Skip to main content

Neural Transplantation in Spinal Cord under Different Conditions of Lesions and Their Functional Significance

  • Chapter
Neural Transplantation and Regeneration

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

  • 26 Accesses

Abstract

Research on the problems of trauma and regeneration in the spinal cord has a long history. The importance of this research lies in the fact that trauma to this structure deprives the individual of voluntary control over the basic motor functions, such as movement of limbs involved in locomotion. The severity of trauma and the level of spinal cord where it is inflicted determine the nature and magnitude of loss of motor functions. Understanding the complexity of pathological events ensuing from the trauma, the nature and permanency of the functional loss, and the difficulties inherent in the restitution of the lost functions has been a concern for investigators in many fields. Pathologists, neuro-biologists, neuroembryologists, and neurosurgeons, among others, have contributed to a considerable extent within their respective domains towards explaining why, following a serious trauma, there is no functional recovery, and have speculated variously on how to achieve it. At different periods, various investigators claimed recovery of lost locomotor functions following surgical or pharmacological treatments. But those claims could not be supported by other investigators working independently. Thus, despite the great progress made towards an understanding of the pathological events and the problems of limited or no regeneration of damaged fiber systems, the goal of achieving recovery of the lost motor functions has remained beyond our reach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aihara, H. (1970). Autotransplantation of the cultured cerebellar cortex for spinal cord reconstruction (in Japanese). Brain and Nerve 22, 769–784.

    PubMed  CAS  Google Scholar 

  • Albert, E.N., Das, G.D. (1984). Neocortical transplants in the rat brain: An ultrastructural study. Experientia 40, 294–298.

    Article  PubMed  CAS  Google Scholar 

  • Allen, A.R. (1911). Surgery of experimental lesions of spinal cord equivalent to crush injury of fracture dislocation of spinal column. A preliminary report. J. Am. Med. Assoc. 57, 878–880.

    Google Scholar 

  • Allen, A.R. (1914). Remarks on the histopathological changes in the spinal cord due to impact. An experimental study. J. Nerv. Ment. Dis. 41, 141–147.

    Google Scholar 

  • Anderson, D.K., Prockop, L.D., Means, E.D., Hartley, L.E. (1976). Cerebrospinal fluid lactate and electrolyte levels following experimental spinal cord injury. J. Neurosurg. 44, 715–722.

    Article  PubMed  CAS  Google Scholar 

  • Arteta, J.L. (1956). Research on the regeneration of the spinal cord in the cat submitted to the action of pyrogenous substances (50R3895) of bacterial origin. J. Comp. Neurol. 105, 171–184.

    Google Scholar 

  • Assenmacher, D.R., Ducker, T.B. (1971). Experimental traumatic paraplegia: The vascular and pathologic changes seen in reversible and irreversible spinal cord lesions. J. Bone Jt. Surg. 53, 671–680.

    Google Scholar 

  • Balentine, J.D., Paris, D.U. (1978a). Pathology of experimental spinal cord trauma. I. The necrotic lesion as a function of vascular injury. Lab. Invest. 39, 236–253.

    Google Scholar 

  • Balentine, J.D., Paris, D.U. (1978b). Pathology of experimental spinal cord trauma. II. Ultrastructure of axons and myelin. Lab. Invest. 39, 254–266.

    Google Scholar 

  • Barker, B.M., Eayrs, J.T. (1967). Recovery mechanisms following lesions to the central nervous system. J. Physiol. 191, 25–26.

    Google Scholar 

  • Barnard, J.W., Carpenter, W. (1950). Lack of regeneration in spinal cord of rat. J. Neurophysiol. 13, 223–228.

    PubMed  CAS  Google Scholar 

  • Barrett, C.P., Guth, L., Donati, E.J., Krikorian, J.G. (1981). Astroglial reaction in the gray matter of lumbar segments after mid thoracic transection of the adult rat spinal cord. Exp. Neurol. 73, 365–377.

    Google Scholar 

  • Beggs, J.L., Waggener, J.D. (1973). The compression model: Its application in determining post-traumatic vascular leakage routes. Proc. 19th V.A. Spinal Cord Injury Conf. 101–105.

    Google Scholar 

  • Bingham, W.J., Ruffolo, R., Friedman, S.J. (1975). Catecholamine levels in the injured spinal cord of monkeys. J. Neurosurg. 42, 174–178.

    Article  PubMed  CAS  Google Scholar 

  • Björklund, A., Segal, M., Stenevi, U. (1979). Functional reinnervation of the rat hippo-campus by locus coeruleus implants. Brain Res. 170, 409–426.

    Article  PubMed  Google Scholar 

  • Blight, A.R. (1983a). Cellular morphology of chronic spinal cord injury in the cat: Analysis of myelinated axons by line-sampling. Neuroscience 10, 521–543.

    Google Scholar 

  • Blight, A.R. (1983b). Axonal physiology of chronic spinal cord injury in the cat: Intracellular recording in vitro. Neuroscience 10, 1471–1486.

    Google Scholar 

  • Bohlmann, H.H., Ducker, T.B., Lucas, J.T. (1982). Spine and spinal cord injuries. In: The Spine, Vol. II. Rothman, R.H., Simeone, F.A. (eds.). Philadelphia: W.B. Saunders Co., pp. 661–756.

    Google Scholar 

  • Bresnahan, J.C. (1978). An electron-microscopic analysis of axonal alterations following blunt contusion of the spinal cord of the rhesus monkey (Macaca mulatta). J. Neurol. Sci. 37, 59–82.

    Google Scholar 

  • Bresnahan, J.C., King, J.S., Martin, G.F., Yashon, D. (1976). A neuroanatomical analysis of spinal cord injury in the rhesus monkey (Macaca mulatta). J. Neurol. Sci. 28, 521–542.

    Google Scholar 

  • Brookhart, J.M., Groat, R.W., Windle, W.F. (1948). A study of the mechanics of gunshot injury to the spinal cord of the cat. Milit. Surg. 102, 386–395.

    Google Scholar 

  • Brown, J.D., McCouch, G.P. (1947). Abortive regeneration of the transected spinal cord. J. Comp. Neurol. 87, 131–137.

    Google Scholar 

  • Campbell, J.B., Bassett, C.A.L., Thulin, C.A., Feringa, E.R. (1960). The use of nerve grafts to orient axonal regeneration in transected spinal cords. Anat. Rec. 136, 174.

    Google Scholar 

  • Campbell, J.B., DeCriscito, V., Tomasula, J.J., Demopoulos, H.B., Flamm, E.S., Ransohoff, J. (1973). Experimental treatment of spinal cord contusion in the cat. Surg. Neurol. 1, 102–106.

    Google Scholar 

  • Clemente, C.D. (1964). Regeneration in the vertebrate central nervous system. In: International Review of Neurobiology, Vol. 6. Pfeiffer, C.C., Smythies, I.R. (eds.). New York/London: Academic Press, pp. 257–301.

    Google Scholar 

  • Clemente, C.D., Windle, W.F. (1954). Regeneration of severed nerve fibers in the spinal cord of the adult cat. J. Comp. Neurol. 101, 691–731.

    Google Scholar 

  • Collins, W.F., Kauer, J.S. (1979). The past and future of animal models used for spinal cord trauma. In: Neural Trauma. Popp, A.J., Bourke, R.S., Nelson, L.R., Kimelberg, H.K. (eds.). New York: Raven Press, pp. 273–279.

    Google Scholar 

  • Cseuz, K.A.J., Speakman, T.J. (1963). Peripheral nerve implantation in experimental paraplegia. J. Neurosurg. 20, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Cummings, J.P., Bernstein, D.R., Stelzner, D.J. (1981). Further evidence that sparing of function after spinal cord transection in the neonatal rat is not due to axonal generation or regeneration. Exp. Neurol. 74, 615–620.

    Google Scholar 

  • Cusick, J.F., Myklebust, J., Zyvoloski, M., Sances, A., Houterman, C., Larson, C.J. (1982). Effects of vertebral column distraction in the monkey. J. Neurosurg. 57, 651–659.

    Article  PubMed  CAS  Google Scholar 

  • Das, G.D. (1974). Transplantation of embryonic neural tissue in the mammalian brain. I. Growth and differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rats. TIT J. Life Sci. 4, 93–124.

    Google Scholar 

  • Das, G.D. (1975). Differentiation of dendrites in the transplanted neuroblasts in the mammalian brain. In: Advances in Neurobiology: Physiology and Pathology of Dendrites, Vol. 12. Kreutzberg, G.W. (ed.). New York: Raven Press, pp. 181–199.

    Google Scholar 

  • Das, G.D. (1981). Neural transplants in the spinal cord of the adult rats. Anat. Rec. 199, 64A.

    Google Scholar 

  • Das, G.D. (1982). Extraparenchymal neural transplants: Their cytology and survivability. Brain Res. 241, 182–186.

    Google Scholar 

  • Das, G.D. (1983a). Neural transplantation in the spinal cord of the adult mammals. In: Reconstruction of the Spinal Cord. Kao, C.C., Bunge, R.P., Reier, P.J. (eds.). New York: Raven Press, pp. 367–396.

    Google Scholar 

  • Das, G.D. (1983b). Neural transplantation in mammalian brain: Some conceptual and technical considerations. In: Neural Tissue Transplantation Research. Wallace, R.B., Das, G.D. (eds.). New York/Heidelberg/Berlin/Tokyo: Springer-Verlag, pp. 1–64.

    Chapter  Google Scholar 

  • Das, G.D. (1983c). Neural transplantation in the spinal cord of the adult rats: Conditions, survival, cytology and connectivity of the transplants. J. Neurol. Sci. 62, 191–210.

    Google Scholar 

  • Das, G.D. (1984). Neural transplantation in the spinal cord and its functional significance. In: Paraplegia and Tetraplegia. Rossier, A., Radaelli, E., Redaelli, T. (eds.), Milan, Italy: Libreria Scientifica gia GHEDINI s.r.I., pp. 23–54.

    Google Scholar 

  • Das, G.D., Altman, J. (1971). The fate of transplanted precursors of nerve cells in the cerebellum of young rats. Science 173, 637–638.

    Article  PubMed  CAS  Google Scholar 

  • Das, G.D., Altman, J. (1972). Studies of the transplantation of developing neural tissue in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats. Brain Res. 38, 233–249.

    Google Scholar 

  • Das, G.D., Das, K.G., Brasko, J., Aleman-Gomez, J. (1983a). Neural transplants: Volumetric analysis of their growth and histopathological changes. Neuroscience Lett. 41, 73–79.

    Google Scholar 

  • Das, G.D., Hallas, B.H. (1978). Transplantation of brain tissue in the brain of adult rat. Experientia 34, 1304–1306.

    Article  PubMed  CAS  Google Scholar 

  • Das, G.D., Hallas, B.H., Das, K.G. (1979). Transplantation of neural tissues in the brains of laboratory mammals: Technical details and comments. Experientia 35, 143–153.

    Google Scholar 

  • Das, G.D., Hallas, B.H., Das, K.G. (1980). Transplantation of brain tissue in the brain of rats. I. Growth characteristics of neocortical transplants from embryos of different ages. Am. J. Anat. 158, 135–145.

    Google Scholar 

  • Das, G.D., Houlé, J.D., Brasko, J., Das, K.G. (1983b). Freezing of neural tissues and their transplantation in the brain of the rat: Technical details and histological observations. J. Neurosci. Meth. 8, 1–15.

    Google Scholar 

  • Das, G.D., Ross, D.T. (1982). Stereotaxic technique for transplantation of neural tissues in the brain of adult rats. Experientia 38, 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Davidoff, L.M., Ransohoff, J. (1948). Absence of spinal cord regeneration in the cat. J. Neurophysiol. 11, 9–11.

    PubMed  CAS  Google Scholar 

  • Torre, J.C., Johnson, C.M., Goode, D.J., Mullen, S. (1975). Pharmacological treatment and evaluation of permanent experimental spinal cord trauma. Neurology 25, 508–514.

    Article  Google Scholar 

  • Dohrmann, G.J. (1972). Experimental spinal cord trauma. A historical review. Arch. Neurol. ( Chicago ) 27, 468–473.

    Google Scholar 

  • Dohrmann, G.J., Panjabi, M.M., Banks, D. (1978). Biomechanics of experimental spinal cord trauma. J. Neurosurg. 48, 993–1001.

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann, G.J., Panjabi, M.M., Wagner, F.C., Jr. (1976). An apparatus for quantitating experimental spinal cord trauma. Surg. Neurol. 5, 315–318.

    Google Scholar 

  • Dohrmann, G.J., Wagner, F.C., Jr., Bucy, P.C. (1971). The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J. Neurosurg. 35, 263–271.

    Google Scholar 

  • Dohrmann, G.J., Wick, K.M., Bucy, P.C. (1973). Spinal cord blood flow patterns in experimental traumatic paraplegia. J. Neurosurg. 38, 52–58.

    Article  PubMed  CAS  Google Scholar 

  • Dolan, E.J., Transfeldt, E.E., Tator, C.H., Simmons, E.H., Hughes, K.F. (1980). The effect of spinal distraction on regional spinal cord blood flow in cats. J. Neurosurg. 53, 756–764

    Google Scholar 

  • Doppman, J.L., Ramsey, R., Theis, R.J. (1973). A precutaneous technique for producing intra-spinal mass lesions in experimental animals. J. Neurosurg. 38, 438447.

    Google Scholar 

  • Ducker, T.B. (1976). Experimental injury of the spinal cord. In: Handbook of Clinical Neurology. Injuries of the Spine and Spinal Cord, Part I, Vol. 25. Vinken, P.J., Bruyn, G.W. (eds.) Amsterdam: North-Holland Publishing Co., pp. 9–26.

    Google Scholar 

  • Ducker, T.B., Hamit, H.F. (1969). Experimental treatments of acute spinal cord injury. J. Neurosurg. 30, 693–697.

    Article  PubMed  CAS  Google Scholar 

  • Ducker, T.B., Kindt, G.W., Kempe, G.L. (1971). Pathological findings in acute experimental spinal cord trauma. J. Neurosurg. 35, 700–708.

    Article  PubMed  CAS  Google Scholar 

  • Ducker, T.B., Perot, P.L., Jr. (1971). Spinal cord oxygen and blood flow in trauma. Surg. Forum. 22, 413–415.

    Google Scholar 

  • Eidelberg, E., Story, J.L., Walden, J.G., Meyer, B.L. (1981). Anatomical correlates of return of locomotor function after partial spinal cord lesions in cats. Exp. Brain Res. 42, 81–88.

    Google Scholar 

  • Eidelberg, E., Straehley, R., Erspamer, R., Watkins, C.J. (1977). Relationship between residual hindlimb-assisted locomotion and surviving axons after incomplete spinal cord injuries. Exp. Neurol. 56, 312–322.

    Google Scholar 

  • Fairholm, D.J., Turnbull, I.M. (1970). Microangiographic study of experimental spinal injuries in dogs and rabbits. Surg. Forum 21, 453–455.

    Google Scholar 

  • Fairholm, D.J., Turnbull, I.M. (1971). Microangiographic study of experimental spinal cord injuries. J. Neurosurg. 35, 277–286.

    Article  PubMed  CAS  Google Scholar 

  • Feigin, I., Geller, E.H., Wolf, A. (1951). Absence of regeneration in the spinal cord of the young rat. J. Neuropath. Exp. Neurol. 10, 420–425.

    Google Scholar 

  • Feringa, E.R., Kinning, W.K., Britten, A.G., Vahlsing, H.L. (1976). Recovery in rats after spinal cord injury. Neurology 26, 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Fertig, A., Kiernan, J.A., Seyan, S.S.A.S. (1971). Enhancement of axonal regeneration in the brain of the rat by corticotrophin and triiodothyronine. Exp. Neurol. 33, 372–385.

    Google Scholar 

  • Ford, R.W.J. (1983). A reproducible spinal cord injury model in the cat. J. Neurosurg. 59, 268–275.

    Article  PubMed  CAS  Google Scholar 

  • Freeman, L.W. (1952). Return of function after complete transection of the spinal cord of the rat, cat and dog. Ann. Surg. 136, 193–205.

    Google Scholar 

  • Freeman, L.W. (1954). Return of spinal cord function in mammals after transection lesions. Ann. N.Y. Acad. Sci. 58, 564–569.

    Google Scholar 

  • Freeman, L.W. (1962). Experimental observations upon axonal regeneration in the transected spinal cord of mammals. Clin. Neurosurg. 8, 294–316.

    Google Scholar 

  • Freeman, L.W., MacDougall, J., Turbes, C.C., Bowman, D.E. (1960). The treatment of experimental lesions of the spinal cord of dogs with trypsin. J. Neurosurg. 17, 259265.

    Google Scholar 

  • Freeman, L.W., Turbes, C. C. (1961). Influence upon reflex activity of viable nerve implants into the distal segment of the divided spinal cord of paraplegic animals. Exp. Med. Surg. 19, 270–277.

    Google Scholar 

  • Freeman, L.W., Wright, T.W. (1953). Experimental observations of concussion and contusion of the spinal cord. Ann. Surg. 137, 433–443.

    Google Scholar 

  • Gearhart, J., Oster-Granite, M.L., Guth, L. (1979). Histological changes after transection of the spinal cord of fetal and neonatal mice. Exp. Neurol. 66, 1–15.

    Google Scholar 

  • Gelfan, S., Tarlov, I.M. (1956). Physiology of spinal cord, nerve root and peripheral nerve compression. Am. J. Physiol. 185, 217–229.

    Google Scholar 

  • Gerber, A.M., Corrie, W.S. (1979). Effect of impounder contact area on experimental spinal cord injury. J. Neurosurg. 51, 539–542.

    Article  PubMed  CAS  Google Scholar 

  • Goodkin, R., Campbell, J.B. (1969). Sequential pathologic changes in spinal cord injury: A preliminary report. Surg. Forum 20, 430–432.

    Google Scholar 

  • Green, B.A., Wagner, F.C. (1973). Evolution of edema in the acutely injured spinal cord: A fluorescence microscopy study. Surg. Neurol. 1, 98–101.

    Google Scholar 

  • Griffiths, I.R. (1975). Vasogenic edema following acute and chronic spinal cord compression in the dog. J. Neurosurg. 42, 155–165.

    Article  PubMed  CAS  Google Scholar 

  • Groat, R.W., Rambach, W.A., Windle, W.F. (1945). Concussion of the spinal cord. Surg. Gynecol. Obstetr. 81, 63–74.

    Google Scholar 

  • Guth, L., Albuquerque, E.X., Deshpande, S.S., Barrett, C.P., Donati, E.J., Warnick, J.E. (1980b). Ineffectiveness of enzyme therapy on regeneration in the transected spinal cord of the rat. J. Neurosurg. 52, 73–86.

    Article  PubMed  CAS  Google Scholar 

  • Guth, L., Brewer, C.R., Collins, W.F., Jr., Goldberger, M.E., Perl, E.R. (1980a). Criteria for evaluating spinal cord regeneration experiments. Exp. Neurol. 69, 1–3.

    Google Scholar 

  • Guth, L., Bright, D., Donati, E.J. (1978). Functional deficits and anatomical alterations after high cervical spinal hemisection in the rat. Exp. Neurol. 58, 511–520.

    Google Scholar 

  • Guth, L., Windle, W.F. (1970). The enigma of central nervous regeneration. Exp. Neurol. 28, Suppl. 5, 1–43.

    Google Scholar 

  • Hallas, B.H., Das, G.D., Das, K.G. (1980a). Transplantation of brain tissue in the brain of rat. II. Growth characteristics of neocortical transplants in hosts of different ages. Am. J. Anat. 158, 147–159.

    Google Scholar 

  • Hallas, B.H., Oblinger, M.M., Das, G.D. (1980b). Heterotopic neural transplants in the cerebellum of the rat: Their afferents. Brain Res. 196, 242–246.

    Google Scholar 

  • Hansebout, R.R., Kuchner, E.F., Romero-Sierra, C. (1975). Effects of local hypothermia and of steroids upon recovery from experimental spinal cord compression injury. Surg. Neurol. 4, 531–536.

    Google Scholar 

  • Harvey, A.R., Lund, R.D. (1981). Transplantation of tectal tissue in rats. II. Distribu- tion of host neurons which project to transplants. J. Comp. Neurol. 202, 505–520.

    Google Scholar 

  • Heinicke, E.A. (1977). Influence of exogenous triiodothyronine on axonal regeneration and wound healing in the brain of the rat. J. Neurol. Sci. 31, 293–305.

    Google Scholar 

  • Houlé, J.D., Das, G.D. (1980a). Freezing of embryonic neural tissue and its transplantation in the rat brain. Brain Res. 192, 570–574.

    Article  PubMed  Google Scholar 

  • Houlé, J.D., Das, G.D. (1980b). Freezing and transplantation of brain tissue in rats. Experientia 36, 1114–1115.

    Article  PubMed  Google Scholar 

  • Hukuda, S., Wilson, C.B. (1972). Experimental cervical myelopathy: Effects of compression and ischemia on the canine cervical cord. J. Neurosurg. 37, 631–652.

    Google Scholar 

  • Hung, T.K., Chang, G.L., Chang, J.L., Albin, M. (1981). Stress-strain relationship and neurological sequelae of uniaxial elongation of the spinal cord of cats. Surg. Neurol. 15, 471–476.

    Google Scholar 

  • Jaeger, C.B., Lund, R.D. (1979). Efferent fibers from transplanted cerebral cortex of rats. Brain Res. 165, 338–342.

    Article  PubMed  CAS  Google Scholar 

  • Jaeger, C.B., Lund, R.D. (1980). Transplantation of embryonic occipital cortex to the tectal region of newborn rats: A light microscopic study of organization and connectivity of the transplants. J. Comp. Neurol. 194, 571–597.

    Google Scholar 

  • Jakoby, R.K., Turbes, C.C., Freeman, L.W. (1960). The problem of neuronal regeneration in the central nervous system. I. The insertion of centrally connected peripheral nerve stumps into the spinal cord. J. Neurosurg. 17, 385–393.

    Google Scholar 

  • Jellinger, K. (1976). Neuropathology of cord injuries. In: Handbook of Clinical Neurology. Injuries of the Spine and Spinal Cord, Part I, Vol. 25. Vinken, P.J., Bruyn, G.W. (eds.). Amsterdam: North-Holland Publishing Co., pp. 43–121.

    Google Scholar 

  • Joyner, F., Freeman, L.W. (1963). Urea and spinal cord trauma. Neurology (Minneapolis) 13, 69–72.

    Article  CAS  Google Scholar 

  • Kao, C.C. (1974). Comparison of healing process in transected spinal cords grafted with autogenous brain tissue, sciatic nerve, and nodose ganglion. Exp. Neurol. 44, 424439.

    Google Scholar 

  • Kao, C.C. (1980). Spinal cord cavitation after injury. In: The Spinal Cord and Its Relation to Traumatic Injury. Windle, W.F. (ed.). New York/Basel: Marcel Dekker, pp. 249–270.

    Google Scholar 

  • Kao, C.C., Chang, L.W. (1977). The mechanism of spinal cord cavitation following spinal cord transection. Part I. A correlated histochemical study. J. Neurosurg. 46, 197–209.

    Google Scholar 

  • Kao, C.C., Chang, L.W., Bloodworth, J.M.B., Jr. (1977a). Axonal regeneration across transected mammalian spinal cords: An electron microscopic study of delayed nerve grafting. Exp. Neurol. 54, 591–615.

    Google Scholar 

  • Kao, C.C., Chang, L.W., Bloodworth, J.M.B., Jr., (1977b). The mechanism of spinal cord cavitation following spinal cord transection. Part II. Electron microscopic observations. J. Neurosurg. 46, 745–756.

    Google Scholar 

  • Kao, C.C., Shimizu, Y., Perkins, L.C., Freeman, L.W. (1970). Experimental use of cultured cerebellar cortical tissue to inhibit the collagenous scar following spinal cord transection. J. Neurosurg. 33 (2), 127–139.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D.L., Lassiter, K.R.L., Calogero, J.A. (1970). Effects of local hypothermia and tissue oxygen studies in experimental paraplegia. J. Neurosurg. 33, 554–563.

    Article  PubMed  Google Scholar 

  • Kiernan, J.A. (1979). Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol. Rev. 54, 155–197.

    Google Scholar 

  • Kobrine, A.I., Doyle, T.F., Martins, A.N. (1975). Local spinal cord blood flow in experimental traumatic myelopathy. J. Neurosurg. 42, 144–149.

    Article  PubMed  CAS  Google Scholar 

  • Kobrine, A.I., Evans, D.E., Rizzoli, H. (1978). Correlation of spinal cord blood flow and function in experimental compression. Surg. Neurol. 10, 54–59.

    Google Scholar 

  • Koenig, G., Dohrmann, G.J. (1977). Histopathological variability in “standardised” spinal cord trauma. J. Neurol. Neurosurg. Psychiat, 40, 1203–1210.

    Google Scholar 

  • Koozekanani, S.H., Vise, W.M., Hashemi, R.M., McGhee, R.B. (1976). Possible mechanisms for observed patho-physiological variability in experimental spinal cord injury by the method of Allen. J. Neurosurg. 44, 429–434.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, L.F., Björklund, A., Stenevi, U. (1981). Innervation of embryonic hippocampal implants by regenerating axons of cholinergic septal neurons in the adult rat. Brain Res. 210, 153–171.

    Article  PubMed  CAS  Google Scholar 

  • Kromer, L.F., Björklund, A., Stenevi, U. (1983). Intracephalic embryonic neural implants in the adult rat brain. I. Growth and mature organization of brain stem, cerebellar, and hippocampal implants. J. Comp. Neurol. 218, 433–459.

    Google Scholar 

  • Lampert, P., Cressman, M. (1964). Axonal regeneration in the dorsal columns of the spinal cord of adult rats. Lab. Invest. 13, 825–839.

    Google Scholar 

  • Lance, J.W. (1954). Behavior of pyramidal axons following section. Brain 77, 314324.

    Google Scholar 

  • Lee, F.C. (1929). The regeneration of nervous tissue. Physiol. Rev. 9, 575–623.

    Google Scholar 

  • Locke, G.E., Yashon, D., Feldman, R.A., Hunt, W.E. (1971). Ischemia in primate spinal cord injury. J. Neurosurg. 34, 614–617.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R.D., Harvey, A.R. (1981). Transplantation of tectal tissue in rats. I. Organization of transplants and pattern of distribution of host afferents within them. J. Comp. Neurol. 201, 191–209.

    Google Scholar 

  • Lund, R.D., Hauschka, S.D. (1976). Transplanted neural tissue develops connections with host rat brain. Science 193, 582–584.

    Article  PubMed  CAS  Google Scholar 

  • Magenis, T.P., Freeman, L.W., Bowman, D.E. (1952). Functional recovery following spinal cord hemisection and intrathecal use of hypochlorite treated trypsin. Fed. Proc. 11, 99.

    Google Scholar 

  • Means, E.D., Anderson, D.K., Waters, T.R., Kalaf, L. (1981). Effect of methylprednisolone in compression trauma to the feline spinal cord. J. Neurosurg. 55, 200–208.

    Article  PubMed  CAS  Google Scholar 

  • Molt, J.T., Nelson, L.R., Poulos, D.A., Bourke, R.S. (1979). Analysis and measurement of some sources of variability in experimental spinal cord trauma. J. Neurosurg. 50, 784–791.

    Article  PubMed  CAS  Google Scholar 

  • Nornes, H.O., Björklund, A., Stenevi, U. (1983). Reinnervation of the denervated adult spinal cord of rats by intraspinal transplants of embryonic brain stem neurons. Cell Tiss. Res. 230, 15–35.

    Google Scholar 

  • Nygren, L.G., Olson, L., Seiger, A. (1977). Monoaminergic reinnervation of the tran- sected spinal cord by homologous fetal brain grafts. Brain Res. 129, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Oblinger, M.M., Das, G.D. (1982). Connectivity of neural transplants in adult rats: Analysis of afferents and efferents of neocortical transplants in the cerebellar hemisphere. Brain Res. 249, 31–49.

    Google Scholar 

  • Oblinger, M.M., Das, G.D. (1983). Connectivity of neural transplants in the cerebellum: A model of developmental differences in neuroplasticity. In: Neural Tissue Transplantation Research. Wallace, R.B., Das, G.D. (eds.). New York/Heidelberg/ Berlin/Tokyo: Springer-Verlag, pp. 105–134.

    Chapter  Google Scholar 

  • Oblinger, M.M., Hallas, B.H., Das, G.D. (1980). Neocortical transplants in the cerebellum of the rat: Their afferents and efferents. Brain Res. 189, 228–232.

    Google Scholar 

  • O’Callaghan, S.S., Speakman, T.J. (1963). Axon regeneration in the rat spinal cord. Surg. Forum 14, 410–411.

    Google Scholar 

  • Osterholm, J.L. (1974). The pathophysiological response to spinal cord injury. The current status of related research. J. Neurosurg. 40, 5–33.

    Google Scholar 

  • Osterholm, J.L., Mathews, G.J. (1972a). Altered norepinephrine metabolism following experimental spinal cord injury. I. Relationship to hemorrhagic necrosis and post-wounding neurological deficits. J. Neurosurg. 36, 380–394.

    Google Scholar 

  • Osterholm, J.L., Mathews, G.J. (1972b). Altered norepinephrine metabolism following experimental spinal cord injury. II. Protection against traumatic spinal cord hemorrhagic necrosis by norepinephrine synthesis blockade with alpha methyl tyrosine. J. Neurosurg. 36, 395–401.

    Google Scholar 

  • Patel, U., Bernstein, J.J. (1983). Growth, differentiation and viability of fetal rat cortical and spinal cord implants into adult rat spinal cord. J. Neurosci. Res. 9, 303–310.

    Google Scholar 

  • Perkins, L., Babbini, A., Freeman, L.W. (1964). Distal-proximal nerve implants in spinal cord transection. Neurology 14, 949–954.

    Article  PubMed  CAS  Google Scholar 

  • Pettegrew, R.K. (1980). Evaluation of the use of enzymes for functional restitution after spinal cord severance in the rat. Exp. Neurol. 68, 284–294.

    Google Scholar 

  • Puchala, E., Windle, W.F. (1977). The possibility of structural and functional restitution after spinal cord injury. Exp. Neurol. 55, 1–42.

    Google Scholar 

  • Ramon y Cajal, S. (1928). Degeneration and Regeneration in the Nervous System, Vols. I and II. May, R.M. (trans. and ed. ), New York: Hafner (reprinted 1959 ).

    Google Scholar 

  • Rawe, S.E., Lee, W.A., Perot, P.L., Jr. (1978). The histopathology of experimental spinal cord trauma. The effect of systemic blood pressure. J. Neurosurg. 48, 10021007.

    Google Scholar 

  • Richardson, H.D., Nakamura, S. (1971). An electron microscopic study of spinal cord edema and the effect of treatment with steroids, mannitol, and hypothermia. Proc. 18th V.A. Spinal Cord Injury Conf. 10–16.

    Google Scholar 

  • Sandler, A.N., Tator, C.H. (1976). Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J. Neurosurg. 45, 660–676.

    Article  PubMed  CAS  Google Scholar 

  • Schramm, J., Hashizume, K., Fukushima, T., Takahashi, H. (1979). Experimental spinal cord injury by slow, graded compression. J. Neurosurg. 50, 48–57.

    Article  PubMed  CAS  Google Scholar 

  • Scott, D., Jr., Clemente, C.D. (1955). Regeneration of spinal cord fibers in the cat. J. Comp. Neurol. 102, 633–669.

    Google Scholar 

  • Seuter, H.J., Venes, J.L. (1979). Loss of autoregulation and post-traumatic ischemia following experimental spinal cord trauma. J. Neurosurg. 50, 198–206.

    Article  Google Scholar 

  • Shimizu, T. (1983). Transplantation of cultured cerebellar autografts into the spinal cords of chronic paraplegic dogs. In: Spinal Cord Reconstruction. Kao, C.C., Bunge, R.P., Reier, P.J. (eds.). New York: Raven Press, pp. 359–366.

    Google Scholar 

  • Shirres, D.A. (1905). Regeneration of the axones of the spinal neurones in man. Montreal Med. J. 34, 239–249.

    Google Scholar 

  • Stelzner, D.J., Ershler, W.B., Weber, E.D. (1975). Effects of spinal transection in neonatal and weanling rats: Survival and function. Exp. Neurol. 46, 156–177.

    Google Scholar 

  • Stenevi, U., Björklund, A., Svendgaard, N.A. (1976). Transplantation of central and peripheral monoamine neurons to the adult brain: Techniques and conditions for survival. Brain Res. 114, 1–20.

    Google Scholar 

  • Sugar, O., Gerard, W. (1940). Spinal cord regeneration in the rat. J. Neurophysiol. 3, 119.

    Google Scholar 

  • Tarlov, I.M. (1972). Acute spinal cord compression paralysis. J. Neurosurg. 36, 10–20. Tarlov, I.M. (1957). Spinal Cord Compression: Mechanisms of Paralysis and Treatment. Springfield, Il: Charles C. Thomas.

    Google Scholar 

  • Tarlov, I.M., Klinger, H., Vitale, S. (1953). Spinal cord compression studies. I. Experimental techniques to produce acute and gradual compression. Arch. Neurol. Psychiat. 70, 813–819.

    Google Scholar 

  • Tator, C.H. (1971). Experimental circumferential compression injury of primate spinal cord. Proc. 18th V.A. Spinal Cord Injury Conf. 2–5.

    Google Scholar 

  • Tator, C.H. (1972). Acute spinal cord injury: A review of recent studies of treatment and pathophysiology. Can. Med. Assoc. J. 107, 143–150.

    Google Scholar 

  • Tator, C.H. (1973). Acute spinal cord injury in primates produced by an inflatable extradural cuff. Can. J. Surg. 16, 222–230.

    Google Scholar 

  • Turbes, C.C., Freeman, L.W. (1958). Peripheral nerve-spinal cord anastomosis for experimental cord transection. Neurology 8, 857–861.

    Article  PubMed  CAS  Google Scholar 

  • Vahlsing, H.L., Feringa, E.R. (1980). A ventral uncrossed cortico-spinal tract in the rat. Exp. Neurol. 70, 282–287.

    Google Scholar 

  • Veraa, R.P., Grafstein, B. (1981). Cellular mechanisms for recovery from nervous system injury: A conference report. Exp. Neurol. 71, 6–75.

    Google Scholar 

  • Wagner, F.C., Dohrmann, G.J., Bucy, P.C. (1971). Histopathology of transitory traumatic paraplegia in the monkey. J. Neurosurg. 35, 272–276.

    Article  PubMed  Google Scholar 

  • Wakefield, C.L., Eidelberg, E. (1975). Electron microscopic observations of the delayed effects of spinal cord compression. Exp. Neurol. 48, 637–646.

    Google Scholar 

  • White, R.J., Albin, M.S., Harris, L.S., Yashon, D. (1969). Spinal cord injury: Sequential morphology and hypothermic stabilization. Surg. Forum 20, 432–434.

    Google Scholar 

  • Windle, W.F. (1956). Regeneration of axons in the vertebrate central nervous system. Physiol. Rev. 36, 427–440.

    Google Scholar 

  • Windle, W.F. (1980). Concussion, contusion, and severance of the spinal cord. In: The Spinal Cord and Its Reaction to Traumatic Injury. Windle, W.F. (ed.). New York/ Basel: Marcel Dekker, pp. 205–217.

    Google Scholar 

  • Windle, W.F., Chambers, W.W. (1950). Regeneration in the spinal cord of the cat and dog. J. Comp. Neurol. 93, 241–257.

    Google Scholar 

  • Windle, W.F., Clemente, C.D., Chambers, W.W. (1952a). Inhibition of formation of a glial barrier as a means of permitting a peripheral nerve to grow into the brain. J. Comp. Neurol. 96, 359–369.

    Google Scholar 

  • Windle, W.F., Clemente, C.D., Scott, D., Jr., Chambers, W.W. (1952b). Induction of neuronal regeneration in the central nervous system of animals. Trans. Am. Neurol. Assoc. 77, 164–170.

    Google Scholar 

  • Windle, W.F., Smart, J.O., Beers, J.J. (1958). Residual function after subtotal cord transection in adult cats. Neurology 8, 518–521.

    Article  PubMed  CAS  Google Scholar 

  • Woodward, J.S., Freeman, L.W. (1956). Ischemia of the spinal cord: An experimental study. J. Neurosurg. 13, 63–72.

    Google Scholar 

  • Yashon, D., Bingham, W.G., Jr., Faddoul, E.M., Hunt, W.E. (1973). Edema of the spinal cord following experimental impact trauma. J. Neurosurg. 38, 693–697.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Das, G.D. (1986). Neural Transplantation in Spinal Cord under Different Conditions of Lesions and Their Functional Significance. In: Das, G.D., Wallace, R.B. (eds) Neural Transplantation and Regeneration. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-25264-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-25264-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-96160-4

  • Online ISBN: 978-3-662-25264-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics