infectivity of isolated inclusion bodies of fowl-pox. Amer. J. Path. 5, 1 (1929).PubMedGoogle Scholar
  231. — (2) The relation of the virus of fowl-pox to the specific cellular inclusions of the disease. Amer. J. Path. 6, 713 (1930).PubMedGoogle Scholar
  232. 113.
    Wyckoff, R. W. G.: Ultracentrifugal concentration of a homogeneous heavy component from tissues diseased with equine encephalomyelitis. Proc. Soc. exper. Biol. a. Med. (Am.) 36, 771 (1937).Google Scholar
  233. 114.
    Wyckoff, R. W. G., J. Biscoe, and W.M. Stanley: An ultracentrifugal analysis of the crystalline virus proteins isolated from plants diseased with different strains of tobacco mosaic virus. J. biol. Chem. (Am.) 117, 57 (1937).Google Scholar
  234. 115.
    Wyckoff, R. W. G. and J. B. Lagsdin: Improvements in the air-driven ultra-centrifuge for molecular sedimentation. Rev. sci. Instr. 8, 74 (1937).Google Scholar
  235. 116.
    Yaoi, H. and W. Nakahara: Ultrafiltration experiments on filterable agent of Rous chicken sarcoma. Gann (Jap.) 29, 222 (1935).Google Scholar
  236. 1.
    Basset, J., A. Gratia, M. Macheboeuf, and P. Manil: Action of high pressures on plant viruses. Proc. Soc. exper. Biol. a. Med. (Am.) 38, 248 (1938).Google Scholar
  237. 2.
    Bawden, F. C. and N. W. Pirie: (1) Experiments on the chemical behaviour of potato virus “X”. Brit. J. exper. Path. 17, 64 (1936).Google Scholar
  238. — (2) Liquid crystalline preparations of cucumber viruses 3 and 4. Nature (Brit.) 139, 546 (1937).Google Scholar
  239. — (3) The relationships between liquid crystalline preparations of cucumber viruses 3 and 4 and strains of tobacco mosaic virus. Brit. J. exper. Path. 18, 275 (1937).Google Scholar
  240. — (4) The isolation and some properties of liquid crystalline substances from solanaceous plants infected with three strains of tobacco mosaic virus. Proc. roy. Soc, Lond., Ser. B: Biol. Sci. 123, 274 (1937).Google Scholar
  241. — (5) Liquid crystalline preparations of potato virus “X”. Brit. J. exper. Path. 19, 66 (1938).Google Scholar
  242. — (6) A plant virus preparation in a fully crystalline state. Nature (Brit.) 141, 513 (1938).Google Scholar
  243. — (7) Crystalline preparations of tomato bushy stunt virus. Brit. J. exper. Path. 19, 251 (1938).Google Scholar
  244. — (8) A note on some protein constituents of normal tobacco and tomato leaves. Brit. J. exper. Path. 19, 264 (1938).Google Scholar
  245. 3.
    Bawden, F. C., N. W. Pirie, J. D. Bernal, and I. Fankuchen: Liquid crystalline substances from virus-infected plants. Nature (Brit.) 138, 1051 (1936).Google Scholar
  246. 4.
    Beale, H. P.: Relation of Stanley’s crystalline tobacco-virus protein to intracellular crystalline deposits. Contr. Boyce Thomp. Inst. 8, 413 (1937).Google Scholar
  247. 5.
    Beard, J. W. and R. W. G. Wyckoff: (1) The isolation of a homogeneous heavy protein from virus-induced rabbit papillomas. Science 85, 201 (1937).PubMedGoogle Scholar
  248. — (2) The ph stability of the papilloma virus protein. J. biol. Chem. (Am.) 123, 461 (1938).Google Scholar
  249. 6.
    Beard, J. W., H. Finkelstein, and R. W. G. Wyckoff: The pH stability range of the elementary bodies of vaccinia. Science 86, 331 (1937).PubMedGoogle Scholar
  250. 7.
    Bernal, J. D.: In: Discussion on recent work on heavy proteins in virus infection and its bearing on the nature of viruses. Proc. roy. Soc. Med., Lond. 31, 208 (1938).Google Scholar
  251. 8.
    Bernal, J. D. and I. Fankuchen: Structure types of protein ‘crystals’ from virus-infected plants. Nature (Brit.) 139, 923 (1937).Google Scholar
  252. 9.
    Best, R. J.: (1) Precipitation of the tobacco mosaic virus complex at its iso-electric point. Austral. J. exper. Biol. a. med. Sci. 14, 1 (1936).Google Scholar
  253. — (2) Visible mesomorphic fibres of tobacco mosaic virus in juice from diseased plants. Nature (Brit.) 139, 628 (1937).Google Scholar
  254. — (3) Artificially prepared visible paracrystalline fibres of tobacco mosaic virus nucleoprotein. Nature (Brit.) 140, 547 (1937)Google Scholar
  255. — (4) The chemistry of some plant viruses. Austral. chem. Inst. J. a. Proc. 4, 375 (1937).Google Scholar
  256. 10.
    Best, R. J. and G. Samuel: The reaction of the viruses of tomato spotted wilt and tobacco mosaic to the pn value of media containing them. Ann. appl. Biol. 23, 509 (1936).Google Scholar
  257. 11.
    Bronfenbrenner, J.: Studies on the bacteriophage of d’Herelle. VII. On the particulate nature of bacteriophage. J. exper. Med. (Am.) 45, 873 (1927).Google Scholar
  258. 12.
    Bronfenbrenner, J. and D. Hetler: Mechanism of the inhibition of bacteriophagy by agar or gelatin. Proc. Soc. exper. Biol. a. Med. (Am.) 25, 480 (1928).Google Scholar
  259. 13.
    Caldwell, J.: The physiology of virus diseases in plants. IV. The nature of the virus agent of aucuba or yellow mosaic of tomato. Ann. appl. Biol. 20, 100 (1933).Google Scholar
  260. 14.
    Calmette, A. et C. Guérin: Recherches sur la vaccine expérimentale. Ann. Inst. Pasteur, Par. 15, 161 (1901).Google Scholar
  261. 15.
    Ch’en, W. K.: Preparation of the specific soluble substance from vaccinia virus. Proc. Soc. exper. Biol. a. Med. (Am.) 32, 491 (1934).Google Scholar
  262. 16.
    Chester, K. S.: (1) Specific quantitative neutralization of the viruses of tobacco mosaic, tobacco ring spot, and cucumber mosaic by immune sera. Phytopathology 24, 1180 (1934).Google Scholar
  263. — (2) Serological tests with Stanley’s crystalline tobacco-mosaic protein. Phytopathology 26, 715 (1936).Google Scholar
  264. 17.
    Craigie, J.: The nature of the vaccinia flocculation reaction, and observations on the elementary bodies of vaccinia. Brit. J. exper. Path. 13, 259 (1932).Google Scholar
  265. 18.
    Craigie, J. and F. O. Wishart: (1) The agglutinogens of a strain of vaccinia elementary bodies. Brit. J. exper. Path. 15, 390 (1934).Google Scholar
  266. — (2) Studies on the soluble precipitable substances of vaccinia. I. The dissociation in vitro of soluble precipitable substances from elementary bodies of vaccinia. J. exper. Med. (Am.) 64, 803 (1936).Google Scholar
  267. — (3) Studies on the soluble precipitable substances of vaccinia. II. The soluble precipitable substances of dermal vaccina. J. exper. Med. (Am.) 64, 819 (1936).Google Scholar
  268. 19.
    Duggar, B. M. and A. Hollaender: (1) Irradiation of plant viruses and of microorganisms with monochromatic light. I. The virus of typical tobacco mosaic and Serratia marcescens as influenced by ultraviolet and visible light. J. Bacter. (Am.) 27, 219 (1934).Google Scholar
  269. — (2) Irradiation of plant viruses and of microorganisms with monochromatic light. II. Resistance to ultraviolet radiation of a plant virus as contrasted with vegetative and spore stages of certain bacteria. J. Bacter. (Am.) 27, 241 (1934).Google Scholar
  270. 20.
    Elford, W. J. and C. H. Andrewes: The sizes of different bacteriophages. Brit. J. exper. Path. 13, 446 (1932).Google Scholar
  271. 21.
    Eriksson-Quensel, I. and T. Svedberg: Sedimentation and electrophoresis of the tobacco-mosaic virus protein. J. amer. chem. Soc. 58, 1863 (1936).Google Scholar
  272. 21a.
    Frampton, V.L. and H. Neurath: An estimate of the relative dimensions and diffusion constant of the tobacco-mosaic virus protein. Science 87, 468 (1938).PubMedGoogle Scholar
  273. 22.
    Glaser, R. W. and R. W. G. Wyckoff: Homogeneous heavy substances from healthy tissues. Proc. Soc. exper. Biol. a. Med. (Am.) 37, 503 (1937).Google Scholar
  274. 23.
    Gowen, J. W. and W. C. Price: Inactivation of tobacco-mosaic virus by X-rays. Science 84, 536 (1936).PubMedGoogle Scholar
  275. 24.
    Gratia, A. et P. Manil: Ultracentrifugation et cristallisation d’un melange de virus de la mosaïque du tabac et de bacteriophage. C. r. Soc. Biol. 126, 903 (1937).Google Scholar
  276. 25.
    Gratia, A. et B. Rhodes: De Faction lytique des staphylocoques vivants sur les staphylocoques tués. C. r. Soc. Biol. 90, 640 (1924).Google Scholar
  277. 26.
    Guérin, C.: Contrôle de la valeur des vaccins Jenneriens par la numeration des elements virulents. Ann. Inst. Pasteur, Par. 19, 317 (1905).Google Scholar
  278. 27.
    Halvorson, H. O. and N. R. Ziegler: Application of statistics to problems in bacteriology. I. A means of determining bacterial population by the dilution method. J. Bacter. (Am.) 25, 101 (1933).Google Scholar
  279. 28.
    Holmes, F. O.: (1) Local lesions in tobacco mosaic. Bot. Gaz. 87, 39 (1929).Google Scholar
  280. — (2) A masked strain of tobacco-mosaic virus. Phytopathology 24, 845 (1934).Google Scholar
  281. 29.
    Hughes, T. P., R. F. Parker, and T. M. Rivers: Immunological and chemical investigations of vaccine virus. II. Chemical analysis of elementary bodies of vaccinia. J. exper. Med. (Am.) 62, 349 (1935).Google Scholar
  282. 30.
    Jensen, J. H.: (1) Isolation of yellow-mosaic viruses from plants infected with tobacco mosaic. Phytopathology 23, 964 (1933).Google Scholar
  283. — (2) Studies on the origin of yellow-mosaic viruses. Phytopathology 26, 266 (1936).Google Scholar
  284. — (3) Studies on representative strains of tobacco-mosaic virus. Phytopathology 27, 69 (1937).Google Scholar
  285. 31.
    Krueger, A. P.: A method for the quantitative determination of bacteriophage. J. gen. Physiol. (Am.) 13, 557 (1930).Google Scholar
  286. 32.
    Krueger, A. P. and D. M. Baldwin: Production of phage in the absence of bacterial cells. Proc. Soc. exper. Biol. a. Med. (Am.) 37, 393 (1937).Google Scholar
  287. 33.
    Krueger, A. P. and J. Pong: The relationship between bacterial growth and phage production. J. gen. Physiol. (Am.) 21, 137 (1937).Google Scholar
  288. 34.
    Kunkel, L. O.: Tobacco and aucuba-mosaic infections by single units of virus. Phytopathology 24, 13 (1934). Abstr.Google Scholar
  289. 35.
    Landsteiner, K. and M. Heidelberger: Differentiation of oxyhemoglobins by means of mutual solubility tests. J. gen. Physiol. (Am.) 6, 131 (1923).Google Scholar
  290. 36.
    Lauffer, M. A.: (1) The molecular weight and shape of tobacco mosaic virus protein. Science 87, 469 (1938).PubMedGoogle Scholar
  291. — (2) Optical properties of solutions of tobacco mosaic virus protein. J. physic. Chem. 42, 935 (1938).Google Scholar
  292. — (3) The viscosity of tobacco mosaic virus protein solutions. J. biol. Chem. (Am.) 126 (1938).Google Scholar
  293. 37.
    Lauffer, M. A. and W. M. Stanley: (1) Stream double refraction of virus proteins. J. biol. Chem. (Am.) 123, 507 (1938).Google Scholar
  294. — (2) The physical chemistry of tobacco mosaic virus protein. Chem. Rev. (Am.) 24, April (1939).Google Scholar
  295. 38.
    Lavin, G. I. and W. M. Stanley: The ultraviolet absorption spectrum of crystalline tobacco mosaic virus protein. J. biol. Chem. (Am.) 118, 269 (1937).Google Scholar
  296. 39.
    Ledingham, J. C. G.: The aetiological importance of the elementary bodies in vaccinia and fowl-pox. Lancet 1931 II, 525.Google Scholar
  297. 40.
    Lojkin, M. and C. G. Vinson: Effect of enzymes upon the infectivity of the virus of tobacco mosaic. Contr. Boyce Thomp. Inst. 3, 147 (1931).Google Scholar
  298. 41.
    Loring, H. S.: (1) Accuracy in the measurement of the activity of tobacco mosaic virus protein. J. biol. Chem. (Am.) 121, 637 (1937).Google Scholar
  299. — (2) Properties of the latent mosaic virus protein. J. biol. Chem. (Am.) 126, December (1938).Google Scholar
  300. — (3) Nucleic acid from tobacco mosaic virus protein. J. biol. Chem. (Am.) 123, 126 (1938).Google Scholar
  301. 41a.
    Loring, H. S., M. A. Lauffer, and W. M. Stanley: The question of aggregation of purified tobacco mosaic virus. Nature (Brit.) 142, 841 (1938).Google Scholar
  302. 42.
    Loring, H. S., H. T. Osborn, and R. W. G. Wyckoff: Ultracentrifugal isolation of high molecular weight proteins from broad bean and pea plants. Proc. Soc. exper. Biol. a. Med. (Am.) 38, 239 (1938).Google Scholar
  303. 43.
    Loring, H. S. and W. M. Stanley: Isolation of crystalline tobacco mosaic virus protein from tomato plants. J. biol. Chem. (Am.) 117, 733 (1937).Google Scholar
  304. 44.
    Loring, H. S. and R. W. G. Wyckoff: The ultracentrifugal isolation of latent mosaic virus protein. J. biol. Chem. (Am.) 121, 225 (1937).Google Scholar
  305. 44a.
    MacFarlane, M. G. and M. H. Salaman: The enzymatic activity of vaccinial elementary bodies. Brit. J. exper. Path. 19, 184 (1938).Google Scholar
  306. 44b.
    Martin, L. F., A.K. Balls, and H. H. McKinney: The protein content of tobacco mosaic. Science 87, 329 (1938).PubMedGoogle Scholar
  307. 45.
    Martin, L. F., H. H. McKinney, and L. W. Boyle: Purification of tobacco mosaic virus and production of mesomorphic fibers by treatment with trypsin. Science 86, 380 (1937).PubMedGoogle Scholar
  308. 45a.
    McFarlane, A. S. and R. A. Kekwick: Physical properties of bushy stunt virus protein. Biochem. J. (Brit.) 32, 1607 (1938).Google Scholar
  309. 46.
    McKinney, H. H.: (1) Virus mixtures that may not be detected in young tobacco plants. Phytopathology 16, 893 (1926). Abstr.Google Scholar
  310. — (2) Evidence of virus mutation in the common mosaic of tobacco. J. agric. Res. 51, 951 (1935).Google Scholar
  311. 47.
    Merrill, M. H.: Effect of purified enzymes on viruses and gram-negative bacteria. J. exper. Med. (Am.) 64, 19 (1936).Google Scholar
  312. 48.
    Northrop, J. H.: (1) Concentration and partial purification of bacteriophage. Science 84, 90 (1936).PubMedGoogle Scholar
  313. — (2) Concentration and purification of bacteriophage. J. gen. Physiol. (Am.) 21, 335 (1938)Google Scholar
  314. 49.
    Parker, R. F. and T. M. Rivers: (1) Immunological and chemical investigations of vaccine virus. I. Preparation of elementary bodies of vaccinia. J. exper. Med. (Am.) 62, 65 (1935).Google Scholar
  315. — (2) Immunological and chemical investigations of vaccine virus. III. Response of rabbits to inactive elementary bodies of vaccinia and to virus-free extracts of vaccine virus. J. exper. Med. (Am.) 63, 69 (1936).Google Scholar
  316. — (3) Immunological and chemical investigations of vaccine virus. IV. Statistical studies of elementary bodies in relation to infection and agglutination. J. exper. Med. (Am.) 64, 439 (1936).Google Scholar
  317. — (4) Immunological and chemical investigations of vaccine virus. VI. Isolation of a heat-stable, serologically active substance from tissues infected with vaccine virus. J. exper. Med. (Am.) 65, 243 (1937).Google Scholar
  318. 50.
    Parker, R. F. and C. V. Smythe: Immunological and chemical investigations of vaccine virus. V. Metabolic studies of elementary bodies of vaccinia. J. exper. Med. (Am.) 65, 109 (1937).Google Scholar
  319. 51.
    Paschen, E.: Was wissen wir über den Vakzineerreger? Münch. med. Wschr. 53, 2391 (1906).Google Scholar
  320. 51a.
    Pickels, E. G. and J. E. Smadel: Ultracentrifugation studies on the elementary bodies of vaccine virus. I. General methods and determination of particle size. J. Exp. Med. (Am.) 68, 583 (1938).Google Scholar
  321. 52.
    Price, W. C.: Acquired immunity to ring-spot in Nicotiana. Contr. Boyce Thomp. Inst. 4, 359 (1932).Google Scholar
  322. 53.
    Price, W. C. and J. W. Gowen: Quantitative studies of tobacco-mosaic virus inactivation by ultra-violet light. Phytopathology 27, 267 (1937).Google Scholar
  323. 54.
    Price, W. C. and R. W. G. Wyckoff: The ultracentrifugation of the proteins of cucumber viruses 3 and 4. Nature (Brit.) 141, 685 (1938).Google Scholar
  324. 55.
    Purdt, H. A.: Immunologic reactions with tobacco mosaic virus. J. exper. Med. (Am.) 49, 919 (1929).Google Scholar
  325. 56.
    Ross, A. F. and W. M. Stanley: (1) Partial reactivation of formolized tobacco mosaic virus protein. Proc. Soc. exper. Biol. a. Med. (Am.) 38, 260 (1938).Google Scholar
  326. — (2) The partial reactivation of formolized tobacco mosaic virus protein. J. gen. Physiol. (Am.) 22, 165 (1938).Google Scholar
  327. 57.
    Sabin, A.B.: The mechanism of immunity to filterable viruses. II. Fate of the virus in a system consisting of susceptible tissue, immune serum and virus, and the role of the tissue in the mechanism of immunity. Brit. J. exper. Path. 16, 84 (1935).Google Scholar
  328. 58.
    Samuel, G. and J. G. Bald: On the use of the primary lesions in quantitative work with two plant viruses. Ann. appl. Biol. 20, 70 (1933).Google Scholar
  329. 59.
    Schlesinger, M.: Zur Frage der chemischen Zusammensetzung des Bakteriophagen. Biochem. Z. 273, 306 (1934).Google Scholar
  330. 59a.
    Seastone, C. V.: The measurement of surface films formed by hemocyanin, tobacco mosaic virus, vaccinia, and Bacterium gallinarum. J. gen. Physiol. (Am.) 21, 621 (1938).Google Scholar
  331. 59b.
    Seastone, C. V., H. S. Loring, and K. S. Chester: Anaphylaxis with tobacco mosaic virus protein and hemocyanin. J. Immunol. (Am.) 33, 407 (1937).Google Scholar
  332. 60.
    Shope, R. E.: Infectious papillomatosis of rabbits. J. exper. Med. (Am.) 58, 607 (1933).Google Scholar
  333. 60a.
    Smadel, J. E., E. G. Pickels and T. Shedlovskt: Ultracentrifugation studies on the elementary bodies of vaccine virus. II. The influence of sucrose, glycerol and urea solutions on the physical nature of vaccine virus. J. Exp. Med. (Am.) 68, 607 (1938).Google Scholar
  334. 61.
    Smith, K. M. and J. P. Doncaster: The particle size of plant viruses. 3. Congr. intern. Path. comp., Athens, Rapports, 1, pt. 2, S. 179. 1936.Google Scholar
  335. 62.
    Smith, W.: A heat-stable precipitating substance extracted from vaccinia virus. Brit. J. exper. Path. 13, 434 (1932).Google Scholar
  336. 63.
    Stanley, W. M.: (1) Chemical studies on the virus of tobacco mosaic. I. Some effects of trypsin. Phytopathology 24, 1055 (1934).Google Scholar
  337. — (2) Chemical studies on the virus of tobacco mosaic. II. The proteolytic action of pepsin. Phytopathology 24, 1269 (1934).Google Scholar
  338. — (3) Isolation of a crystalline protein possessing the properties of tobacco-mosaic virus. Science 81, 644 (1935).PubMedGoogle Scholar
  339. — (4) Chemical studies on the virus of tobacco mosaic. III. Rates of inactivation at different hydrogen-ion concentrations. Phytopathology 25, 475 (1935).Google Scholar
  340. — (5) Chemical studies on the virus of tobacco mosaic. IV. Some effects of different chemical agents on infectivity. Phytopathology 25, 899 (1935).Google Scholar
  341. — (6) An improved method for the preparation of crystalline tobacco-mosaic virus protein. Phytopathology 26, 108 (1936]. Abst).Google Scholar
  342. — (7) Chemical studies on the virus of tobacco mosaic. VI. The isolation from diseased Turkish tobacco plants of a crystalline protein possessing the properties of tobacco-mosaic virus. Phytopathology 26, 305 (1936).Google Scholar
  343. — (8) The isolation of a crystalline protein possessing the properties of aucuba-mosaic virus. J. Bacter. (Am.) 31, 52 (1936]. Abst).Google Scholar
  344. — (9) The inactivation of crystalline tobacco-mosaic virus protein. Science 83, 626 (1936).PubMedGoogle Scholar
  345. — (10) Chemical studies on the virus of tobacco mosaic. VII. An improved method for the preparation of crystalline tobacco mosaic virus protein. J. biol. Chem. (Am.) 115, 673 (1936).Google Scholar
  346. — (11) Chemical studies on the virus of tobacco mosaic. VIII. The isolation of a crystalline protein possessing the properties of aucuba mosaic virus. J. biol. Chem. (Am.) 117, 325 (1937).Google Scholar
  347. — (12) Chemical studies on the virus of tobacco mosaic. IX. Correlation of virus activity and protein on centrifugation of protein from solution under various conditions. J. biol. Chem. (Am.) 117, 755 (1937).Google Scholar
  348. — (13) Crystalline tobacco-mosaic virus protein. Amer. J. Botany 24, 59 (1937).Google Scholar
  349. — (14) A comparative study of some effects of several different viruses on Turkish tobacco plants. Phytopathology 27, 1152 (1937).Google Scholar
  350. — (15) Chemical studies on the virus of tobacco mosaic. X. The activity and yield of virus protein from plants diseased for different periods of time. J. biol. Chem. (Am.) 121, 205 (1937).Google Scholar
  351. — (16) Isolation and properties of virus proteins. Erg. Physiol, usw. 39, 294 (1937).Google Scholar
  352. — (17) Virus proteins—a new group of macromolecules. J. physic. Chem. 42, 55 (1938).Google Scholar
  353. — (18) The biophysics and biochemistry of viruses. J. appl. Physics 9, 148 (1938).Google Scholar
  354. — (19) The reproduction of virus proteins. Amer. Naturalist 72, 110 (1938).Google Scholar
  355. — (20) The isolation and properties of tobacco ring spot virus protein. J. biol. Chem. (Am.) (1938). In press.Google Scholar
  356. — (21) The isolation and properties of tobacco mosaic and other virus proteins. In: Harvey Lect. (Am.) 33, 170 (1938); Baltimore: The Williams and Wilkins Co., 1937/38; also in Bull. N. Y. Acad. Med. 14, 398 (1938).Google Scholar
  357. — (22) Aucuba mosaic virus protein isolated from diseased excised tomato roots grown in vitro. J. biol. Chem. (Am.) 126, 125 (1938).Google Scholar
  358. — (23) Recent advances in the study of viruses. In: The Sigma Xi Lectures. New Haven: The Yale University Press, 1938.Google Scholar
  359. 64.
    Stanley, W. M. and H. S. Loring: (1) The isolation of crystalline tobacco mosaic virus protein from diseased tomato plants. Science 83, 85 (1936).PubMedGoogle Scholar
  360. — (2) Properties of virus proteins. Cold Spring Harbor Symposia for Quant. Biol. 6 (1938).Google Scholar
  361. 65.
    Stanley, W. M. and R. W. G. Wyckoff: The isolation of tobacco ring spot and other virus proteins by ultracentrifugation. Science 85, 181 (1937).PubMedGoogle Scholar
  362. 66.
    Takahashi, W. N. and T. E. Rawlins: (1) Method for determining shape of colloidal particles; application in study of tobacco mosaic virus. Proc. Soc. exper. Biol. a. Med. (Am.) 30, 155 (1932).Google Scholar
  363. — (2) Stream double refraction of preparations of crystalline tobacco-mosaic protein. Science 85, 103 (1937).PubMedGoogle Scholar
  364. 67.
    Vinson, C. G. and A. W. Petre: Mosaic disease of tobacco. II. Activity of the virus precipitated by lead acetate. Contr. Boyce Thomp. Inst. 3, 131 (1931).Google Scholar
  365. 68.
    Wishart, F. O. and J. Craigie: Studies on the soluble precipitable substances of vaccinia. III. The precipitin responses of rabbits to the LS antigen of vaccinia. J. exper. Med. (Am.) 64, 831 (1936).Google Scholar
  366. 69.
    Wtckoff, R. W. G.: (1) Molecular sedimentation constants of tobacco mosaic virus proteins extracted from plants at intervals after inoculation. J. biol. Chem. (Am.) 121, 219 (1937).Google Scholar
  367. — (2) An ultracentrifugal study of the pH stability of tobacco mosaic virus protein. J. biol. Chem. (Am.) 122, 239 (1937).Google Scholar
  368. — (3) An ultracentrifugal analysis of concentrated staphylococcus bacteriophage preparations. J. gen. Physiol. (Am.) 21, 367 (1938).Google Scholar
  369. — (4) An ultracentrifugal analysis of the aucuba mosaic virus protein. J. biol. Chem. (Am.) 124, 585 (1938).Google Scholar
  370. 70.
    Wyckoff, R. W. G. and J. W. Beard: pH stability of Shope papilloma virus and of purified papilloma virus protein. Proc. Soc. exper. Biol. a. Med. (Am.) 36, 562 (1937).Google Scholar
  371. 71.
    Wyckoff, R. W. G., J. Biscoe, and W. M. Stanley: An ultracentrifugal analysis of the crystalline virus proteins isolated from plants diseased with different strains of tobacco mosaic virus. J. biol. Chem. (Am.) 117, 57 (1937).Google Scholar
  372. 72.
    Wyckoff, R. W. G. and R. B. Corey: X-ray diffraction patterns of crystalline tobacco mosaic proteins. J. biol. Chem. (Am.) 116, 51 (1936).Google Scholar
  373. 73.
    Youden, W. J. and H. P. Beale: A statistical study of the local lesion method for estimating tobacco mosaic virus. Contr. Boyce Thomp. Inst. 6, 437 (1934).Google Scholar

Copyright information

© Springer-Verlag Wien 1938

Authors and Affiliations

  • W. M. Stanley
    • 1
  1. 1.The Rockefeller Institute for Medical ResearchPrincetonUSA

Personalised recommendations