Abstract

The presence of abundant free oxygen in the terrestrial atmosphere is an anomaly in a solar system and universe composed predominantly of hydrogen. It is, of course, a direct consequence of the presence of life on earth, particularly the presence of photosynthetic organisms that use water as electron donor to reduce carbon dioxide to organic matter, producing molecular oxygen as a waste product.

Keywords

Methane Sulfide Phytoplankton Geochemistry Carbon Monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Valen, L.: The history and stability of atmospheric oxygen. Science 171, 439 (1971)Google Scholar
  2. 2.
    Holland, H.D.: Ocean water, nutrients, and atmospheric oxygen. In: Proceedings of Symposium on Hydrogeochemistry and Biogeochemistry, Vol. 1. Washington, D.C.: The Clarke Co. 1973, p. 68Google Scholar
  3. 3.
    Holland, H.D.: The Chemistry of the Atmosphere and Oceans. New York: Wiley-Interscience 1978Google Scholar
  4. 4.
    Walker, J.C.G.: Stability of atmospheric oxygen. Am. J. Sci. 274, 193 (1974)Google Scholar
  5. 5.
    Walker, J.C.G.: Evolution of the Atmosphere. New York: Macmillan Publishing Co. 1977Google Scholar
  6. 6.
    Garrels, R.M., Perry, E.A.: Cycling of carbon, sulfur, and oxygen through geologic time. In: The Sea, Vol. 5. E. Goldberg (Ed.). New York: Wiley-Interscience 1974, p. 303Google Scholar
  7. 7.
    Garrels, R.M., Lerman, A., Mackenzie, F.T.: Controls of atmospheric 02 and CO2: Past, present and future. Am. Sci. 64, 306 (1976)Google Scholar
  8. 8.
    Schidlowski, M., Eichmann, R., Junge, C.E.: Precambrian sedimentary carbonates: Carbon and oxygen isotope geochemistry and implications for the terrestrial oxygen budget. Precambrian Res. 2, 1 (1975)Google Scholar
  9. 9.
    Verniani, F.: The total mass of the Earth’s atmosphere. J. Geophys. Res. 71, 385 (1966)Google Scholar
  10. 10.
    Degens, E.T.: Carbon in the sea. Nature 279, 191 (1979)Google Scholar
  11. 11.
    Bowen, H.J.M.: Trace Elements in Biochemistry. New York: Academic Press 1966Google Scholar
  12. 12.
    Ronov, A.B., Yaroshevsky, A.A.: Chemical structure of the Earth’s crust. Geochemistry, 1041 (1967). (Trans. from Geokhimiya, No. 11, 1285, 1967)Google Scholar
  13. 13.
    Ronov, A.B., Yaroshevsky, A.A.: Chemical composition of the Earth’s crust. In: The Earth’s Crust and Upper Mantle. P.J. Hart (Ed.). Washington: Am. Geophys. Union Monograph 13, 1969, p. 37Google Scholar
  14. 14.
    Holligan, P.M.: The productive oceans. Nature 279, 191 (1979)Google Scholar
  15. 15.
    Hunten, D.M.: The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481 (1973)Google Scholar
  16. 16.
    Liu, S.C., Donahue, T.M.: The aeronomy of hydrogen in the atmosphere of the earth. J. Atmos. Sci. 31, 1118 (1974)Google Scholar
  17. 17.
    Liu, S.C., Donahue, T.M.: Mesospheric hydrogen related to exospheric escape mechanisms. J. Atmos. Sci. 31, 1466 (1974)Google Scholar
  18. 18.
    Lui, S.C., Donahue, T.M.: Realistic model of hydrogen constituents in the lower atmosphere and escape flux from the upper atmosphere. J. Atmos. Sci. 31, 2238 (1974)Google Scholar
  19. 19.
    Burns, R.C., Hardy, R.W.F.: Nitrogen fixation in bacteria and higher plants. New York: Springer-Verlag 1975Google Scholar
  20. 20.
    Dawson, G.A.: Atmospheric ammonia from undisturbed land. J. Geophys. Res. 82, 3125 (1977)Google Scholar
  21. 21.
    Graedel, T.E.: The kinetic photochemistry of the marine atmosphere. J. Geophys. Res. 84, 273 (1979)Google Scholar
  22. 22.
    Graedel, T.E.: The oxidation of ammonia, hydrogen sulfide, and methane in nonurban tropospheres. J. Geophys. Res. 82, 5917 (1977)Google Scholar
  23. 23.
    Deuser, W.G. et al.: Methane in Lake Kivu: New data bearing on its origin. Science 181, 51 (1973)Google Scholar
  24. 24.
    Zeikus, J.G., Winfrey, M.R.: Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ. Microbial. 31, 99 (1976)Google Scholar
  25. 25.
    Dacey, J.W.H., Klug, M.J.: Methane flux from lake sediments through water lilies. Science 203, 1253 (1979)Google Scholar
  26. 26.
    Wolfe. R.S.: Microbial formation of methane. Advances in Microbial Physiology 6, 107 (1971)Google Scholar
  27. 27.
    Gray, C.T., Geit, H.: Biological formation of molecular hydrogen. Science 148, 186 (1965)Google Scholar
  28. 28.
    Levy, H.: Normal atmosphere: Large radical and formaldehyde concentrations predicted. Science 173, 141 (1971)Google Scholar
  29. 29.
    Levy, H:: Photochemistry of the lower troposphere. Planet. Space Sci. 20, 919 (1972)Google Scholar
  30. 30.
    Levy, H.: Photochemistry of minor constituents in the troposphere. Planet. Space Sci. 21, 575 (1973)Google Scholar
  31. 31.
    Levy, H.: Tropospheric budgets for methane, carbon monoxide, and related species, J. Geophys. Res. 78, 5325 (1973)Google Scholar
  32. 32.
    Logan, J.A. et al.: Atmospheric chemistry: Response to human influence. Phil Trans. Roy. Soc 290, 187 (1978)Google Scholar
  33. 33.
    Ehhalt, D.H., Schmidt, U.: Sources and sinks of atmospheric methane. Pure Appl. Geophys. 116, 452 (1978)Google Scholar
  34. 34.
    Rudd, J.W.M., Hamilton, R.D.: Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism. Limnol. Oceanogr. 23, 337 (1978)Google Scholar
  35. 35.
    Whitby, R.A., Coffey, P.E.: Measurement of terpenes and other organics in an Adirondack Mountain pine forest. J. Geophys. Res. 82, 5928 (1977)Google Scholar
  36. 36.
    Friend, J.P.: The global sulfur cycle. In: Chemistry of the Lower Atmosphere. S. I. Rasool (Ed.). New York: Plenum Press 1973, p. 177Google Scholar
  37. 37.
    Garrels, R.M., Mackenzie, F.T., Hunt, C.: Chemical Cycles and the Global Environment. Los Altos, California: William Kaufmann, Inc. 1973Google Scholar
  38. 38.
    Postgate, J.R.: The sulphur cycle. In: Inorganic Sulfur Chemistry. G. Nickless (Ed.). New York: Elsevier 1968, p. 259Google Scholar
  39. 39.
    Berner, R.A.: Sedimentary pyrite formation. Amer. J. Sci. 268, 1 (1970)Google Scholar
  40. 40.
    Berner, R.A.: Principles of Chemical Sedimentology. New York: McGraw-Hill 1971Google Scholar
  41. 41.
    Berner, R.A.: Sulfate reduction, pyrite formation, and the oceanic sulfur budget. In: The Changing Chemistry of the Oceans. D. Dyrssen and D. Jagner (Ed.). New York: Wiley 1972, p. 347Google Scholar
  42. 42.
    Stanier, R.Y., Douderoff, M., Adelberg, E.A.: The Microbial World, 3rd edition, Englewood Cliffs, New Jersey: Prentice-Hall Inc. 1979Google Scholar
  43. 43.
    Watson, A., Lovelock, J.E., Margulis, L.: Methanogenesis, fires and the regulation of atmospheric oxygen. Bio Systems 10, 293 (1978)Google Scholar
  44. 44.
    Chameides, W.L. et al.: NOx production in lightning. J. Atmos. Sci. 34, 143 (1977)Google Scholar
  45. 45.
    Chameides, W.L.: Effect of variable energy input on nitrogen fixation in instantaneous linear discharges. Nature 277, 123 (1979)Google Scholar
  46. 46.
    Kennedy, G.C.: Equilibrium between volatiles and iron oxides in igneous rocks. American J. Sci. 246, 529 (1948)Google Scholar
  47. 47.
    Holland, H.D.: Model for the evolution of the Earth’s atmosphere. In: Petrologic Studies: A Volume in Honor of A.F. Buddington. A.E.J. Engel, H.L. James, and B.F. Leonard (Ed.). New York: Geological Society of America 1962, p. 447Google Scholar
  48. 48.
    Holland, H.D.: On the chemical evolution of the terrestrial and cytherean atmospheres. In: The Origin and Evolution of Atmospheres and Oceans. P.J. Brancazio and A.G.W. Cameron (Ed.). New York: John Wiley and Sons 1964, p. 86Google Scholar
  49. 49.
    Heald, E.F., Naughton, J., Barnes, I.L.: The chemistry of volcanic gases, use of equilibrium calculations in the interpretation of volcanic gas samples. J. Geophys. Res. 68, 545 (1963)Google Scholar
  50. 50.
    Fanale, F.P.: History of Martian volatiles: Implications for organic synthesis. Icarus 15, 279 (1971)Google Scholar
  51. 51.
    Nordlie, B.E.: Gases-Volcanic. In: The Encyclopedia of Geochemistry and Environmental Science. R.W. Fairbridge (Ed.). New York: Van Nostrand 1972, p. 387Google Scholar
  52. 52.
    Cruikshank, D.P., Morrison, D., Lennon, K.: Volcanic gases: Hydrogen burning at Kilauea Volcano, Hawaii. Science 182, 277 (1973)Google Scholar
  53. 53.
    Allard, P., Tazieff, H., Dajlevic, D.: Observations of seafloor spreading in Afar during the November 1978 fissure eruption. Nature 279, 30 (1979)Google Scholar
  54. 54.
    Heath, G.R., Moore, T.C., Dauphin, J.P.: Organic carbon in deep-sea sediments. In: TheGoogle Scholar
  55. 55.
    Fate of Fossil Fuel CO2 in the Oceans. N.R. Anderson and A. Malahoff (Ed.). New York: Plenum Press 1978, p. 605Google Scholar
  56. 56.
    Degens, E.T.: Biogeochemistry of stable carbon isotopes. In: Organic Geochemistry; Methods and Results. G. Eglinton and M.T.J. Murphy (Ed.). Berlin: Springer-Verlag 1969, p. 304Google Scholar
  57. 57.
    Richards, F.A.: Anoxic basins and fjords. In: Chemical Oceanography, Vol. 1. J.P. Riley and G. Skirrow (Ed.). New York: Academic Press 1965, p. 611Google Scholar
  58. 58.
    Deuser, W.G.: Organic-carbon budget of the Black Sea. Deep-Sea Res. 18, 995 (1971)Google Scholar
  59. 59.
    Berner, R.A.: An idealized model of dissolved sulfate distribution in recent sediments. Geochim. Cosmochim. Acta 28, 1497 (1964)Google Scholar
  60. 60.
    Irwin, H., Curtis, C., Coleman, M.: Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209 (1977)Google Scholar
  61. 61.
    Morris, J.G.: The physiology of obligate anaerobiosis. In: Advances in Microbial Physiology, Vol. 12, A.H. Rose and D.W. Tempest (Ed.). New York: Academic Press 1975, p. 169Google Scholar
  62. 62.
    Martens, C.S., Berner, R.A.: Methane production in the interstitial water of sulfate-depleted marine sediments. Science 185, 1167 (1974)Google Scholar
  63. 63.
    Rhoads, D.C.: The influence of deposit-feeding benthos on water turbidity and nutrient recycling. Amer. Jour. Sci. 273, 1 (1973)Google Scholar
  64. 64.
    Reimer, T.O., Barghoorn, E.S., Margulis, L.: Primary productivity in an early Archean microbial ecosystem. Precambrian Research 9, 93 (1979)Google Scholar
  65. 65.
    Koblentz-Mishke, O.J., Volkovinsky, V.V., Kabanova, J.G.: Plankton primary production of the world ocean. In: Scientific Exploration of the South Pacific. W.S. Wooster (Ed.). Washington: National Academy of Sciences 1970, p. 183Google Scholar
  66. 66.
    Broecker, W.S.: A boundary condition on the evolution of atmospheric oxygen. J. Geophys. Res. 75, 3553 (1970)Google Scholar
  67. 67.
    Richards, F.A.: The enhanced preservation of organic matter in anoxic marine environments. In: Symposium on Organic Matter in Natural Waters. D.W. Hood (Ed.). Occas. Pub. Inst. Mar. Sci. Univ. Alaska 1. 399 (1970)Google Scholar
  68. 68.
    Sackett, W.M., Poag, C.W., Eadie B.J.: Kerogen recycling in Ross Sea, Antarctica. Science 185, 1045 (1974)Google Scholar
  69. 69.
    Holland, H.D.: Systematics of the isotopic composition of sulfur in the oceans during the Phanerozoic and its implications for atmospheric oxygen. Geochim. Cosmochim. Acta 37, 2605 (1 973)Google Scholar
  70. 70.
    Schidlowski, M., Junge, C.E., Pietrek, H.: Sulfur isotope variations in marine sulfate evaporites and the Phanerozoic oxygen budget. J. Geophys. Res. 82, 2557 (1977)Google Scholar
  71. 71.
    Rasmussen, R.A., Went, F.W.: Volatile organic material of plant origin in the atmosphere. Proc. Nat. Acad. Sci. 53, 215 (1965)Google Scholar
  72. 72.
    Graedel, T.E.: Reduced sulfur emission from the open oceans. Geophys. Res. Lett. 6, 329 (1979)Google Scholar
  73. 73.
    Chameides, W.L., Stedman, D.H.: Tropospheric ozone: Coupling transport and photochemistry. J. Geophys. Res. 82, 1787Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1980

Authors and Affiliations

  • J. C. G. Walker
    • 1
  1. 1.College of EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations