Na+-Dependent Transport of Carbohydrates through Intestinal Epithelium

  • Robert K. Crane


Several years ago, my colleagues and I presented a concept of the brush border membrane of the epithelial cell as a digestive-absorptive surface in which the elements responsible for digestion and absorption were postulated to be arranged in ordered proximity to one another (Crane, Miller and Bihler 1961, Crane 1962). The disaccharidases were represented as being an integral part of the outer protein coat of the membrane and the diffusion barrier to the entry of monosaccharides into the epithelial cells was assumed, in line with current concepts of membrane function, to be the lipid leaflet. As a consequence of experiments carried out under conditions of limited tissue energy supplies, we believed that the entry of sugars across the brush border membrane was identified as the primary site ofNa+ involvement in the overall process of active transport, and we interpreted our experiments to have “established the existence of a substrate-specific, Na+-dependent and energy-independent process mediating the rapid equilibration of sugars between the cells and the medium” (Bihler, Hawkins and Crane 1962). Interaction of glucose and its analogs with a specific binding site on a mobile carrier was ‘postulated to account for the specificity of the overall process (Crane 1960) and for the competitive nature of phlorizin inhibition (Alvarado and Crane 1962). Interaction of Na+ with a second specific binding site was also postulated, and it was concluded that binding of Na+ to this site was essential to the ability of the carrier to equilibrate sugar across the brush border membrane. Simultaneous movement of Na+ and sugar were assumed to occur as a direct consequence of these postulated interactions. As we have visualized it, the Na+-dependent sugar carrier system is, per se,capable only of equilibration; the asymmetry required to achieve uphill accumulation of sugar is attributed to the movement of Na+ into the cell down a gradient of concentration maintained by the operation of an outwardly-directed, energy-dependent Na+-pump present at a different locus in the same membrane. The position of the Na+-pump, however, is not of prime importance; it is essential only that the local internal Na+ concentration in the region of the equilibrating carrier be maintained low relative to the medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allfrey, V. G., R. Mendt, J. W. Ilopkins, and A. E. Mirsky, 1961: Proc. Natl. Acad. Sci. 47, 907.CrossRefGoogle Scholar
  2. Alvarado, F., and R. K. Crane, 1962: Biochim. Biophys. Acta 56, 170.CrossRefGoogle Scholar
  3. Asano, T., 1964: Amer. J. Phvsiol. 207, 415.Google Scholar
  4. Barry, R. J. C.. S. Dikstein. S. Matthews, and D. H. Smyth, 1960: J. Physiol., London, 155, 17.Google Scholar
  5. Bihler, I., and R. K. Crane, 1962: Biochim. Biophys. Acta 59, 78.CrossRefGoogle Scholar
  6. Bihler, I., K. A. IIawkins, and R. K. Crane, 1962: Biochim. Biophys. Acta 59, 94.CrossRefGoogle Scholar
  7. Bosackova, J., and R. K. Crane, 1965a: Biochim. Biophys. Acta 102, 423.CrossRefGoogle Scholar
  8. Bosackova, J., and R. K. Crane, 1965b: Biochim. Biophys. Acta 102, 436.CrossRefGoogle Scholar
  9. Christensen, H. N., 1962: Biological Transport, W. A. Benjamin, New York.Google Scholar
  10. Clarkson, T. W., and A. Rothstein, 1960: Amer. J. Physiol. 199, 898.Google Scholar
  11. Crane, R. K., 1960: Physiol. Rev. 40, 789.Google Scholar
  12. Crane, R. K.,1962: Fed. Proc. 21, 891.Google Scholar
  13. Crane, R. K.,1964: Biochem. Biophys. Res. Comm. 17, 481.CrossRefGoogle Scholar
  14. Crane, R. K.,1963: Fed. Proc. 24. 1000.Google Scholar
  15. Crane, R. K., D. Miller, and L. Bibler, 1961: Membrane Transport and Metabolism, A. Kleinzeller and A. Kotyk, eds., Czechoslovak Acad. of Science Press, Prague, p. 439.Google Scholar
  16. Crane, R. K., G. Forstner, and A. Eichholz, 1965: Biochim. Biophys. Acta 109, 467.CrossRefGoogle Scholar
  17. Csaky, T. Z., 1961: Amer. J. Physiol. 201, 999.Google Scholar
  18. Csaky, T. Z., 1963: Fed. Proc. 22, 3.Google Scholar
  19. Csaky, T. Z., 1964: Gastroenterology 47, 201.Google Scholar
  20. Csaky, T. Z. and M. Thal e, 1960: J. Physiol., London, 151, 59.Google Scholar
  21. Csaky, T. Z. and L. Zollicoffer, 1960: Amer. J. Physiol. 198, 1056.Google Scholar
  22. Curran, P., 1965: Fed. Proc. 24, 993.Google Scholar
  23. Fox. M., S. Thier, L. Rosenberg, and S. Segal, 1964: Biochim. Biophys. Acta 79, 167.Google Scholar
  24. Holt, P. R., 1964: Amer. J. Physiol. 207, 1.Google Scholar
  25. Kotyk, A., and A. Kleinzeller, 1961: Biochim. Biophys. Acta 54, 367.CrossRefGoogle Scholar
  26. Kromphardt, H., H. Grobecker, K. Ring, and E. Heinz, 1963: Biochim. Biophys. Acta 74, 551.CrossRefGoogle Scholar
  27. Lack, L., and I. M. Weiner, 1961: Amer. J. Physiol. 200, 313.Google Scholar
  28. Lyon, I., and R. K. Crane, 1966: Biochim. Biophys. Acta 112, 278.CrossRefGoogle Scholar
  29. Nathans, D., D. F. Tapley, and J. E. Ross, 1960: Biochim. Biophys. Acta 41. 271.CrossRefGoogle Scholar
  30. Parrish, J., and D. M. Kipnis, 1964: J. Clin. Invest. 43, 1994.CrossRefGoogle Scholar
  31. Playoust, M. R., and K. J. Isselbacher, 1964: J. Clin. Invest. 43, 467.CrossRefGoogle Scholar
  32. Riklis, E., and J. H. Quaste1, 1958: Can. J. Biochem. Physiol. 36, 347.CrossRefGoogle Scholar
  33. Rosenberg, I. H., A. L. Coleman, and L. E. Rosenberg, 1965: Biochim. Biophys. Acta 102, 161.CrossRefGoogle Scholar
  34. Rosenberg, T., and W. Wilbr and t, 1963: J. Theoret. Biol. 5, 288.CrossRefGoogle Scholar
  35. Schachter, D., and J. S. Britten, 1961: Fed. Proc. 20, 137.Google Scholar
  36. Schultz, S. G., and R. Zalusky, 1963: Biochim. Biophys. Acta 71, 503.CrossRefGoogle Scholar
  37. Schultz, S. G., and R. Zalusky, 1964: J. Gen. Physiol. 47, 567, 1043.CrossRefGoogle Scholar
  38. Varon, S., 1965: This symposium.Google Scholar
  39. Vidaver, G. A., 1964: Biochemistry 3, 795, 799 and 803.Google Scholar
  40. Yunis, A. A., G. K. Arimura, and D. M. Kipnis, 1963: J. Lab. Clin. Med. 62, 465.Google Scholar

Copyright information

© Springer-Verlag Wien 1967

Authors and Affiliations

  • Robert K. Crane
    • 1
    • 2
  1. 1.Department of BiochemistryThe Chicago Medical SchoolChicagoUSA
  2. 2.Department of PhysiologyRutgers Medical SchoolNew BrunswickUSA

Personalised recommendations