Advertisement

Abstract

In small angle scattering the determination of characteristic parameters has become a useful tool for the evaluation of scattered intensity of dilute systems containing identical particles [1]. But in most cases, especially in problems of solid state physics, the scattering systems are of more complicated structure. The most general information we can draw from elastic isotropic small angle scattering is contained in the correlation function g (r) as the spatial Fourier transform of the scattering function S (ϰ), where ϰ = 4π · sin (ϑ/2)/λ. ϑ is the scattering angle and λ the wavelength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Porgd, G., in: H. Brumberger, Small-angle X-ray scattering. Proceedings of the conference held at Syracuse University, June 1965, p. 1. New York: Gordon and Breach.Google Scholar
  2. 2.
    Hossfeld, F.: Thesis, Technische Hochschule Aachen, 1967.Google Scholar
  3. 3.
    Hossfeld, F.: Acta Cryst. A 24, 643 (1968).CrossRefGoogle Scholar
  4. 4.
    Szegö, G.: Orthogonal polynomials. Amer. Math. Soc., 1959.Google Scholar
  5. 5.
    Gurxrer, A., et G. Fournet: J. Phys. Radium 8, 345 (1947).CrossRefGoogle Scholar
  6. 6.
    Dumond, J. W. M.: Phys. Rev. 72, 83 (1947).ADSCrossRefGoogle Scholar
  7. 7.
    Kratky, 0., G. Pomo U. L. Kahovec: Z. Elektrochem. 55, 53 (1951).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1969

Authors and Affiliations

  • F. Hossfeld
    • 1
  1. 1.Institut für Festkörper- und NeutronenphysikKernforschungsanlage JülichDeutschland

Personalised recommendations