Skip to main content

Properties of the c-Myc Protein

  • Chapter
c-Myc Function in Neoplasia

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 32 Accesses

Abstract

Biology is full of surprises, and the regulation of c-myc readily illustrates this point. The regulation of c-myc expression is an intricate network of commands that controls transcriptional initiation, elongation as well as mRNA stability. In addition to this hierarchy of controls, production of the c-Myc polypeptides is also regulated. The predicted size of the c-myc encoded polypeptide initiated at the canonical AUG translational start site is 439 amino acids.1 The corresponding ATG is located at the 5' end of exon 2 (Fig. 4.1). Although the predicted molecular mass is 49.5 kDa, the observed size in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is about 62 kDa, which is largely due to the amino acid composition rather than to posttranslational modification.2–4 Hence this protein is termed p62Myc. From the same c-myc mRNAs, an alternative form of c-Myc polypeptide is translationally initiated at a CUG, 14 codons upstream from the canonical AUG (Fig. 6.1).5 This alternative form is termed p64Myc. These two forms of c-Myc appear as a doublet of polypeptides on SDS-PAGE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watt R, Stanton LW, Marcu KB, Gallo RC, Croce CM, Rovera G. Nucleotide sequence of cloned cDNA of human c-myc oncogene. Nature 1983; 303: 725–8.

    Article  PubMed  CAS  Google Scholar 

  2. Ramsay G, Evan GI, Bishop JM. The protein encoded by the human proto-oncogene c-myc. Proc Natl Acad Sci USA 1984; 81: 7742–6.

    Article  PubMed  CAS  Google Scholar 

  3. Alitalo K, Ramsay G, Bishop JM, Pfeifer SO, Colby WW, Levinson AD. Identification of nuclear proteins encoded by viral and cellular myc oncogenes. Nature 1983; 306: 274–7.

    Article  PubMed  CAS  Google Scholar 

  4. Giallongo A, Appella E, Ricciardi R, Rovera G, Croce CM. Identification of the c-myc oncogene product in normal and malignant B cells. Science 1983; 222: 430–2.

    Article  PubMed  CAS  Google Scholar 

  5. Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 1988; 52: 185–95.

    Article  PubMed  CAS  Google Scholar 

  6. Hann SR, Sloan-Brown K, Spotts GD. Translational activation of the non-AUG-initiated c-myc 1 protein at high cell densities due to methionine deprivation. Genes Dev 1992; 6: 1229–40.

    Article  PubMed  CAS  Google Scholar 

  7. Rabbitts PH, Watson JV, Lamond A, et al. Metabolism of c-myc gene products: c-myc mRNA and protein expression in the cell cycle. EMBO J 1985; 4: 2009–15.

    PubMed  CAS  Google Scholar 

  8. Hann SR, Thompson CB, Eisenman RN. c-myc oncogene protein synthesis is independent of the cell cycle in human and avian cells. Nature 1985; 314: 366–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kato GJ, Barrett J, Villa-Garcia M, Dang CV. An amino-terminal c-myc domain required for neoplastic transformation activates transcription. Mol Cell Biol 1990; 10: 5914–20.

    PubMed  CAS  Google Scholar 

  10. Blackwood EM, Lugo TG, Kretzner L, et al. Functional analysis of the AUG- and CUG-initiated forms of the c-Myc protein. Mol Biol Cell 1994; 5: 597–609.

    PubMed  CAS  Google Scholar 

  11. Hann SR, Dixit M, Sears RC, Sealy L. The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev 1994; 8: 2441–52.

    Article  PubMed  CAS  Google Scholar 

  12. Luscher B, Eisenman RN. c-myc and c-myb protein degradation: effect of metabolic inhibitors and heat shock. Mol Cell Biol 1988; 8: 2504–12.

    PubMed  CAS  Google Scholar 

  13. Waters CM, Littlewood TD, Hancock DC, Moore JP, Evan GI. c-myc protein expression in untransformed fibroblasts. Oncogene 1991; 6: 797–805.

    PubMed  CAS  Google Scholar 

  14. Moore JP, Hancock DC, Littlewood TD, Evan GI. A sensitive and quantitative enzyme-linked immunosorbence assay for the c-myc and N-myc oncoproteins. Oncogene Res 1987; 2: 65–80.

    PubMed  CAS  Google Scholar 

  15. Spotts GD, Hann SR. Enhanced translation and increased turnover of c-myc proteins occur during differentiation of murine erythroleukemia cells. Mol Cell Biol 1990; 10: 3952–64.

    PubMed  CAS  Google Scholar 

  16. Wingrove TG, Watt R, Keng P, Macara IG. Stabilization of myc proto-oncogene proteins during Friend murine erythroleukemia cell differentiation. J Biol Chem 1988; 263: 8918–24.

    PubMed  CAS  Google Scholar 

  17. Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 1986; 234: 364–8.

    Article  PubMed  CAS  Google Scholar 

  18. Ciechanover A, DiGiuseppe JA, Bercovich B, et al. Degradation of nuclear oncoproteins by the ubiquitin system in vitro. Proc Natl Acad Sci USA 1991; 88: 139–43.

    Article  PubMed  CAS  Google Scholar 

  19. Luscher B, Eisenman RN. Proteins encoded by the c-myc oncogene: analysis of c-myc protein degradation. Princess Takamatsu Symp 1986; 17: 291–301.

    PubMed  CAS  Google Scholar 

  20. Hann SR, Eisenman RN. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol 1984; 4: 2486–97.

    PubMed  CAS  Google Scholar 

  21. Persson H, Gray HE, Godeau F, Braunhut S, Bellve AR. Multiple growth-associated nuclear proteins immunoprecipitated by antisera raised against human c-myc peptide antigens. Mol Cell Biol 1986; 6: 942–9.

    PubMed  CAS  Google Scholar 

  22. Ramsay G, Hayman MJ, Bister K. Phosphorylation of specific sites in the gag-myc polyproteins encoded by MC29-type viruses correlates with their transforming ability. EMBO J 1982; 1: 1111–6.

    PubMed  CAS  Google Scholar 

  23. Hagiwara T, Nakaya K, Nakamura Y, Nakajima H, Nishimura S, Taya Y. Specific phosphorylation of the acidic central region of the N-myc protein by casein kinase II. Eur J Biochem 1992; 209: 945–50.

    Article  PubMed  CAS  Google Scholar 

  24. Bousset K, Oelgeschlager MHH, Henriksson M, et al. Regulation of transcription factors c-Myc, Max, and c-Myb by casein kinase II. Cell Molec Biol Res 1995; 40: 501–511.

    Google Scholar 

  25. Luscher B, Kuenzel EA, Krebs EG, Eisenman RN. Myc oncoproteins are phosphorylated by casein kinase II. EMBO J 1989; 8: 1111–9.

    PubMed  CAS  Google Scholar 

  26. Lutterbach B, Hann SR. Hierarchical phosphorylation at n-terminal transformation-sensitive sites in c-myc protein is regulated by mitogens and in mitosis. Mol Cell Biol 1994; 14: 5510–22.

    PubMed  CAS  Google Scholar 

  27. Seth A, Alvarez E, Gupta S, Davis RJ. A phosphorylation site located in the NH2-terminal domain of c-Myc increases trans-activation of gene expression. J Biol Chem 1991; 266: 23521–4.

    PubMed  CAS  Google Scholar 

  28. Gupta S, Seth A, Davis R. Transactivation of gene expression by Myc is inhibited by mutation at the phosphorylation sites Thr-58 and Ser-62. Proc Natl Acad Sci, USA 1993; 90: 3216–20.

    Article  CAS  Google Scholar 

  29. Jackson SP. Regulating transcription factor activity by phosphorylation. TICB 1992; 2: 104–8.

    Article  CAS  Google Scholar 

  30. Iijima S, Teraoka H, Date T, Tsukada K. DNA-activated protein kinase in Raji Burkitt’s lymphoma cells. Phosphorylation of c-Myc oncoprotein. Eur J Biochem 1992; 206: 595–603.

    Article  PubMed  CAS  Google Scholar 

  31. Seldin DC, Leder P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle [see comments]. Science 1995; 267: 894–7.

    Article  PubMed  CAS  Google Scholar 

  32. Berberich SJ, Cole MD. Casein kinase II inhibits the DNA-binding activity of Max homodimers but not Myc/Max heterodimers. Genes Dev. 1992; 6: 166–76.

    Article  PubMed  CAS  Google Scholar 

  33. Bousset K, Henriksson M, Luscherfirzlaff JM, Litchfield DW, Luscher B. Identification of casein kinase ii phosphorylation sites in max–effects on dna-binding kinetics of max homo-and myc/ max heterodimers. Oncogene 1993; 8: 3211–20.

    PubMed  CAS  Google Scholar 

  34. Seth A, Gupta S, Davis RJ. Cell cycle regulation of the c-Myc transcriptional activation domain. Mol Cell Biol 1993; 13: 4125–36.

    PubMed  CAS  Google Scholar 

  35. Henriksson M, Bakardjiev A, Klein G, Luscher B. Phosphorylation sites mapping in the N-terminal domain of c-myc modulate its transforming potential. Oncogene 1993; 8: 3199–209.

    PubMed  CAS  Google Scholar 

  36. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR. Site-specific modulation of c-myc cotransformation by residues phosphorylated in vivo. Oncogene 1994; 9: 59–70.

    PubMed  CAS  Google Scholar 

  37. Hoang AT, Lutterbach B, Lewis BC, et al. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol Cell Biol 1995; 15: 4031–42.

    PubMed  CAS  Google Scholar 

  38. Chou TY, Dang CV, Hart GW. Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA 1995; 92: 4417–21.

    Article  PubMed  CAS  Google Scholar 

  39. Chou TY, Hart GW, Dang CV. c-Myc is glycosylated at threonine-58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 1995; 270.

    Google Scholar 

  40. Hann SR, Abrams HD, Rohrschneider LR, Eisenman RN. Proteins encoded by v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 1983; 34: 789–98.

    Article  PubMed  CAS  Google Scholar 

  41. Abrams HD, Rohrschneider LR, Eisenman RN. Nuclear location of the putative transforming protein of avian myelocytomatosis virus. Cell 1982; 29: 427–39.

    Article  PubMed  CAS  Google Scholar 

  42. Bunte T, Greiser-Wilke I, Donner P, Moelling K. Association of gag-myc proteins from avian myelocytomatosis virus wild-type and mutants with chromatin. EMBO J 1982; 1: 919–27.

    PubMed  CAS  Google Scholar 

  43. Bunte T, Greiser-Wilke I, Moelling K. The transforming protein of the MC29-related virus CMII is a nuclear DNA-binding protein whereas MH2 codes for a cytoplasmic RNA-DNA binding polyprotein. EMBO J 1983; 2: 1087–92.

    PubMed  CAS  Google Scholar 

  44. Persson H, Leder P. Nuclear localization and DNA binding properties of a protein expressed by human c-myc oncogene. Science 1984; 225: 718–21.

    Article  PubMed  CAS  Google Scholar 

  45. Spector DL, Watt RA, Sullivan NF. The v-and c-myc oncogene proteins colocalize in situ with small nuclear ribonucleoprotein particles. Oncogene 1987; 1: 5–12.

    PubMed  CAS  Google Scholar 

  46. Craig RW, Buchan HL, Civin CI, Kastan MB. Altered cytoplasmic/nuclear distribution of the c-myc protein in differentiating ML-1 human myeloid leukemia cells. Cell Growth Differ 1993; 4: 349–57.

    PubMed  CAS  Google Scholar 

  47. Gusse M, Ghysdael J, Evan G, Soussi T, Mechali M. Translocation of a store of maternal cytoplasmic c-myc protein into nuclei during early development. Mol Cell Biol 1989; 9: 5395–403.

    PubMed  CAS  Google Scholar 

  48. Vriz S, Lemaitre JM, Leibovici M, Thierry N, Mechali Error! Hyperlink reference not valid.parative analysis of the intracellular localization of c-Myc, c-Fos, and replicative proteins during cell cycle progression. Mol Cell Biol 1992; 12: 3548–55.

    PubMed  CAS  Google Scholar 

  49. King MW, Roberts JM, Eisenman RN. Expression of the c-myc proto-oncogene during development of Xenopus laevis. Mol Cell Biol 1986; 6: 4499–508.

    PubMed  CAS  Google Scholar 

  50. Eisenman RN, Tachibana CY, Abrams HD, Hann SR. V-mycand c-myc-encoded proteins are associated with the nuclear matrix. Mol Cell Biol 1985; 5: 114–26.

    PubMed  CAS  Google Scholar 

  51. Van Straaten JP, Rabbitts TH. The c-myc protein is associated with the nuclear matrix through specific metal interaction. Oncogene Res 1987; 1: 221–8.

    PubMed  Google Scholar 

  52. Evan GI, Hancock DC. Studies on the interaction of the human c-myc protein with cell nuclei: p62c-myc as a member of a discrete subset of nuclear proteins. Cell 1985; 43: 253–61.

    Article  PubMed  CAS  Google Scholar 

  53. Koskinen PJ, Sistonen L, Evan G, Morimoto R, Alitalo K. Nuclear colocalization of cellular and viral myc proteins with HSP70 in myc-overexpressing cells. J Virol 1991; 65: 842–51.

    PubMed  CAS  Google Scholar 

  54. Henriksson M, Classon M, Axelson H, Klein G, Thyberg J. Nuclear colocalization of c-myc protein and hsp70 in cells transfected with human wild-type and mutant c-myc genes. Exp Cell Res 1992; 203: 383–94.

    Article  PubMed  CAS  Google Scholar 

  55. Henriksson M, Classon M, Ingvarsson S, et al. Elevated expression of c-myc and N-myc produces distinct changes in nuclear fine structure and chromatin organization. Oncogene 1988; 3: 587–93.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dang, C.V., Lee, L.A. (1995). Properties of the c-Myc Protein. In: c-Myc Function in Neoplasia. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22681-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22681-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22683-4

  • Online ISBN: 978-3-662-22681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics