Skip to main content

Max Association with Myc

  • Chapter
  • 31 Accesses

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Amajor breakthrough occurred in the study of transcriptional regulation by c-Myc when the partner protein, Max, was identified in 1991. It had been suspected that Myc partner proteins were necessary for Myc function because Myc possesses a dimerization domain that appears necessary for cell transformation. Although early studies indicated that Myc could homodimerize, it became rapidly apparent that homodimerization of c-Myc only occurs at high protein concentrations in vitro. Blackwood and Eisenman used a functional cloning strategy to identify two alternatively spliced Max mRNAs that encode proteins of 151 and 160 amino acids.1 The bHLHZip region of c-Myc fused to glutathioneS-transferase (GST) was used to screen a complementary DNA (cDNA) expression library. A bHLHZip protein, termed Max, was identified. Prendergast et al used a PCR strategy employing primers that matched conserved domains of Myc to identify Myn, the murine homolog of Max.2,3 Genes or cDNAs of max in other species, such as Xenopus, zebrafish and chicken, have been cloned as we11.4–7 The genomic structure of the chicken gene suggests that it contains a TATA-less promoter which consists of GC-rich sequences resembling binding sites for the transcriptional factor Sp1.4

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blackwood EM, Eisenman RN. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251: 1211–7.

    Article  PubMed  CAS  Google Scholar 

  2. Prendergast GC, Lawe D, Ziff EB. Association of Myn, the murine homolog of max, with c-Myc stimulates methylation-sensitive DNA binding and ras cotransformation. Cell 1991; 65: 395–407.

    Article  PubMed  CAS  Google Scholar 

  3. Prendergast GC, Ziff EB. A new bind for Myc. [Review]. Trends Genet 1992; 8: 91–6.

    PubMed  CAS  Google Scholar 

  4. Sollenberger KG, Kao TL, Taparowsky EJ. Structural analysis of the chicken max gene. Oncogene 1994; 9: 661–4.

    PubMed  CAS  Google Scholar 

  5. Tonissen KF, Krieg PA. Analysis of a variant max sequence expressed in xenopus laevis. Oncogene 1994; 9: 33–38.

    PubMed  CAS  Google Scholar 

  6. Schreiber-Agus N, Horner J, Torres R, Chiu FC, DePinho RA. Zebra fish myc family and max genes: differential expression and oncogenic activity throughout vertebrate evolution. Mol Cell Biol 1993; 13: 2765–75.

    PubMed  CAS  Google Scholar 

  7. King MW, Blackwood EM, Eisenman RN. Expression of two distinct homologues of Xenopus Max during early development. Cell Growth Differ 1993; 4: 85–92.

    PubMed  CAS  Google Scholar 

  8. Kato GJ, Lee WM, Chen LL, Dang CV. Max: functional domains and interaction with c-Myc. Genes Dev 1992; 6: 81–92.

    Article  PubMed  CAS  Google Scholar 

  9. Torres R, Schreiber-Agus N, Morgenbesser SD, DePinho RA. Myc and Max: a putative transcriptional complex in search of a cellular target. [Review]. Curr Opin Cell Biol 1992; 4: 468–74.

    Article  PubMed  CAS  Google Scholar 

  10. Blackwood EM, Kretzner L, Eisenman RN. Myc and Max function as a nucleoprotein complex. [Review]. Curr Opin Genet Dev 1992; 2: 227–35.

    Article  PubMed  CAS  Google Scholar 

  11. Amati B, Brooks MW, Levy N, Littlewood TD, Evan GI, Land H. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 1993; 72: 233–45.

    Article  PubMed  CAS  Google Scholar 

  12. Crouch DH, Fisher F, Clark W, Jayaraman PS, Goding CR, Gillespie DA. Gene-regulatory properties of Myc helix-loop-helix/leucine zipper mutants: Max-dependent DNA binding and transcriptional activation in yeast correlates with transforming capacity. Oncogene 1993; 8: 1849–55.

    PubMed  CAS  Google Scholar 

  13. Davis LJ, Halazonetis TD. Both the helix-loop-helix and the leucine zipper motifs of c-Myc contribute to its dimerization specificity with Max. Oncogene 1993; 8: 125–32.

    PubMed  CAS  Google Scholar 

  14. Cole MD. Myc meets its max [Review]. Cell 1991; 65: 715–716.

    Article  PubMed  CAS  Google Scholar 

  15. Ferre-D’Amare AR, Prendergast GC, Ziff EB, Burley SK. Recognition by Max of its cognate DNA through a dimeric b/HLH/Z domain. Nature 1993; 363: 38–45.

    Article  PubMed  Google Scholar 

  16. Min S, Mascarenhas NT, Taparowsky EJ. Functional analysis of the carboxy-terminal transforming region of v-Myc: binding to Max is necessary, but not sufficient, for cellular transformation. Oncogene 1993; 8: 2691–701.

    PubMed  CAS  Google Scholar 

  17. Reddy CD, Dasgupta P, Saikumar P, Dudek H, Rauscher Fd, Reddy EP. Mutational analysis of Max: role of basic, helix-loop-helix/leucine zipper domains in DNA binding, dimerization and regulation of Mycmediated transcriptional activation. Oncogene 1992; 7: 2085–92.

    PubMed  CAS  Google Scholar 

  18. Vinson CR, Garcia KC. Molecular model for DNA recognition by the family of basic-helix-loop-helix-zipper proteins. New Biol 1992; 4: 396–403.

    PubMed  CAS  Google Scholar 

  19. Halazonetis TD, Kandil AN. Predicted structural similarities of the DNA binding domains of c-Myc and endonuclease Eco RI. Science 1992; 255: 464–6.

    Article  PubMed  CAS  Google Scholar 

  20. Ferre-D’Amare AR, Pognonec P, Roeder RG, Burley SK. Structure and function of the b/HLH/Z domain of USF. EMBO J 1994; 13: 180–9.

    PubMed  Google Scholar 

  21. Gilladoga AD, Edelhoff S, Blackwood EM, Eisenman RN, Disteche CM. Mapping of MAX to human chromosome 14 and mouse chromosome 12 by in situ hybridization. Oncogene 1992; 7: 1249–51.

    PubMed  CAS  Google Scholar 

  22. Wagner AJ, Le Beau MM, Diaz MO, Hay N. Expression, regulation, and chromosomal localization of the Max gene. Proc Nail Acad Sci USA 1992; 89: 3111–5.

    Article  CAS  Google Scholar 

  23. Mäkelä TP, Koskinen PJ, Västrik I, Alitalo K. Alternative forms of Max as enhancers or suppressors of Myc-Ras cotransformation. Science 1992; 256: 373–7.

    Article  PubMed  Google Scholar 

  24. Blackwood EM, Luscher B, Eisenman RN. Myc and Max associate in vivo. Genes Dev 1992; 6: 71–80.

    Article  PubMed  CAS  Google Scholar 

  25. Prendergast GC, Hopewell R, Gorham BJ, Ziff EB. Biphasic effect of Max on Myc cotransformation activity and dependence on amino-and carboxy-terminal Max functions. Genes Dev 1992; 6: 2429–39.

    Article  PubMed  CAS  Google Scholar 

  26. Min S, Taparowsky EJ. v-Myc, but not Max, possesses domains that function in both transcription activation and cellular transformation. Oncogene 1992; 7: 1531–40.

    PubMed  CAS  Google Scholar 

  27. Kretzner L, Blackwood EM, Eisenman RN. Myc and Max proteins possess distinct transcriptional activities. Nature 1992; 359: 426–9.

    Article  PubMed  CAS  Google Scholar 

  28. Lee LA, Resar LM, Dang CV. Cell density and paradoxical transcriptional properties of c-Myc and Max in cultured mouse fibroblasts. J Clin Invest 1995; 95: 900–4.

    Article  PubMed  CAS  Google Scholar 

  29. Berberich SJ, Cole MD. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev 1992; 6: 166–76.

    Article  PubMed  CAS  Google Scholar 

  30. Koskinen PJ, Vastrik I, Makela TP, Eisenman RN, Alitalo K. Max activity is affected by phosphorylation at two nh2-terminal sites. Cell Growth Differ 1994; 5: 313–20.

    PubMed  CAS  Google Scholar 

  31. Bousset K, Henriksson M, Luscherfirzlaff JM, Litchfield DW, Luscher B. Identification of casein kinase ii phosphorylation sites in max–effects on dna-binding kinetics of max homo-and myc/ max heterodimers. Oncogene 1993; 8: 3211–20.

    PubMed  CAS  Google Scholar 

  32. Bousset K, Oelgeschlager MHH, Henriksson M, et al. Regulation of transcription factors c-Myc, Max, and c-Myb by casein kinase II. Cell Molec Biol Res 1995; 40: 501–11.

    Google Scholar 

  33. Makela TP, Koskinen PJ, Vastrik I, Alitalo K. Alternative forms of Max as enhancers or suppressors of Myc-ras cotransformation. Science 1992; 256: 373–7.

    Article  PubMed  CAS  Google Scholar 

  34. Vastrik I, Koskinen PJ, Alitalo R, Makela TP. Alternative mRNA forms and open reading frames of the max gene [published erratum appears in Oncogene 1993 Jun;8(6):1711]. Oncogene 1993; 8: 503–7.

    PubMed  CAS  Google Scholar 

  35. Wenzel A, Cziepluch C, Hamann U, Schürmann J, Schwab M. The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max (p20/22) in human neuroblastoma cells. EMBO J. 1991; 10: 3703–12.

    PubMed  CAS  Google Scholar 

  36. Berberich S, Hyde-DeRuyscher N, Espenshade P, Cole M. max encodes a sequence-specific DNA-binding protein and is not regulated by serum growth factors. Oncogene 1992; 7: 775–9.

    PubMed  CAS  Google Scholar 

  37. Mukherjee B, Morgenbesser SD, DePinho RA. Myc family oncoproteins function through a common pathway to transform normal cells in culture: cross-interference by Max and trans-acting dominant mutants. Genes Dev 1992; 6: 1480–92.

    Article  PubMed  CAS  Google Scholar 

  38. Billaud M, Isselbacher KJ, Bernards R. A dominant-negative mutant of Max that inhibits sequence-specific DNA binding by Myc proteins. Proc Natl Acad Sci USA 1993; 90: 2739–43.

    Article  PubMed  CAS  Google Scholar 

  39. Cogliati T, Dunn BK, Bar-Ner M, Cultraro CM, Segal S. Transfected wild-type and mutant max regulate cell growth and differentiation of murine erythroleukemia cells. Oncogene 1993; 8: 1263–8.

    PubMed  CAS  Google Scholar 

  40. Ayer DE, Eisenman RN. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation. Genes Dev 1993; 7: 2110–9.

    Article  PubMed  CAS  Google Scholar 

  41. Zervos AS, Gyuris J, Brent R. Mxil, a protein that specifically interacts with Max to bind Myc-Max recognition sites [published erratum appears in Cell 1994 Oct 21;79(2):following 388]. Cell 1993; 72: 223–32.

    Google Scholar 

  42. Larsson LG, Pettersson M, Oberg F, Nilsson K, Luscher B. Expression of mad, mxil, max and c-myc during induced differentiation of hematopoietic cells: opposite regulation of mad and c-myc. Oncogene 1994; 9: 1247–52.

    PubMed  CAS  Google Scholar 

  43. Kato GJ, Dang CV. Function of the c-Myc oncoprotein. [Review]. FASEB J 1992; 6: 3065–72.

    PubMed  CAS  Google Scholar 

  44. Dunn BK, Cogliati T, Cultraro CM, Barner M, Segal S. Regulation of murine max (myn) parallels the regulation of c-myc in differentiating murine erythroleukemia cells. Cell Growth Differ 1994; 5: 847–854.

    PubMed  CAS  Google Scholar 

  45. Ayer DE, Kretzner L, Eisenman RN. Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 1993; 72: 211–22.

    Article  PubMed  CAS  Google Scholar 

  46. Delgado MD, Lerga A, Candles M, Gomezcasares MT, Leon J. Differential regulation of max and role of c-myc during erythroid and myelomonocytic differentiation of K562 cells. Oncogene 1995; 10: 1659–65.

    PubMed  CAS  Google Scholar 

  47. Lahoz EG, Xu L, Schreiber-Agus N, DePinho RA. Suppression of Myc, but not Eta, transformation activity by Max-associated proteins, Mad and Mxil. Proc Natl Acad Sci USA 1994; 91: 5503–7.

    Article  PubMed  CAS  Google Scholar 

  48. Schreiber-Agus N, Chin L, Chen K, et al. An amino-terminal domain of Mxil mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 1995; 80: 777–86.

    Article  PubMed  CAS  Google Scholar 

  49. Edelhoff S, Ayer DE, Zervos AS, et al. Mapping of two genes encoding members of a distinct subfamily of MAX interacting proteins: MAD to human chromosome 2 and mouse chromosome 6, and MXI1 to human chromosome 10 and mouse chromosome 19. Oncogene 1994; 9: 665–8.

    PubMed  CAS  Google Scholar 

  50. Shapiro DN, Valentine V, Eagle L, Yin X, Morris SW, Prochownik EV. Assignment of the human MAD and MXI1 genes to chromosomes 2p12-p13 and 10g24-q25. Genomics 1994; 23: 282–5.

    Article  PubMed  CAS  Google Scholar 

  51. Wechsler DS, Hawkins AL, Li X, Jabs EW, Griffin CA, Dang CV. Localization of the human Mxil transcription factor gene (MXI1) to chromosome 10g24-q25. Genomics 1994; 21: 669–72.

    Article  PubMed  CAS  Google Scholar 

  52. Albarosa R, Didonato S, Finocchiaro G. Redefinition of the coding sequence of the MXI1 gene and identification of a polymorphic repeat in the 3’ non-coding region that allows the detection of loss of heterozygosity of chromosome 10825 in glioblastomas. Human Genet 1995; 95: 709–11.

    Article  CAS  Google Scholar 

  53. Eagle LR, Yin XY, Brothman AR, Williams BJ, Atkin NB, Prochownik EV. Mutation of the MXI1 gene in prostate cancer. Nature Gen 1995; 9: 249–55.

    Article  CAS  Google Scholar 

  54. Ayer DE, Lawrence QA, Eisenman RN. Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 1995; 80: 767–76.

    Article  PubMed  CAS  Google Scholar 

  55. Ribon V, Leff T, Saltiel AR. C-myc does not require max for transcriptional activity in pc-12 cells. Mol Cell Neurosci 1994; 5: 277–82.

    Article  PubMed  CAS  Google Scholar 

  56. Hopewell R, Ziff EB. The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max. Mol Cell Biol 1995; 15: 3470–8.

    PubMed  CAS  Google Scholar 

  57. Bunker CA, Kingston RE. Identification of a cDNA for SSRP1, an HMG-box protein, by interaction with the c-Myc oncoprotein in a novel bacterial expression screen. Nucleic Acids Res 1995; 23: 269–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dang, C.V., Lee, L.A. (1995). Max Association with Myc. In: c-Myc Function in Neoplasia. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22681-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22681-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22683-4

  • Online ISBN: 978-3-662-22681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics