The Enzymatic Basis for the Active Transport of Sodium and Potassium

  • Jens Chr. Skou


The main problem in relation to active transport of Na and K is how metabolic energy is translated into a movement of ions against an electrochemical gradient. The first step on the way to solving this problem was the demonstration that active transport is driven by ATP (Caldwell 1956, Caldwell and Keynes 1957, Dunham 1957, Whittam 1958, Caldwell, Hodgkin and Shaw 1959, Caldwell 1960, Caldwell, Hodgkin, Keynes and Shaw 1960, Hoffman 1960). A second step may be the isolation of the Na + K activated enzyme system (Skou 1957) and the demonstration that this enzyme system is involved in the active transport of Na and K across the cell membrane (for references see Skou 1965 a).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmed, K., and J. D. Judah, 1965: Identificartiion of active phosphoprotein in a cation-activated adenosine triphosphatase. Biochim. Biophys. Acta 104, 112.CrossRefGoogle Scholar
  2. Albers, R. W., S. Fahn, and G. F. Koval, 1963: The role of sodium ions in the activation of Electrophorus electric organ adenosine triphosphatase. Proc. Natl. Acad. Scie. (U.S.A.) 50, 474.CrossRefGoogle Scholar
  3. Caldwell, P. C., 1956: The effect of certain metabolic inhibitors on the phosphate esters of the squid giant axon. J. Physiol. 132, 35 P.Google Scholar
  4. Caldwell, P. C., 1960: The phosphorus metabolism of squid axons and its relationship to the active transport of sodium. J. Physiol. 152, 545.Google Scholar
  5. Caldwell, P. C., A. L. Hodgkin, R. D. Keynes, and T. J. Shaw, 1960: The effects of injecting energy-rich phosphate compounds on the active transport of ions in the giant axons of loligo. J. Physiol. 152, 561.Google Scholar
  6. Caldwell, P. C., A. L. Hodgkin, and. T. J. Shaw, 1959: Injection of compound containing energy-rich phosphate bond into giant nerve fibres, J. Physiol. 147, 18 P.Google Scholar
  7. Caldwell, P. C., and R. D. Keynes, 1957: The utilization of phosphate bond energy for sodium extrusion from giant axons. J. Physiol. 137, 12 P.Google Scholar
  8. Charnoch, I. S., and R. L. Post, 1963: Evidence of the mechanism of ouabain inhibition of cation activated adenosine triphosphatase. Nature 199, 910.CrossRefGoogle Scholar
  9. Dunham, E. T., 1957: Linkage of active cations transport to ATP utilization. Physiologist I, 23.Google Scholar
  10. Glynn, I. M., 1962: Activation of adenosinetriphosphatase activity in a cell membrane by external potassium and internal sodium. J. Physiol. 160, 18 P.Google Scholar
  11. Hoffman, J. F., 1960: The link between metabolism and the active transport of Na in human red cell ghosts. Federation Proc. 19, 127.Google Scholar
  12. Post, R. L., and P. C. Jolly, 1957: The linkage of sodium potassium and ammonium active transport across the human erythrocyte membrane. Biochim. Biophys. Acta 25, 119.CrossRefGoogle Scholar
  13. Post, R. L., A. K. Sen, and A. S. Rosent Rosenthal, 1965: A phosphorylated intermediate in adenosine triphosphate-dependent sodium and potassium transport across kidney membranes. J. Biol. Chem. 240, 1437.Google Scholar
  14. Rose, S. P. R., 1963: Phosphoprotein as an intermediate in cerebral microsomal adenosinetriphosphatase. Nature 199, 375.CrossRefGoogle Scholar
  15. Sen, A. K., and R. L. Post, 1964: Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte. J. Biol. Chem. 239, 345.Google Scholar
  16. Skou, J. C., 1957: The influence of some cations on the adenosine triphosphate from peripheral nerves. Biodüm. Biophys. Acta 23, 394.CrossRefGoogle Scholar
  17. Skou, J. C., 1960: Further investigations on a (Mg++ + Na+)-activated adenosinetriphosphatase possibly related to the active linked transport of Na+ and K+ across the nerve membrane. Biochim. Biophys. Acta 42, 6.CrossRefGoogle Scholar
  18. Skou, J. C., 1963: Studies on the Na + K activated ATP hydrolyzing enzyme system. The role of SH groups. Biochem. Biophys. Res. Commun 10, 79.CrossRefGoogle Scholar
  19. Skou, J. C., 1964: Enzymatic aspects of active linked transport of Na and K through the cell membrane. Progress Biophys. 14, 131.CrossRefGoogle Scholar
  20. Skou, J. C., 1965a: Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 45, 596.Google Scholar
  21. Skou, J. C., 1965b: Relationship of ATP metabolism to ion transport. Proc. XXIIIrd Int. Congr. Physiol. Sci. Tokyo, 578.Google Scholar
  22. Skou, J. C., and C. Hilberg, 1%5: The effect of sulphydryl-blocking reagents and of urea on the (Na+ + K+)-activated enzyme system. Biochim. Biophys. Acta 110, 359.Google Scholar
  23. Whittam, R., 1958: Potassium movements and ATP in human red cells. J. Physiol. 140, 479.Google Scholar
  24. Whittam, R., 1962: The asymmetrical stimulation of a membrane adenosine triphosphatase in relation to active cation transport. Biochem. J. 84, 110.Google Scholar

Copyright information

© Springer-Verlag Wien 1967

Authors and Affiliations

  • Jens Chr. Skou
    • 1
  1. 1.Institute of PhysiologyUniversity of AarhusDenmark

Personalised recommendations