Skip to main content

Quantitative Studies of Reactive Events in the Site of Injury Following Transection of the Spinal Cord in the Rat

  • Chapter
  • 25 Accesses

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

Transection of the mammalian spinal cord results in a complete and permanent loss of voluntary motor function below the level of the lesion accompanied by an equally profound sensory loss. In many phylogenetically lower animals, massive axonal regeneration occurs and often results in some degree of functional restitution, despite the presence of scar formation within the site of injury (Bernstein and Bernstein 1967), but in mammalian forms regeneration of CNS axons is considered to be minimal and abortive (Ramon v Cajal 1928). A variety of treatment methods have been employed in an attempt to promote the regeneration of axons across the transection site (Puchala and Windle 1977). These have included the implanting of grafts of fetal brain tissue, degenerated sciatic nerve or muscle into the lesion site in order to improve the environment for optimal axonal growth (Sugar and Gerard 1940), administration of adrenocorticotrophic hormones (McMasters 1962), millipore cylinders (Campbell and Windle 1960), or Piromen, a pyrogenic bacterial polysaccharide thought to enhance regeneration by preventing the formation of a dense fibrous scar following injury (Clemente and Windle 1954, Littrell 1955). Application of Piro-men seemed to increase the number of regenerating fibers as shown by morphological and electrophysiological techniques, but the animals failed to demonstrate an improvement in their sensorimotor function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Azzarelli, B., Rekate, H.L., Roessmann, U. (1977). Subependymona: A case report with ultrastructural study. Acta. Neuropathol. ( Berl. ) 40, 279–282.

    Article  PubMed  CAS  Google Scholar 

  • Barnard, J.W., Carpenter W. (1950). Lack of regeneration in the spinal cord of the rat. J. Neurophysiol. 13, 223–228.

    PubMed  CAS  Google Scholar 

  • Bernstein, J.J., Bernstein, M.E. (1967). Effect of glial-ependymal scar and teflon arrest on the regenerative capacity of goldfish spinal cord. Exp. Neurol. 19, 23–52.

    Article  Google Scholar 

  • Bernstein, J.J., Bernstein, M.E. (1971). Axonal regeneration and formation of synapes proximal to the site of the lesion following hemisection of the rat spinal cord. Exp. Neurol. 30, 336–351.

    Google Scholar 

  • Bernstein, J.J., Bernstein, M.E. (1973a). Neuronal alteration and reinnervation following axonal regeneration and sprouting in mammalian spinal cord. Brain Behay. Evol. 8, 135–161.

    Google Scholar 

  • Bernstein, M.E., Bernstein, J.J. (1973b). Regeneration of axons and synaptic complex formation rostral to the site of hemisection in the spinal cord of the monkey. Int. J. Neurosci. 5, 15–26.

    Google Scholar 

  • Björklund, A., Kromer, L.F., Stenevi, V. (1979). Cholinergic reinnervation of the rat hippocampus by septal implants is stimulated by perforant path lesion. Brain Res. 173, 57–64.

    Article  PubMed  Google Scholar 

  • Björklund, A., Segal, M., Stenevi, U. (1979). Functional reinnervation of rat hippocampus by locus coeruleus implants. Brain Res. 170, 555.

    Article  Google Scholar 

  • Björklund, A., Stenevi, U. (1979). Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 59, 62–100.

    Google Scholar 

  • Björklund, A., Wiklund, N.L., Descarries, L. (1981). Regeneration and plasticity of central serotoninergic neurons: A review. J. Physiol. ( Paris ) 77, 247–255.

    Google Scholar 

  • Bregman, B.S. (1983). Neural tissue transplants rescue rubrospinal neurons after neonatal spinal cord lesions. Soc. Neuro. Abs. 13th Annual Meeting.

    Google Scholar 

  • Bregman, B.S., Reier, P.J. (1982). Transplantation of fetal spinal cord tissue to injured spinal cord in neonatal and adult rats. Soc. Neuro. Abs. 12th Annual Meeting.

    Google Scholar 

  • Brown, J.O., McCouch, G.P. (1947). Abortive regeneration of the transected spinal cord. J. Comp. Neur. 87, 131–137.

    Google Scholar 

  • Bryant, S.V., Wozny, K.J. (1974). Stimulation of limb regeneration in the lizard Xantusia vigilis by means by ependymal implants. J. Exp. Zool. 189, 399–352.

    Google Scholar 

  • Campbell, J.B., Windle, W.F. (1960). Relation of millipore to healing and regeneration in transected spinal cords of monkeys. Neurology (Minneapolis) 10, 306–311.

    Article  CAS  Google Scholar 

  • Castro, A.J. (1978a). Projection of the superior cerebellar peduncle in rats and the development of new connections in response to neonatal hemicerebellectomy. J. Comp. Neur. 178, 611–628.

    Google Scholar 

  • Castro, A.J. (1978b). Analysis of corticospinal and rubrospinal projections after neonatal pyramidotomy in rats. Brain Res. 144, 155–158.

    Article  PubMed  CAS  Google Scholar 

  • Clemente, D.D., Windle, W.F. (1954). Regeneration of severed nerve fibers in the spinal cord of the adult cat. J. Comp. Neur. 101, 691–731.

    Google Scholar 

  • Cummings, J.P., Bernstein, D.R., Stelzner, D.J. (1981). Further evidence that sparing of function after spinal cord transection in the neonatal rat is not due to axonal generation or regeneration. Exp. Neurol. 74, 615–620.

    Google Scholar 

  • Das, G.D., Hallas, B.H., Das, K.G. (1980a). Transplantation of embryonic tissue in the mammalian brain. I. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rats. TITJ. Life Sci. 4, 93–124.

    Google Scholar 

  • Das, G.D., Hallas, B.H., Das, K.G. (1980b). Transplantation of brain tissue in the brain of rat. I. Growth characteristics of neocortical transplants from embryos of different ages. Am. J. Anat. 158, 135–145.

    Google Scholar 

  • De la Torre, J.C. (1981). Spinal cord injury. Review of basic and applied research. Spine 6, 315–335.

    Google Scholar 

  • Devor, M. (1975). Neuroplasticity in the sparing or deterioration of function after early olfactory tract lesions. Science 190, 998–1000.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, E. (1917). Primary and secondary findings in a series of attempts to transplant cerebral cortex in the albino rat. J. Comp. Neur. 27, 565–582.

    Google Scholar 

  • Egar, M., Singer, M. (1972). The role of ependyma in spinal cord regeneration in the urodele, Triturus. Exp. Neurol. 37, 422–430.

    Google Scholar 

  • Feigin, I., Geller, E.H., Wolfe, A. (1951). Absence of regeneration in the spinal cord of young rats. J. Neuropath. Exp. Neurol. 10, 420–425.

    Google Scholar 

  • Feringa, E.R., Gurden, G.G., Strodel, W. (1973). Descending spinal motor tract regeneration after spinal cord transection. Neurology (Minneapolis) 23, 599–608.

    Article  CAS  Google Scholar 

  • Feringa, E.R., Johnson, R.D., Wendt, J.S. (1975). Spinal cord regeneration in rats after immunosuppressive treatment. Arch. Neurol (Chicago) 22, 676–683.

    Google Scholar 

  • Feringa, E.R., Kinning, W.K., Britten, A.G. (1976). Recovery in rats after spinal cord injury. Neurology (Minneapolis) 26, 839–843.

    Article  CAS  Google Scholar 

  • Feringa, E.R., Kowalski, T.F., Vahlsing, H.L. (1980). Basal lamina formation at the site of spinal cord transection. Ann. Neurol. 8, 148–154.

    Google Scholar 

  • Feringa, E.R., Shuer, L.M., Vahlsing, H.L., Davis, S.W. (1977). Regeneration of corticospinal axons in the rat. Ann. Neurol. 2, 315–321.

    Google Scholar 

  • Feringa, E.R., Wendt, J.S., Johnson, R.D. (1974). Immunosuppressive treatment to enhance spinal cord regeneration in rats. Neurology (Minneapolis) 24, 287–293.

    Article  CAS  Google Scholar 

  • Freeman, L.W., MacDougall, J., Turbes, C.C. (1960). The treatment of experimental lesions of the spinal cord of dogs with trypsin. J. Neurosurg. 17, 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Fu, Y., Chen, A.T.L., Kay, S., Young, H.F. (1974). Is subependymoma (subependymal glomerate astrocytoma) an astrocytoma or ependymoma? Cancer 34, 1992–2008.

    Article  PubMed  CAS  Google Scholar 

  • Gamble, H.J. (1968). Axon ensheathing by ependymal cells in the human embryonic and foetal spinal cord. Nature 218, 182–183.

    Article  PubMed  CAS  Google Scholar 

  • Gelderd, J.B., Matthews, M.A., St. Onge, M.F., Faciane, C.L. (1980). Qualitative and quantitative effects of ACTH, Piromen, Cytoxan, and isobutyl-2-cyanoacrylate treatments following spinal cord transection in rats. Acta Neurobiol. Exp. 40, 489–500.

    Google Scholar 

  • Gilmore, S.A., Leiting, J.E. (1980). Changes in the central canal area of immature rats following spinal cord injury. Brain Res. 201, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Guth, L., Albuquerque, E.X., Desgpande, S.S., Barrett, C.P., Donati, E.J., Warnicke, J.E. (1980). Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J. Neurosurg. 52, 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Hallas, B.H., Das, G.D., Das, K.G. (1980). Transplantation of brain tissue in the brain of rat. II. Growth characteristics of neocortical transplants in hosts of different ages. Am. J. Anat. 158, 147–159.

    Google Scholar 

  • Hicks, S.P., D’Amato, C.J. (1970). Motor-sensory and visual behavior after hemisperectomy in newborn and mature rats. Exp. Neurol. 29, 416–438.

    Google Scholar 

  • Hoffer, B., Seiger, A., Freedman, R., Olson, L., Taylor, D. (1977). Electrophysiology and cytology of hippocampal formation transplants in the anterior chamber of the eye. II. Cholinergic mechanisms. Brain Res. 119, 107–132.

    Google Scholar 

  • Jacobson, M. (1978). Developmental Neurobiology, Second Edition. New York: Plenum Press.

    Book  Google Scholar 

  • Jaeger, C.B., Lund, R.D. (1979). Efferent fibers from transplanted cerebral cortex of rats. Brain Res. 165, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Lund, R.D. (1980). Transplantation of embryonic occipital cortex to the tectal region of newborn rats: A light microscopic study of organization and connectivity of the transplants. J. Comp. Neur. 194, 571–597.

    Google Scholar 

  • Kalil, K., Reh, T. (1979). Regrowth of severed axons in the neonatal central nervous system: Establishment of normal connections. Science 205, 1158–1161.

    Google Scholar 

  • Kalil, K., Reh, T. (1982). A light and electron microscopic study of regrowing pyramidal tract fibers. J. Comp. Neur. 211, 265–275.

    Google Scholar 

  • Kao, C.C. (1980). Spinal cord reconstruction after traumatic injury. In: The Spinal Cord and Its Reaction to Traumatic Injury. Anatomy, Physiology, Pharmacology Therapeutics. Modern Pharmacology-Toxicology. Bousquet, W.F., Palmer, R.F. (eds.). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Kromer, L.F., Björklund, A., Stenevi, V. (1981). Regeneration of the septohippocampal pathways in adult rats is promoted by utilizing embryonic hippocampal implants as bridges. Brain Res. 210, 173–200.

    Article  PubMed  CAS  Google Scholar 

  • Lampert, P., Cressman, M. (1964). Axonal regeneration in the dorsal columns of the spinal cord of adult rats. Lab. Invest. 13, 825–839.

    Google Scholar 

  • Littrell, J.L. (1955). Apparent functional restitution in Piromen-treated spinal cats. In: Regeneration in the Central Nervous System. Windle, W.F. (ed.). Springfield, IL: C.C. Thomas, pp. 219–228.

    Google Scholar 

  • Luse, S.A. (1961). Ultrastructural characteristics of normal and neoplastic cells. Prog. Exp. Tumor Res. 2, 1–35.

    Google Scholar 

  • Matinian, L.A., Andreasian, A.S. (1976). Enzyme therapy in organic lesions of the spinal cord. Tanasescu, E. (transl.). Los Angeles: Brain Information Service, University of California.

    Google Scholar 

  • Matthews, M.A. (1973). Death of the central neuron: An electron microscopic study of thalamic retrograde degeneration following cortical ablation. J. Neurocytol. 2, 265288.

    Google Scholar 

  • Matthews, M.A., Gelderd, J.B., St. Onge, M.F. (1976). Electron microscopy of spinal cord injury: Modification of reactive envents with immunosuppressives, pyrogens and antiinflammatory agents. Society for Neuroscience 6th Annual Meeting.

    Google Scholar 

  • Matthews, M.A.. St. Onge, M.F., Faciane, C.L., Gelderd, J.B. (1979a). Spinal cord transection: A quantitative analysis of elements of the connective tissue matrix formed within the site of lesion following administration of piromen, cytoxan or trypsin. Neuropath. Appl. Neurobiol. 5, 161–180.

    Google Scholar 

  • Matthews, M.A., St. Onge, M.F., Faciane, C.L., Gelderd, J.B. (1979b). Axon sprouting into segments of rat spinal cord adjacent to the site of a previous transection. Neuropath. Appl. Neurobiol. 5, 181–196.

    Google Scholar 

  • Matthews, M.A., St. Onge, M.F., Faciane, C.L. (1979c). An electron microscopic analysis of abnormal ependymal cell proliferation and envelopment of sprouting axons following spinal cord transection in the rat. Acta Neuropathol. ( Berlin ) 45, 27–36.

    Google Scholar 

  • Matthews, M.A., West, L.C. (1982). Optic fiber development between dual transplants of retina and superior colliculus placed in the occipital cortex. Anat. Embryol. 163, 417–433.

    Google Scholar 

  • Matthews, M.A., West, L.C., Riccio, R.V. (1982). An ultrastructural analysis of the development of foetal rat retina transplanted to the occipital cortex, a site lacking appropriate target neurons for optic fibers. J. Neurocytol. 11, 533–557.

    Article  PubMed  CAS  Google Scholar 

  • McLoon, S.C., Lund, R.D. (1980a). Identification of cells in retinal transplants which project to host visual centers: A horseradish peroxidase study in rats. Brain Res. 197, 491–495.

    Google Scholar 

  • McLoon, S.C., Lund, R.D. (1980b). Specific projections of retina transplanted to rat brain. Exp. Brain Res. 40, 273–282.

    Google Scholar 

  • McMasters, R.E. (1962). Regeneration of the spinal cord in the rat. Effects of Piromen and ACTH upon the regenerative capacity. J. Comp. Neur. 119, 113–125.

    Google Scholar 

  • Michel, M.E., Reier, P.J. (1979). Axonal-ependymal associations during early regeneration of the transected spinal cord in Xenopus laevis tadpoles. J. Neurocytol. 8, 529–548.

    Article  PubMed  CAS  Google Scholar 

  • Nordlander, R.H., Singer, M. (1978). The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J. Comp. Neurol. 180, 349–374.

    Google Scholar 

  • Nygren, L.G., Olson, L. (1976). On spinal noradrenaline receptor supersensitivity: Correlation between nerve terminal densities and flexor reflexes various times after intracisternal 6-hydroxydopamine. Brain Res. 116, 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Nygren, L.G., Olson, L. (1977). A new major projection from locus coeruleus: The main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Res. 132, 85–93.

    Google Scholar 

  • Nygren, L.G., Olson, L., Seiger, A. (1971). Regeneration of monoamine-containing axons in the developing and adult spinal cord of the rat following intraspinal 6-OHdopamine injections or transections. Histochemie 28, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Olson, I., Björklund, H., Hoffer, B.J., Palmer, M.R., Seiger, A. (1982). Spinal cord grafts: An intraocular approach to enigmas of nerve growth regulation. Brain Res. Bull. 9, 519–537.

    Google Scholar 

  • Olson, L., Seiger, A. (1975). Brain tissue transplanted to the anterior chamber of the eye. 2. Fluorescence histochemistry of immature catecholamine and 5-hydroxytryptamine neurons innervating the rat vas deferens. Cell Tiss. Res. 158, 141–150.

    Google Scholar 

  • Perlow, M.J., Freed, W.J., Hoffer, B.J., Seiger, A., Olson, L., Wyatt, R.J. (1979). Brain grafts reduce motor abnormalities produced by destruction of the nigrostriatal dopamine system. Science 204, 643–646.

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew, R.K. (1976). Trypsin inhibition of scar formation in cordotomized rats (abstract). Anat. Rec. 184, 501.

    Google Scholar 

  • Prendergast, J., Misantone, L.J. (1980). Sprouting by tracts descending from the mid-brain to the spinal cord. The result of thoracic funiculotomy in the newborn, 21day-old, and adult rat. Exp. Neurol. 69, 458–480.

    Google Scholar 

  • Puchala, E., Windle, W.F. (1977). The possibility of structural and functional restitution after spinal cord injury. A review. Exp. Neurol. 55, 1–42.

    Google Scholar 

  • Ramon Cajal, S. (1928). Degeneration and Regeneration of the Nervous System, Vol. II. London: Oxford University Press.

    Google Scholar 

  • Ranson, S.W. (1914). Transplantation of the spinal ganglion cells. J. Comp. Neur. 24, 547–558.

    Google Scholar 

  • Reh, T., Kalil, K. (1982). Functional role of regrowing pyramidal tract fibers. J. Comp. Neur. 211, 276–283.

    Google Scholar 

  • Reier, P.J., Perlow, M.J., Guth, L. (1983). Development of embryonic spinal cord transplants in the rat. Dev. Brain Res. In press.

    Google Scholar 

  • Richardson, P.M., McGuinness, U.M., Aguayo, A.J. (1980). Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265.

    Article  PubMed  CAS  Google Scholar 

  • Saltykow, S. (1905). Versuche über gehirnplantation Zugleich einbeitrag zür Kenntniss der Borgange an den zelligen gehirnelementen. Arch. Psych. 40, 320.

    Google Scholar 

  • Schneider, G.E. (1970). Mechanisms of functional recovery following lesions of visual cortex or superior colliculus in neonate and adult hamsters. Brain Behay. Evol. 3, 295–323.

    Google Scholar 

  • Shellshear, I., Emory, J.L. (1976). Gliosis and aqueductule formation in the aqueduct of Silvius. Dev. Med. Child. Neurol. Suppl. 37, 22–28.

    Google Scholar 

  • Simpson, S.B. (1968). Morphology of the regenerated spinal cord in the lizard, Anolis carolinensis. J. Comp. Neurol. 134, 193–210.

    Google Scholar 

  • Stelzner, D.J., Weber, E.D., Prendergast, J. (1979). A comparison of the effect of mid-thoracic spinal hemisection in the neonatal or weanling rat on the distribution and density of dorsal root axons in the lumbosacral spinal cord of the adult. Brain Res. 172, 407–426.

    Article  PubMed  CAS  Google Scholar 

  • Stenevi, V., Björklund, A., Svendgaard, N. (1976). Transplantation of central and peripheral monoamine neurons to the adult brain. Techniques and conditions for survival. Brain Res. 114, 1–20.

    Google Scholar 

  • Sugar, O., Gerard, R.W. (1940). Spinal cord regeneration in the rat. J. Neurophysiol. 3, 1–19.

    Google Scholar 

  • Turbes, C.C., Freeman, L.W. (1953). Apparent spinal cord regeneration following intramuscular trypsin. Anat. Rec. 117, 288.

    Google Scholar 

  • Veraa, R.P., Grafstein, B. (1981). Cellular mechanisms for recovery from nervous system injury: A conference report. Exp. Neurol. 71, 6–75.

    Google Scholar 

  • Vick, N.A., Lin, M., Bigner, D.D. (1977). The role of the subependymal plate in tumorigenesis. Acta Neuropathol. ( Berlin ) 40, 63–71.

    Google Scholar 

  • Wiklund, L., Mollgard, K. (1979). Neurotoxic destruction of the serotonergic synaptic innervation of the rat subcommissural organ if followed by reinnervation through collateral sprouting of non-monaminergic neurons. J. Neurocytol. 8, 469–480.

    Article  PubMed  CAS  Google Scholar 

  • Willenborg, D.O., Staten, E.A., Eidelberg, E. (1977). Studies on cell-mediated hypersensitivity to neural antigens after experimental spinal cord injury. Exp. Neurol. 54, 383–392.

    Article  PubMed  CAS  Google Scholar 

  • Windle, W.F. (1980). Concussion, contusion and severence of the spinal cord. In: The Spinal Cord and Its Reaction to Traumatic Injury. Anatomy, Physiology, Pharmacology, Therapeutics. Modern Pharmacology-Toxicology. Bousquet, W.F., Palmer, R.F. (eds.). New York: Marcel Dekker, Inc.

    Google Scholar 

  • Woodward, D.J. Seiger, A., Olson, L., Hoffer, B.J. (1977). Intrinsic and extrinsic determinants of dendritic development as revealed by Golgi studies of cerebellar and hippocampal transplants in oculo. Exp. Neurol. 57, 984–998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matthews, M.A., Gelderd, J.B. (1986). Quantitative Studies of Reactive Events in the Site of Injury Following Transection of the Spinal Cord in the Rat. In: Das, G.D., Wallace, R.B. (eds) Neural Transplantation and Regeneration. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25264-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25264-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-96160-4

  • Online ISBN: 978-3-662-25264-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics