Automata Theory as an Abstract Boundary Condition for the Study of Information Processing in the Nervous System

  • Michael A. Arbib


This conference convenes 25 years after Warren McCulloch and Walter Pitts (1943) initiated the automaton-theoretic approach to information processing in the nervous system with their paper “A Logical Calculus of the Ideas Immanent in Nervous Activity,” and a few weeks before Warren McCulloch celebrates his 70th birthday. I should thus like to dedicate this paper to Warren McCulloch, in honor of his continuing stimulation to many who would understand “What’s in the Brain that Ink may Character?” [McCulloch, 1965].


Turing Machine Firing Pattern Effective Procedure Finite Automaton Output Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbib, M. A. (1964). Brains, machines and mathematics. New York: McGraw-Hill.Google Scholar
  2. Arbib, M. A. (ed.) (1968). Algebraic theory of machines, languages and semigroups. New York: Academic Press.Google Scholar
  3. Arbib, M. A. (1969). Theories of abstract automata. Englewood Cliffs: Prentice-Hall.Google Scholar
  4. Arbib, M. A. (in press a). Memory limitations of stimulus-response models. Psych. Rev.Google Scholar
  5. Arbib, M. A. (in press). The metaphorical brain. Englewood Cliffs: Prentice-Hall.Google Scholar
  6. Arbib, M. A. and Zeiger, H. P. (1969). On the relevance of abstract algebra to control theory. Automatica.Google Scholar
  7. Barzdin, Y. M. (1965). Complexity of recognition of symmetry in Turing machines. Problemy Kibernetiki, 15.Google Scholar
  8. Davis, M., (ed.) (1965). The undecidable. Hewlett: Raven Press.Google Scholar
  9. Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathe-matica und verwandter Systeme I. Monatshefte fur Mathematik und Physik, 38: 173–198.CrossRefGoogle Scholar
  10. Gödel, K. (1936). Über die Länge der Beweise. Ergeb. eines math. Kolloquiums, 7: 23–24.Google Scholar
  11. Hartmanis, J. and Stearns, R. E. (1966). Algebraic theory of sequential machines. Englewood Cliffs: Prentice-Hall.Google Scholar
  12. Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol., 160: 106–154.PubMedGoogle Scholar
  13. Lettvin, J., Maturana, H., McCulloch, W. S. and Pitts, W. (1959). What the frog’s eye tells the frog’s brain. Proc. IRE, 47: 1940–1951.CrossRefGoogle Scholar
  14. McCulloch, W. S. (1965). What’s in the brain that ink may character? In W. S. McCulloch, Embodiments of mind. Cambridge: MIT Press.Google Scholar
  15. McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys., 5: 115–133.CrossRefGoogle Scholar
  16. Miller, G. A., Galanter, E. and Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston, Inc.CrossRefGoogle Scholar
  17. Minsky, M. L. (1961). Steps toward artificial intelligence. Proc. IRE, 49 (1): 8–30.CrossRefGoogle Scholar
  18. Minsky, M. L. (1967). Computation: finite and infinite machines. Englewood Cliffs: Prentice-Hall.Google Scholar
  19. Minsky, M. L. and Papert, S. (1967). Linearly unrecognizable patterns, in Mathematical aspects of computer science, Vol. XIX of Proceedings of Symposia in Applied Mathematics. Providence: Amer. Math. Soc. 176–217.Google Scholar
  20. Moore, E. F. (1956). Gedanken-experiments on sequential machines. In C. E. Shannon and J. McCarthy, (eds.), Automata studies. Princeton: Princeton University Press. 129–153.Google Scholar
  21. Post, E. L. (1936). Finite combinatory processes—formulation I. J. Symbolic Logic, 1: 103–105.CrossRefGoogle Scholar
  22. Ritchie, R. W. (1963). Classes of predictably computable functions. Trans. Am. Math. Soc., 106: 139–173.CrossRefGoogle Scholar
  23. Shannon, C. E. and McCarthy, J., eds. (1956). Automata studies. Princeton: Princeton University Press.Google Scholar
  24. Spira, P. M. (1968). On the computational complexity of finite functions. Unpublished Ph.D. Thesis, Dept. of Electrical Engineering, Stanford University.Google Scholar
  25. Spira, P. M. and Arbib, M. A. (1967). Computation times for finite groups, semigroups and automata. Proc. IEEE 8th Ann. Symp. Switching and Automata Theory, 291–295.Google Scholar
  26. Suppes, P. (1968). Stimulus-response theory of finite automata. Technical Report No. 133, Psychology Series, Institute for Math. Studies in the Social Sciences, Stanford University.Google Scholar
  27. Turing, A. M. (1936). On computable numbers with an application to the Entscheidungs-problem. Proc. London Math. Soc., Ser. 2–42: 230–265; with a correction, Ibid., 43 (1936–7): 544–546.Google Scholar
  28. Wang, H. (1957). A variant to Turing’s theory of computing machines. J. Assoc. Comp. Math., 4: 63–92.CrossRefGoogle Scholar
  29. Winograd, S. (1967). On the time required to perform multiplication. J. ACM, 14: 793–802.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Michael A. Arbib
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations