Skip to main content

Involvement of c-myc in Human Cancers

  • Chapter
c-Myc Function in Neoplasia

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

After 400 million years of evolutionary selection pressures and spontaneous order through the force of self-organization, the genome of organisms is safeguarded by complex systems of regulatory molecules from lethal environmental damages. Only over the past century, the by-products of civilization and luxury have infiltrated these safeguards. Certain environmental exposures, such as radiation and smoking among others, have clearly been implicated for their ability to induce human cancers. Cancer has also been shown to have a hereditary component as well, since first recognized in the family histories of cancer patients and now confirmed by the identification of germline neoplastic mutations. Virtually all conceivable alterations of DNA have been detected in human cancers. These include gene amplifications, deletions, point mutations, or translocations that affect gene expression. Recently, alterations in the DNA damage repair machinery are recognized as hallmarks of human cancers.1 It is currently thought that genetic alterations involved in human cancers result in several possible biological outcomes that contribute to the malignant phenotype. Since the normal signal transduction pathways may influence cell proliferation positively through expression of proto-oncogenes or negatively through expression of tumor suppressor genes, loss of tumor suppressor gene function or gain of proto-oncogene activity are expected to contribute to most of the genetic alterations in cancers. Other genetic alterations leading to the ability of cancer cells to metastasize are also expected to play a prominent role after transformed cells have acquired a growth advantage over their normal counterpart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Modrich P. Mismatch repair, genetic stability, and cancer. [Review]. Science 1994; 266: 1959–60.

    PubMed  CAS  Google Scholar 

  2. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. [Review]. Cell 1990; 61: 759–67.

    PubMed  CAS  Google Scholar 

  3. Jiricny J. Colon cancer and DNA repair: have mismatches met their match?. [Review]. Trends Genet 1994; 10: 164–8.

    PubMed  CAS  Google Scholar 

  4. Schwab M, Varmus HE, Bishop JM, et al. Chromosome localization in normal human cells and neuroblastomas of a gene related to c-myc. Nature 1984; 308: 288–91.

    PubMed  CAS  Google Scholar 

  5. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 1984; 224: 1121–4.

    PubMed  CAS  Google Scholar 

  6. Nau MM, Brooks BJ, Battey J, et al. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature 1985; 318: 69–73.

    PubMed  CAS  Google Scholar 

  7. Nowell PC, Croce CM. Chromosomal approaches to the molecular basis of neoplasia. [Review]. Symp Fundam Cancer Res 1986; 39: 17–29.

    PubMed  CAS  Google Scholar 

  8. Leder P, Battey J, Lenoir G, et al. Translocations among antibody genes in human cancer. [Review]. Science 1983; 222: 765–71.

    PubMed  CAS  Google Scholar 

  9. Guerrasio A, Avanzi GC, Pegoraro L, et al. Rearrangement of the c-myc oncogene with heavy-chain immunoglobulin enhancer in tumor DNA from an acute lymphoblastic leukemia patient. J Natl Cancer Inst 1987; 78: 845–51.

    PubMed  CAS  Google Scholar 

  10. Pelicci PG, Knowles Dd, Magrath I, Dalla-Favera R. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci USA 1986; 83: 2984–8.

    PubMed  CAS  Google Scholar 

  11. Klein G. Constitutive activation of oncogenes by chromosomal translocations in B-cell derived tumors. [Review]. Aids Res 1986; 2:S 167–76.

    Google Scholar 

  12. Magrath I. The pathogenesis of Burkitt’s lymphoma. [Review]. Adv Cancer Res 1990; 55: 133–270.

    PubMed  CAS  Google Scholar 

  13. Gaidano G, Pastore C, Lanza C, Mazza U, Saglio G. Molecular pathology of AIDS-related lymphomas. Biologic aspects and clinicopathologic heterogeneity. [Review]. Ann Hematol 1994; 69: 281–90.

    PubMed  CAS  Google Scholar 

  14. Marcu K, Bossone S, Patel A. Myc function and regulation. Ann Rev Biochem 1992; 61: 809–860.

    PubMed  CAS  Google Scholar 

  15. Spencer CA, Groudine M. Control of c-myc regulation in normal and neoplastic cells. [Review]. Adv Cancer Res 1991; 56: 1–48.

    PubMed  CAS  Google Scholar 

  16. Taub R, Kirsch I, Morton C, et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 1982; 79: 7837–41.

    PubMed  CAS  Google Scholar 

  17. Hamlyn PH, Rabbitts TH. Translocation joins c-myc and immunoglobulin gamma 1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 1983; 304: 135–9.

    PubMed  CAS  Google Scholar 

  18. Croce CM, Thierfelder W, Erikson J, et al. Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a C lambda locus in Burkitt. Proc Natl Acad Sci USA 1983; 80: 6922–6.

    PubMed  CAS  Google Scholar 

  19. Erikson J, Nishikura K, ar-Rushdi A, et al. Translocation of an immunoglobulin kappa locus to a region 3’ of an unrearranged cmyc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA 1983; 80: 7581–5.

    PubMed  CAS  Google Scholar 

  20. Graham M, Adams JM. Chromosome 8 breakpoint far 3’ of the cmyc oncogene in a Burkitt’s lymphoma 2;8 variant translocation is equivalent to the murine pvt-1 locus. EMBO J 1986; 5: 2845–51.

    PubMed  CAS  Google Scholar 

  21. Henglein B, Synovzik H, Groitl P, Bornkamm GW, Hartl P, Lipp M. Three breakpoints of variant t(2;8) translocations in Burkitt’s lymphoma cells fall within a region 140 kilobases distal from cmyc. Mol Cell Biol 1989; 9: 2105–13.

    PubMed  CAS  Google Scholar 

  22. Sun LK, Showe LC, Croce CM. Analysis of the 3’ flanking region of the human c-myc gene in lymphomas with the t(8;22) and t(2;8) chromosomal translocations. Nucleic Acids Res 1986; 14: 4037–50.

    PubMed  CAS  Google Scholar 

  23. Kornblau SM, Goodacre A, Cabanillas F. Chromosomal abnormalities in adult non-endemic Burkitt’s lymphoma and leukemia: 22 new reports and a review of 148 cases from the literature. [Review]. Hematol Oncol 1991; 9: 63–78.

    PubMed  CAS  Google Scholar 

  24. Rabbitts TH, Forster A, Baer R, Hamlyn PH. Transcription enhancer identified near the human C t immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma. Nature 1983; 306: 806–9.

    PubMed  CAS  Google Scholar 

  25. Dyson PJ, Littlewood TD, Forster A, Rabbitts TH. Chromatin structure of transcriptionally active and inactive human c-myc alleles. EMBO J 1985; 4: 2885–91.

    PubMed  CAS  Google Scholar 

  26. Madisen L, Groudine M. Identification of a locus control region in the immunoglobulin heavy-chain locus that deregulates c-myc expression in plasmacytoma and Burkitt’s lymphoma cells. Genes Dev 1994; 8: 2212–26.

    PubMed  CAS  Google Scholar 

  27. Eick D, Polack A, Kofler E, Bornkamm GW. The block of elongation in c-myc exon 1 is abolished in Burkitt’s lymphoma cell lines with variant translocation. Oncogene 1988; 3: 397–403.

    PubMed  CAS  Google Scholar 

  28. Rabbitts T, Hamlyn P, Baer R. Altered nucleotide sequences of a trans-located c-myc gene in Burkitt lymphoma. Nature 1983; 306: 760–765.

    PubMed  CAS  Google Scholar 

  29. Papas T, Lautenberg J. Sequence curiosity in v-myc oncogene. Nature 1985; 318: 237.

    PubMed  CAS  Google Scholar 

  30. Yano T, Sander C, Clark H, Dolezal M, Jaffe E, Raffeld M. Clustered mutations in the second exon of the MYC gene in sporadic Burkitt’s lymphoma. Oncogene 1993; 8: 2741–2748.

    PubMed  CAS  Google Scholar 

  31. Clark HM, Yano T, Otsuki T, Jaffe ES, Shibata D, Raffeld M. Mutations in the coding region of c-myc in aids-associated and other aggressive lymphomas. Cancer Res 1994; 54: 3383–3386.

    PubMed  CAS  Google Scholar 

  32. Bhatia K, Huppi K, Spangler G, Siwarski D, Iyer R, Magrath I. Point mutations in the c-Myc transactivation domain are common in Burkitt’s lymphoma and mouse plasmacytoma. Nature Genet 1993; 5: 56–61.

    PubMed  CAS  Google Scholar 

  33. Bhatia K, Spangler G, Gaidano G, Hamdy N, Dalla-Favera R, Magrath I. Mutations in the coding region of c-myc occur frequently in acquired immunodeficiency syndrome-associated lymphomas. Blood 1994; 84: 883–8.

    PubMed  CAS  Google Scholar 

  34. Albert T, Uribauer B, Kohlhuber F, Eick D, Hammersen B. Ongoing mutations in the n-terminal domain of c-myc affect transactivation in burkitts lymphoma cell lines. Oncogene 1994; 9: 759–763.

    PubMed  CAS  Google Scholar 

  35. Trent J, Meltzer P, Rosenblum M, et al. Evidence for rearrangement, amplification, and expression of c-myc in a human glioblastoma. Proc Natl Acad Sci USA 1986; 83: 470–3.

    PubMed  CAS  Google Scholar 

  36. Albarosa R, Didonato S, Finocchiaro G. Redefinition of the coding sequence of the MXI1 gene and identification of a polymorphic repeat in the 3’ non-coding region that allows the detection of loss of heterozygosity of chromosome 10g25 in glioblastomas. Human Genet 1995; 95: 709–711.

    CAS  Google Scholar 

  37. Yin XY, Donovan-Peluso M, Whiteside TL, et al. Gene amplification and gene dosage in cell lines derived from squamous cell carcinoma of the head and neck [see comments]. Genes Chrom Can 1991; 3: 443–54.

    CAS  Google Scholar 

  38. Merritt WD, Weissler MC, Turk BF, Gilmer TM. Oncogene amplification in squamous cell carcinoma of the head and neck. Archives of Otolaryngology Head Neck Surg 1990; 116: 1394–8.

    CAS  Google Scholar 

  39. Field JK. Oncogenes and tumour-suppressor genes in squamous cell carcinoma of the head and neck. [Review]. Eur J Cancer B Oral Oncol 1992; 1: 67–76.

    Google Scholar 

  40. Makela TP, Saksela K, Alitalo K. Amplification and rearrangement of L-myc in human small-cell lung cancer. [Review]. Mut Res 1992; 276: 307–15.

    CAS  Google Scholar 

  41. Little CD, Nau MM, Carney DN, Gazdar AF, Minna JD. Amplification and expression of the c-myc oncogene in human lung cancer cell lines. Nature 1983; 306: 194–6.

    PubMed  CAS  Google Scholar 

  42. Nau MM, Carney DN, Battey J, et al. Amplification, expression, and rearrangement of c-myc and N-myc oncogenes in human lung cancer. Curr Top Microbiol Immunol 1984; 113: 172–7.

    PubMed  CAS  Google Scholar 

  43. Vastrik I, Makela TP, Koskinen PJ, Saksela K, Alitalo K. myc, max, and a novel rlf-L-myc fusion protein in small-cell lung cancer. [Review]. Princess Takamatsu Symp 1991; 22: 307–18.

    PubMed  CAS  Google Scholar 

  44. Gazdar AF. The molecular and cellular basis of human lung cancer. [Review]. Anticancer Res 1994; 14: 261–7.

    PubMed  CAS  Google Scholar 

  45. Bergh JC. Gene amplification in human lung cancer. The myc family genes and other proto-oncogenes and growth factor genes. [Review]. Amer Rev Resp Dis 1990; 142: S20–6.

    PubMed  CAS  Google Scholar 

  46. Birrer MJ, Minna JD. Genetic changes in the pathogenesis of lung cancer. [Review]. Ann Rev Med 1989; 40: 305–17.

    PubMed  CAS  Google Scholar 

  47. Wong AJ, Ruppert JM, Eggleston J, Hamilton SR, Baylin SB, Vogelstein B. Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 1986; 233: 461–4.

    PubMed  CAS  Google Scholar 

  48. Makela TP, Saksela K, Evan G, Alitalo K. A fusion protein formed by L-myc and a novel gene in SCLC. EMBO J 1991; 10: 1331–5.

    PubMed  CAS  Google Scholar 

  49. Makela TP, Kere J, Winqvist R, Alitalo K. Intrachromosomal rearrangements fusing L-myc and rlf in small-cell lung cancer. Molecular AND Cellular Biology 1991; 11: 4015–21.

    CAS  Google Scholar 

  50. Johnson BE, Ihde DC, Makuch RW, et al. myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J Clin Invest 1987; 79: 1629–34.

    PubMed  CAS  Google Scholar 

  51. Saint-Ruf C, Gerbault-Seureau M, Viegas-Pequignot E, Zafrani B, Cassingena R, Dutrillaux B. Proto-oncogene amplification and homogeneously staining regions in human breast carcinomas. Genes Chrom Can 1990; 2: 18–26.

    CAS  Google Scholar 

  52. Kallioniemi A, Kallioniemi OP, Piper J, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA 1994; 91: 2156–60.

    PubMed  CAS  Google Scholar 

  53. McKenzie SJ. Diagnostic utility of oncogenes and their products in human cancer. [Review]. Biochim Biophys Acta 1991; 1072: 193–214.

    PubMed  CAS  Google Scholar 

  54. Adnane J, Gaudray P, Simon MP, Simony-Lafontaine J, Jeanteur P, Theillet C. Proto-oncogene amplification and human breast tumor phenotype. Oncogene 1989; 4: 1389–95.

    PubMed  CAS  Google Scholar 

  55. Bonilla M, Ramirez M, Lopez-Cueto J, Gariglio P. In vivo amplification and rearrangement of c-myc oncogene in human breast tumors. J Natl Cancer Inst 1988; 80: 665–71.

    PubMed  CAS  Google Scholar 

  56. Borg A, Baldetorp B, Ferno M, Olsson H, Sigurdsson H. c-myc amplification is an independent prognostic factor in postmenopausal breast cancer. Int J Can 1992; 51: 687–91.

    CAS  Google Scholar 

  57. Champeme MH, Bieche I, Hacene K, Lidereau R. Oncogene amplification per se: an independent prognostic factor in human breast cancer. Mol Carcinog 1994; 11: 189–91.

    PubMed  CAS  Google Scholar 

  58. Cline MJ, Battifora H, Yokota J. Proto-oncogene abnormalities in human breast cancer: correlations with anatomic features and clinical course of disease. J Clin Onc 1987; 5: 999–1006.

    CAS  Google Scholar 

  59. Garcia I, Dietrich PY, Aapro M, Vauthier G, Vadas L, Engel E. Genetic alterations of c-myc, c-erbB-2, and c-Ha-ras protooncogenes and clinical associations in human breast carcinomas. Can Res 1989; 49: 6675–9.

    CAS  Google Scholar 

  60. Kozbor D, Croce CM. Amplification of the c-myc oncogene in one of five human breast carcinoma cell lines. Cancer Res 1984; 44: 438–41.

    PubMed  CAS  Google Scholar 

  61. Machotka SV, Garrett CT, Schwartz AM, Callahan R. Amplification of the proto-oncogenes int-2, c-erb B-2 and c-myc in human breast cancer. Clin Chim Acta 1989; 184: 207–17.

    PubMed  CAS  Google Scholar 

  62. Mariani-Costantini R, Escot C, Theillet C, et al. In situ c-myc expression and genomic status of the c-myc locus in infiltrating ductal carcinomas of the breast. Cancer Res 1988; 48: 199–205.

    PubMed  CAS  Google Scholar 

  63. Munzel P, Marx D, Kochel H, Schauer A, Bock KW. Genomic alterations of the c-myc protooncogene in relation to the overexpression of c-erbB2 and Ki-67 in human breast and cervix carcinomas. J Cancer Res Clin Oncol 1991; 117: 603–7.

    PubMed  CAS  Google Scholar 

  64. Pavelic ZP, Steele P, Preisler HD. Evaluation of c-myc proto-oncogene in primary human breast carcinomas. Anticancer Res 1991; 11: 1421–7.

    PubMed  CAS  Google Scholar 

  65. Seshadri R, Matthews C, Dobrovic A, Horsfall DJ. The significance of oncogene amplification in primary breast cancer. [Review]. Int J Can 1989; 43: 270–2.

    CAS  Google Scholar 

  66. Tang RP, Kacinski B, Validire P, et al. Oncogene amplification correlates with dense lymphocyte infiltration in human breast cancers: a role for hematopoietic growth factor release by tumor cells? J Cell Biochem 1990; 44: 189–98.

    PubMed  CAS  Google Scholar 

  67. Tsuda H, Hirohashi S, Hirota T, Shimosato Y. Alterations in copy number of c-erbB-2 and c-myc proto-oncogenes in advanced stage of human breast cancer. Acta Pathol Jpn 1991; 41: 19–23.

    PubMed  CAS  Google Scholar 

  68. Tripathy D, Benz CC. Activated oncogenes and putative tumor suppressor genes involved in human breast cancers. [Review]. Can Treat Res 1992; 63: 15–60.

    CAS  Google Scholar 

  69. Tavassoli M, Quirke P, Farzaneh F, Lock NJ, Mayne LV, Kirkham N. c-erbB-2/c-erbA co-amplification indicative of lymph node metastasis, and c-myc amplification of high tumour grade, in human breast carcinoma. Br J Can 1989; 60: 505–10.

    CAS  Google Scholar 

  70. Bieche I, Champeme MH, Lidereau R. A tumor suppressor gene on chromosome 1 p32-pter controls the amplification of MYC family genes in breast cancer. Cancer Res 1994; 54: 4274–6.

    PubMed  CAS  Google Scholar 

  71. Guerin M, Barrois M, Terrier MJ, Spielmann M, Riou G. Overexpression of either c-myc or c-erbB-2/neu proto-oncogenes in human breast carcinomas: correlation with poor prognosis. Oncogene Res 1988; 3: 21–31.

    PubMed  CAS  Google Scholar 

  72. Madsen MW, Lykkesfeldt AE, Laursen I, Nielsen KV, Briand P. Altered gene expression of c-myc, epidermal growth factor receptor, transforming growth factor-alpha, and c-erb-B2 in an immortalized human breast epithelial cell line, HMT-3522, is associated with decreased growth factor requirements. Cancer Res 1992; 52: 1210–7.

    PubMed  CAS  Google Scholar 

  73. Benz CC, Scott GK, Santos GF, Smith HS. Expression of c-myc, c-Ha-rasl, and c-erbB-2 proto-oncogenes in normal and malignant human breast epithelial cells. JNCI 1989; 81: 1704–9.

    PubMed  CAS  Google Scholar 

  74. Escot C, Theillet C, Lidereau R, et al. Genetic alteration of the cmyc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA 1986; 83: 4834–8.

    PubMed  CAS  Google Scholar 

  75. Le Roy X, Escot C, Brouillet JP, et al. Decrease of c-erbB-2 and cmyc RNA levels in tamoxifen-treated breast cancer. Oncogene 1991; 6: 431–7.

    PubMed  Google Scholar 

  76. Agnantis NJ, Mahera H, Maounis N, Spandidos DA. Immunohistochemical study of ras and myc oncoproteins in apocrine breast lesions with and without papillomatosis. Eur J Gyn Onc 1992; 13: 309–15.

    CAS  Google Scholar 

  77. Spandidos DA, Yiagnisis M, Papadimitriou K, Field JK. ras, c-myc and c-erbB-2 oncoproteins in human breast cancer. Anticancer Res 1989; 9: 1385–93.

    PubMed  CAS  Google Scholar 

  78. Hamilton SR. Molecular genetics of colorectal carcinoma. [Review]. Cancer 1992; 70: 1216–21.

    PubMed  CAS  Google Scholar 

  79. Hamilton SR. Molecular genetic alterations as potential prognostic indicators in colorectal carcinoma. [Review]. Cancer 1992; 69: 1589–91.

    PubMed  CAS  Google Scholar 

  80. Sugio K, Kurata S, Sasaki M, Soejima J, Sasazuki T. Differential expression of c-myc gene and c-fos gene in premalignant and malignant tissues from patients with familial polyposis coli. Cancer Res 1988; 48: 4855–61.

    PubMed  CAS  Google Scholar 

  81. Imaseki H, Hayashi H, Taira M, et al. Expression of c-myc oncogene in colorectal polyps as a biological marker for monitoring malignant potential. Cancer 1989; 64: 704–9.

    PubMed  CAS  Google Scholar 

  82. Finley GG, Schulz NT, Hill SA, Geiser JR, Pipas JM, Meisler AI. Expression of the myc gene family in different stages of human colorectal cancer. Oncogene 1989; 4: 963–71.

    PubMed  CAS  Google Scholar 

  83. Watson JV, Stewart J, Cox H, Sikora K, Evan GI. Flow cytometric quantitation of the c-myc oncoprotein in archival neoplastic biopsies of the colon. Mol Cell Probes 1987; 1: 151–7.

    PubMed  CAS  Google Scholar 

  84. Stewart J, Evan G, Watson J, Sikora K. Detection of the c-myc oncogene product in colonic polyps and carcinomas. Br J Cancer 1986; 53: 1–6.

    PubMed  CAS  Google Scholar 

  85. Erisman MD, Rothberg PG, Diehl RE, Morse CC, Spandorfer JM, Astrin SM. Deregulation of c-myc gene expression in human colon carcinoma is not accompanied by amplification or rearrangement of the gene. Mol Cell Biol 1985; 5: 1969–76.

    PubMed  CAS  Google Scholar 

  86. Erisman MD, Scott JK, Watt RA, Astrin SM. The c-myc protein is constitutively expressed at elevated levels in colorectal carcinoma cell lines. Oncogene 1988; 2: 367–78.

    PubMed  CAS  Google Scholar 

  87. Yoshimoto K, Hirohashi S, Sekiya T. Increased expression of the c-myc gene without gene amplification in human lung cancer and colon cancer cell lines. Jpn J Cancer Res 1986; 77: 540–5.

    PubMed  CAS  Google Scholar 

  88. Nomura N, Yamamoto T, Toyoshima K, et al. DNA amplification of the c-myc and c-erbB-1 genes in a human stomach cancer. Jpn J Cancer Res 1986; 77: 1188–92.

    PubMed  CAS  Google Scholar 

  89. Tsuchiya T, Ueyama Y, Tamaoki N, Yamaguchi S, Shibuya M. Co-amplification of c-myc and c-erbB-2 oncogenes in a poorly differentiated human gastric cancer. Jpn J Cancer Res 1989; 80: 920–3.

    PubMed  CAS  Google Scholar 

  90. Heerdt BG, Molinas S, Deitch D, Augenlicht LH. Aggressive subtypes of human colorectal tumors frequently exhibit amplification of the c-myc gene. Oncogene 1991; 6: 125–9.

    PubMed  CAS  Google Scholar 

  91. Sharrard RM, Royds JA, Rogers S, Shorthouse AJ. Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer 1992; 65: 667–72.

    PubMed  CAS  Google Scholar 

  92. Erisman MD, Scott JK, Astrin SM. Evidence that the familial adenomatous polyposis gene is involved in a subset of colon cancers with a complementable defect in c-myc regulation. Proc Natl Acad Sci USA 1989; 86: 4264–8.

    PubMed  CAS  Google Scholar 

  93. Rodriguez-Alfageme C, Stanbridge EJ, Astrin SM. Suppression of deregulated c-MYC expression in human colon carcinoma cells by chromosome 5 transfer. Proc Natl Acad Sci USA 1992; 89: 1482–6.

    PubMed  CAS  Google Scholar 

  94. Milde-Langosch K, Becker G, Loning T. Human papillomavirus and c-myc/c-erbB2 in uterine and vulvar lesions. Virchows Arch A Pathol Anat Histopathol 1991; 419: 479–85.

    PubMed  CAS  Google Scholar 

  95. Tate JE, Mutter GL, Prasad CJ, Berkowitz R, Goodman H, Crum CP. Analysis of HPV-positive and -negative vulvar carcinomas for alterations in c-myc, Ha-, Ki-, and N-ras genes. Gynecol Oncol 1994; 53: 78–83.

    PubMed  CAS  Google Scholar 

  96. Ocadiz R, Sauceda R, Cruz M, Graef AM, Gariglio P. High correlation between molecular alterations of the c-myc oncogene and carcinoma of the uterine cervix. Cancer Res 1987; 47: 4173–7.

    PubMed  CAS  Google Scholar 

  97. Iwasaka T, Yokoyama M, Oh-uchida M, et al. Detection of human papillomavirus genome and analysis of expression of c-myc and Ha-ras oncogenes in invasive cervical carcinomas. Gynecol Oncol 1992; 46: 298–303.

    PubMed  CAS  Google Scholar 

  98. Sowani A, Ong G, Dische S, et al. c-myc oncogene expression and clinical outcome in carcinoma of the cervix. Mol Cell Probes 1989; 3: 117–23.

    PubMed  CAS  Google Scholar 

  99. Borst MP, Baker VV, Dixon D, Hatch KD, Shingleton HM, Miller DM. Oncogene alterations in endometrial carcinoma. Gynecol Oncol 1990; 38: 364–6.

    PubMed  CAS  Google Scholar 

  100. Baker VV, Borst MP, Dixon D, Hatch KD, Shingleton HM, Miller D. c-myc amplification in ovarian cancer. Gynecol Oncol 1990; 38: 340–2.

    PubMed  CAS  Google Scholar 

  101. Sasano H, Garrett CT, Wilkinson DS, Silverberg S, Comerford J, Hyde J. Protooncogene amplification and tumor ploidy in human ovarian neoplasms. Hum Pathol 1990; 21: 382–91.

    PubMed  CAS  Google Scholar 

  102. Schreiber G, Dubeau L. C-myc proto-oncogene amplification detected by polymerase chain reaction in archival human ovarian carcinomas. Am J Pathol 1990; 137: 653–8.

    PubMed  CAS  Google Scholar 

  103. Smith DM, Groff DE, Pokul RK, Bear JL, Delgado G. Determination of cellular oncogene rearrangement or amplification in ovarian adenocarcinomas. Am J Obstet Gynecol 1989; 161: 911–5.

    PubMed  CAS  Google Scholar 

  104. Yasue H, Takeda A, Ishibashi M. Amplification of the c-myc gene and the elevation of its transcripts in human ovarian tumor lines. Cell Struct Funct 1987; 12: 121–5.

    PubMed  CAS  Google Scholar 

  105. Sikora K, Evan G, Stewart J, Watson JV. Detection of the c-myc oncogene product in testicular cancer. Br J Cancer 1985; 52: 171–6.

    PubMed  CAS  Google Scholar 

  106. Fleming WH, Hamel A, MacDonald R, et al. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 1986; 46: 1535–8.

    PubMed  CAS  Google Scholar 

  107. Fox SB, Persad RA, Royds J, Kore RN, Silcocks PB, Collins CC. p53 and c-myc expression in stage Al prostatic adenocarcinoma: useful prognostic determinants? J Urol 1993; 150: 490–4.

    PubMed  CAS  Google Scholar 

  108. Peehl DM. Oncogenes in prostate cancer. An update. [Review]. Cancer 1993; 71: 1159–64.

    PubMed  CAS  Google Scholar 

  109. Wolf DA, Kohlhuber F, Schulz P, Fittler F, Eick D. Transcriptional down-regulation of c-myc in human prostate carcinoma cells by the synthetic androgen mibclerone. Br J Cancer 1992; 65: 376–82.

    PubMed  CAS  Google Scholar 

  110. Buttyan R, Sawczuk IS, Benson MC, Siegal JD, Olsson CA. Enhanced expression of the c-myc protooncogene in high-grade human prostate cancers. Prostate 1987; 11: 327–37.

    PubMed  CAS  Google Scholar 

  111. Davies P, Eaton CL, France TD, Phillips ME. Growth factor receptors and oncogene expression in prostate cells. [Review]. Am J Clin Oncol 1988; 11: S1–7.

    PubMed  Google Scholar 

  112. Thompson TC, Southgate J, Kitchener G, Land H. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 1989; 56: 917–30.

    PubMed  CAS  Google Scholar 

  113. Thompson TC, Park SH, Timme TL, et al. Loss of p53 function leads to metastasis in rasi-myc-initiated mouse prostate cancer. Oncogene 1995; 10: 869–79.

    PubMed  CAS  Google Scholar 

  114. Adams JM, Cory S. Transgenic models of tumor development. [Review]. Science 1991; 254: 1161–7.

    PubMed  CAS  Google Scholar 

  115. Adams JM, Cory S. Transgenic models for haemopoietic malignancies. [Review]. Biochim Biophys Acta 1991; 1072: 9–31.

    PubMed  CAS  Google Scholar 

  116. Morgenbesser SD, DePinho RA. Use of transgenic mice to study myc family gene function in normal mammalian development and in cancer. [Review]. Semin Cancer Biol 1994; 5: 21–36.

    PubMed  CAS  Google Scholar 

  117. Adams JM, Harris AW, Pinkert CA, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 1985; 318: 533–8.

    PubMed  CAS  Google Scholar 

  118. Alexander WS, Schrader JW, Adams JM. Expression of the c-myc oncogene under control of an immunoglobulin enhancer in Eµmyc transgenic mice. Mol Cell Biol 1987; 7: 1436–44.

    PubMed  CAS  Google Scholar 

  119. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM. The E t-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med 1988; 167: 353–71.

    CAS  Google Scholar 

  120. Schmidt EV, Pattengale PK, Weir L, Leder P. Transgenic mice bearing the human c-myc gene activated by an immunoglobulin enhancer: a pre-B-cell lymphoma model. Proc Natl Acad Sci USA 1988; 85: 6047–51.

    PubMed  CAS  Google Scholar 

  121. Langdon WY, Harris AW, Cory S, Adams JM. The c-myc oncogene perturbs B lymphocyte development in E-mu-myc transgenic mice. Cell 1986; 47: 11–8.

    PubMed  CAS  Google Scholar 

  122. Sinn E, Muller W, Pattengale P, Tepler I, Wallace R, Leder P. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: synergistic action of oncogenes in vivo. Cell 1987; 49: 465–75.

    PubMed  CAS  Google Scholar 

  123. Haupt Y, Alexander WS, Barri G, Klinken SP, Adams JM. Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice [see comments]. Cell 1991; 65: 753–63.

    PubMed  CAS  Google Scholar 

  124. Lovec H, Grzeschiczek A, Kowalski MB, Moroy T. Cyclin D1/bc11 cooperates with myc genes in the generation of B-cell lymphoma in transgenic mice. EMBO J 1994; 13: 3487–95.

    PubMed  CAS  Google Scholar 

  125. Benvenisty N, Ornitz DM, Bennett GL, et al. Brain tumours and lymphomas in transgenic mice that carry HTLV-I LTR/c-myc and Ig/tax genes. Oncogene 1992; 7: 2399–405.

    PubMed  CAS  Google Scholar 

  126. van Lohuizen M, Verbeek S, Krimpenfort P, et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with cmyc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673–82.

    PubMed  Google Scholar 

  127. Seldin DC, Leder P. Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle [see comments]. Science 1995; 267: 894–7.

    PubMed  CAS  Google Scholar 

  128. Bodrug SE, Warner BJ, Bath ML, Lindeman GJ, Harris AW, Adams JM. Cyclin D1 transgene impedes lymphocyte maturation and laborates in lymphomagenesis with the myc gene. EMBO J 1994; 13: 2124–30.

    PubMed  CAS  Google Scholar 

  129. Haupt Y, Bath ML, Harris AW, Adams JM. bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis. Oncogene 1993; 8: 3161–4.

    PubMed  CAS  Google Scholar 

  130. Rosenbaum H, Harris AW, Bath ML, et al. An E mu-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO J 1990; 9: 897–905.

    CAS  Google Scholar 

  131. Schoenenberger CA, Zuk A, Groner B, Jones W, Andres AC. Induction of the endogenous whey acidic protein (Wap) gene and a Wap-myc hybrid gene in primary murine mammary organoids. Dev Biol 1990; 139: 327–37.

    PubMed  CAS  Google Scholar 

  132. Stewart TA, Pattengale PK, Leder P. Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/ myc fusion genes. Cell 1984; 38: 627–37.

    PubMed  CAS  Google Scholar 

  133. Small JA, Blair DG, Showalter SD, Scangos GA. Analysis of a transgenic mouse containing simian virus 40 and v-myc sequences. Mol Cell Biol 1985; 5: 642–8.

    PubMed  CAS  Google Scholar 

  134. Leder A, Pattengale PK, Kuo A, Stewart TA, Leder P. Consequences of widespread deregulation of the c-myc gene in transgenic mice: multiple neoplasms and normal development. Cell 1986; 45: 485–95.

    PubMed  CAS  Google Scholar 

  135. Suda Y, Aizawa S, Hirai S, et al. Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO J 1987; 6: 4055–65.

    PubMed  CAS  Google Scholar 

  136. Schoenenberger CA, Andres AC, Groner B, van der Valk M, LeMeur M, Gerlinger P. Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J 1988; 7: 169–75.

    PubMed  CAS  Google Scholar 

  137. Sandgren EP, Quaife CJ, Pinkert CA, Palmiter RD, Brinster RL. Oncogene-induced liver neoplasia in transgenic mice. Oncogene 1989; 4: 715–24.

    PubMed  CAS  Google Scholar 

  138. Jackson T, Allard MF, Sreenan CM, Doss LK, Bishop SP, Swain JL. The c-myc proto-oncogene regulates cardiac development in transgenic mice. Mol Cell Biol 1990; 10: 3709–16.

    PubMed  CAS  Google Scholar 

  139. Trudel M, D’Agati V, Costantini F. C-myc as an inducer of polycystic kidney disease in transgenic mice. Kidney Int 1991; 39: 665–71.

    PubMed  CAS  Google Scholar 

  140. Robbins RJ, Swain JL. C-myc protooncogene modulates cardiac hypertrophic growth in transgenic mice. Am J Physiol 1992; 262: H590–7.

    Google Scholar 

  141. Skoda RC, Tsai SF, Orkin SH, Leder P. Expression of c-MYC under the control of GATA-1 regulatory sequences causes erythroleukemia in transgenic mice. J Exp Med 1995; 181: 1603–13.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dang, C.V., Lee, L.A. (1995). Involvement of c-myc in Human Cancers. In: c-Myc Function in Neoplasia. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22681-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22681-0_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22683-4

  • Online ISBN: 978-3-662-22681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics