Skip to main content

Catecholamines and Tryptamines

  • Chapter
Neurohormones and Neurohumors
  • 61 Accesses

Summary

Catecholamines are represented in the vertebrate nervous system most notably by noradrenaline (NA) and dopamine (DA), but also by the precursor compounds and related ones. Tryptamines are represented primarily by 5-hydroxytryptamine (5-HT or serotonin), but tryptamine itself has been detected there as well. These two groups of so-called “biogenic” or neurohumoral amines have been shown by fluorescence histochemical methods to occur normally within specific neurons, and by physiological and pharmacological methods to affect specific neuronal systems. These results have led to two major functional generalizations about these compounds in the central nervous system. Dopamine has been implicated in central generalized motor stimulation mechanisms and 5-hydroxytryptamine in central induction of sleep.

These neurohumoral amines are not restricted to neurons, and under certain experimental conditions their neuronal distribution may be modified. Although currently intensively studied as possible neurotransmitters, some of these compounds, such as the catecholamines released by the adrenal medulla, function as modulators of neuronal activity in some parts of the body. The additional role of neurotransmitters seems most probable for noradrenaline, in certain specific sites in both central and peripheral nervous systems. Nevertheless, the proof for transmitter roles of any of the compounds remains incomplete.

A survey of the many biological systems in which noradrenaline and 5-hydroxytryptamine are active, suggests that the molecular basis for their activity, at least in many instances, may stem from interactions with specific nucleotides involved in energy transfer. More speculative is a suggested functional association of 5-hydroxytryptamine with microtubular and related systems of possible significance in intracellular conductile and contractile mechanisms. Study of the molecular interactions of these compounds in simpler biological systems will aid in understanding the basis of their actions in nervous tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghajanian, G. K., J. A. Rosecrans,and M. H. Sheard: Serotonin: release in the forebrain by stimulation of midbrain raphe. Science 156,402–403 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Andén, N.-E.: On the function of the nigro-neostriatal dopamine pathway. In: Mechanism of Release of Biogenic Amines. U. S. von Euler, S. Rosen,and B. Uvnäs,eds., 357–359. Oxford: Pergamon Press, 1966.

    Google Scholar 

  • Andén, N.-E., A. Carlsson, A. Dahlström, K. Fuxe, N.-A. Hillarp,and K. Larsson: Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sci. 3, 523–530 (1964).

    Article  PubMed  Google Scholar 

  • Andén, N.-E., A. Dahlström, K. Fuxe,and K. Larsson: Further evidence for the presence of nigro-neostriatal dopamine neurons in the rat. Amer. J. Anat. 116,329–333 (1965).

    Article  PubMed  Google Scholar 

  • Axelrod, J.: Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharm. Rev. 18, 95–113 (1966).

    PubMed  CAS  Google Scholar 

  • Axelrod, J.,and H. Weissbach: Enzymatic 0-methylation of N-acetylserotonin to melatonin. Science 131,1312 (1960).

    Google Scholar 

  • Axelrod, J.,and H. Weissbach: Purification and properties of hydroxyindole0-methyl transferase. J. biol. Chem. 236,211–213 (1961).

    PubMed  CAS  Google Scholar 

  • Blaschko, H.: The specific action of 1-dopa decarboxylase. J. Physiol., London, 96, 50 P-51 P (1939).

    Google Scholar 

  • Carlsson,A.: Physiological and pharmacological release of monoamines in the central nervous system. In: Mechanism of Release of Biogenic Amines. U. S. von Euler, S. Rosen and B. Uvnäs,eds., 331–345. Oxford: Pergamon Press, 1966.

    Google Scholar 

  • Carlsson, A., B. Falck,and N.-A. Hillarp: Cellular localization of brain monoamines. Acta physiol. Shand. 56, Suppl. 196, 1–28 (1962).

    Article  CAS  Google Scholar 

  • Carlsson, A., B. Falck., K. Fuxe,and N.-A. Hillarp: Cellular localization of monoamines in the spinal cord. Acta physiol. Scand. 60,112–119 (1964).

    Google Scholar 

  • Corrodi, H.,and G. Jonsson: The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review of the methodology. J. Histochem. Cytochem. 15,65–78 (1967).

    Google Scholar 

  • Dahlström, A.,and K. Fuxe: Localization of monoamines in the lower brain stem. Experientia, Basel, 20,398–399 (1964 a).

    Google Scholar 

  • Dahlström,A., and K. Fuxe: Evidence for the existence of monoamine-containing neurons in the central nervous system. 1. Demonstration of monamines in the cell bodies of brain stem neurons. Acta physiol. Scand. 62,Suppl. 232, 1–55 (1964 b).

    Google Scholar 

  • Dahlström, A.,and K. Fuxe: A method for the demonstration of monoamine containing nerve fibers in the central nervous system. Acta physiol. Scand. 60,293–295 (1964 c).

    Google Scholar 

  • Dahlström, A.,and K. Fuxe: A method for the demonstration of adrenergic nerve fibres in peripheral nerves. Zschr. Zellforsch. 62,602–607 (1964 d).

    Google Scholar 

  • Dahlström,A., and K. Fuxe: Monoamines and the pituitary gland. Acta Endocrinol. 51, 301–314 (1965).

    Google Scholar 

  • De Robertis, E. D. P.: Histophysiology of Synapses and Neurosecretion. Oxford: Pergamon Press, 1964.

    Google Scholar 

  • Donoso, A. O., F. J. E. Stefano, A. M. Biscardi,and J. Cukier: Effects of castration on hypothalamic catecholamines. Amer. J. Physiol. 212,737–739 (1967).

    Google Scholar 

  • Eccles, J. C.: The Physiology of Synapses. New York: Academic Press; Berlin: Springer-Verlag, 1964.

    Google Scholar 

  • Eccleston, D., A. T. B. Moir, H. W. Reading,and I. M. Ritchie: The formation of 5-hydroxytryptophol in brain in vitro. Brit. J. Pharmacol. Chemotherap. 28,367–377 (1966).

    Google Scholar 

  • Erspamer, V.: Recent research in the field of 5-hydroxytryptamine and related indolealkylamines. Progr. Drug Research 3, 151–367 (1961).

    Google Scholar 

  • Erspamer, V. (sub-editor): 5-hydroxytryptamine and related indolealkylamines. Handbuch der experimentellen Pharmakologie 19, 1–928 (1966).

    Google Scholar 

  • Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. Scand. 56,Suppl. 197, 1–25 (1962).

    Google Scholar 

  • Feldstein, A.,and K. K.-K. Wong: Enzymatic conversion of serotonin to 5-hydroxytryptophol. Life Sci. 4,183–191 (1965).

    Google Scholar 

  • Florey, E.: Neurotransmitters and modulators in the animal kingdom. Fed. Proc. 26,No. 4, 1164–1178 (1967).

    Google Scholar 

  • Fuxe, K.: Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Zschr. Zellforsch. 61,710–724 (1964).

    Google Scholar 

  • Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system: III. The monoamine nerve terminal. Zschr. Zellforsch. 65,573–596 (1965 a).

    Google Scholar 

  • Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta physiol. Scand. 64, Suppl. 247, 37–85 (1965 b).

    Google Scholar 

  • Fuxe, K.,and L. Ljunggren: Cellular localization of monoamines in the upper brain stem of the pigeon. J. Comp. Neurol., Philadelphia, 125,355–381 (1965).

    Google Scholar 

  • Fuxe, K.,and C. Owman: Cellular localization of monoamines in the area postrema of certain mammals. J. Comp. Neurol., Philadelphia, 125,337–353 (1965).

    Google Scholar 

  • Garattini, S.,and L. Valzelli: Serotonin. Amsterdam: Elsevier Publ. Co., 1965. Gerschenfeld, H. M.: Chemical transmitters in invertebrate nervous systems. Symposia Soc. Exper. Biol., Cambridge, 20,299–323 (1966).

    Google Scholar 

  • Glowinski, J.,and R. J. Baldessarini: Metabolism of norepinephrine in the central nervous system. Pharmacol. Rev. 18,1201–1238 (1966).

    Google Scholar 

  • Heller,A., and R. Y. Moore: Effect of central nervous system lesions on brain monoamines in the rat. J. Pharmacol. Exp. Therap. 150,1–9 (1965).

    Google Scholar 

  • Holtz, P.: Dopadecarboxylase. Naturwissensch. 27,724 (1939).

    Google Scholar 

  • Hornykiewicz, O.: Dopamine (3-hydroxytyramine) and brain function. Pharmacol. Rev. I8, 925–964 (1966).

    Google Scholar 

  • Iturriza, F. C.: Monoamines and control of the pars intermedia of the toad pituitary. Gen. Comp. Endocrinol. 6,19–25 (1966).

    Google Scholar 

  • Iverson, L. L.: The Uptake and Storage of Noradrenaline in Sympathetic Nerves. Cambridge: Cambridge University Press, 1967.

    Google Scholar 

  • Jouvet,M.: Neurophysiology of the states of sleep. Physiol. Rev. 47, 117–177 (1967).

    Google Scholar 

  • Jouvet, M.: Insomnia and decrease of cerebral 5-hydroxytryptamine after destruction of the raphe system in the cat. Adv. Pharmacol. 6 B,265–279 (1968).

    Google Scholar 

  • Kopin, I. J.: Biochemical aspects of storage and release of biogenic amines from sympathetic nerves. In: Mechanism of Release of Biogenic Amines. U. S. von Euler, S. Rosell and B. [Jonas,eds., 229–246. Oxford: Pergamon Press, 1966.

    Google Scholar 

  • Kopin, I. J.,and E. K. Gordon: Metabolism of administered and drug released norepinephrine-7-H3 in the rat. J. Pharmacol. Exper. Therap., Baltimore, 140,207–216 (1963).

    Google Scholar 

  • Kopin, I. J., J. Axelrod,and E. K. Gordon: The metabolic fate of H3-epinephrine and Cl“-metanephrine in the rat. J. Biol. Chem., Baltimore, 236,2109–2113 (1961).

    Google Scholar 

  • La Brosse, E. H., J. Axelrod, I. J. Kopin,and S. S. Kety: Metabolism of 7-H3-epinephrine-d-bitartrate in normal young men. J. Clin. Invest. 40,253 to 260 (1961).

    Google Scholar 

  • Lichtensteiger, 1V.: Monoamines in the subfornical organ. Brain Research 4,52–59 (1967).

    Google Scholar 

  • Moore, R. Y., S.-L.R. Wong, and A. Heller: Regional effects of hypothalamic lesions on brain serotonin. Arch. Neurol. 13,346–354 (1965).

    Google Scholar 

  • Nagatsu, T., M. Levitt,and S. Udenfriend: Tyrosine hydroxylase — the initial step in NE biosynthesis. J. Biol. Chem., Baltimore, 239, 2910–2917 (1964).

    Google Scholar 

  • Pearse, A. G. E.: 5-hydroxytryptophan uptake by dog thyroid `C’ cells, and its possible significance in polypeptide hormone production. Nature, London, 211,598 600 (1966).

    Google Scholar 

  • Pscheidt, G. R.: Biochemical correlates with phyletic division of the nervous system. J. Theoret. Biol. 5, 52–56 (1963).

    Google Scholar 

  • Quay, W. B.: Retinal and pineal hydroxyindole-O-methyl transferase activity in vertebrates. Life Sci. 4,983–991 (1965 a).

    Google Scholar 

  • Quay, W. B.: Indole derivatives of pineal and related neural and retinal tissues. Pharmacol. Rev. 17,321–345 (1965 b).

    Google Scholar 

  • Quay, W. B.: Comparative physiology of serotonin and melatonin. Adv. Pharmacol. 6 A, 283–297 (1968).

    Google Scholar 

  • Quay, W. B.,and L. I. Smart: Substrate specificity and post-mortem effects in mammalian pineal acetylserotonin methyltransferase activity. Arch. Int. Physiol. 75, 197–210 (1967).

    Google Scholar 

  • Sano, Y., G. Odake,and S. Taketomo: Fluorescence microscopic and electron microscopic observations on the tuberohypophyseal tract. Neuroendocrinol. 2,30–42 (1967).

    Google Scholar 

  • Udenfriend,S.: Tyrosine hydroxylase. Pharmacol. Rev. 18,no. 1, part 1, 43–51 (1966).

    Google Scholar 

  • Weiner, N.,and C. O. Rutledge: The actions of reserpine on the biosynthesis and storage of catecholamines. In: Mechanism of Release of Biogenic Amines U. S. von Euler, S. Rosell,and B. Uvnäs,eds., 307–318. Oxford: Pergamon Press, 1966.

    Google Scholar 

  • Wurtman, R. J.: Catecholamines. N. England J. Med. 273,637–646, 693 to 700, 746–753 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer-Verlag Wien

About this chapter

Cite this chapter

Quay, W.B. (1969). Catecholamines and Tryptamines. In: Kappers, J.A. (eds) Neurohormones and Neurohumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25519-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25519-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-23465-5

  • Online ISBN: 978-3-662-25519-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics