Historical Perspectives of myc Gene Studies

  • Chi V. Dang
  • Linda A. Lee
Part of the Medical Intelligence Unit book series (MIU.LANDES)


Much of our current understanding of cancer genes originated from classical studies of avian tumors. The very first documented observation by Rous in 1910 suggested that certain avian sarcomas could be transmitted by a filterable infectious agent.1–4 Subsequently, isolates of the infectious agents were recognized under the electron microscope as membrane bound particles now known as retroviruses. Five of these retroviruses that have been isolated from avian sarcomas and leukemias are known to bear v-myc oncogenes.5,6


Burkitt Lymphoma Insertional Activation Human Myeloid Leukaemia Cell Line Promoter Insertion Avian Tumor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop JM. Retroviruses and cancer genes. [Review]. Adv Cancer Res 1982; 37: 1–32.PubMedCrossRefGoogle Scholar
  2. 2.
    Bishop JM. Cellular oncogenes and retroviruses. [Review]. Annu Rev Biochem 1983; 52: 301–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop JM. Retroviruses. [Review]. Annu Rev Biochem 1978; 47: 35–88.PubMedCrossRefGoogle Scholar
  4. 4.
    Bishop JM. Nobel Lecture. Retroviruses and oncogenes II. [Review]. Biosci Rep 1990; 10: 473–91.CrossRefGoogle Scholar
  5. 5.
    Bister K, Jansen HW. Oncogenes in retroviruses and cells: biochemistry and molecular genetics. [Review]. Adv Cancer Res 1986; 47: 99–188.PubMedCrossRefGoogle Scholar
  6. 6.
    Chen C, Biegalke BJ, Eisenman RN, Linial ML. FH3, a v-myc avian retrovirus with limited transforming ability. J Virol 1989; 63: 5092–100.PubMedGoogle Scholar
  7. 7.
    Tikhonenko AT, Linial ML. gag as well as myc sequences contribute to the transforming phenotype of the avian retrovirus FH3. J Virol 1992; 66: 946–55.PubMedGoogle Scholar
  8. 8.
    Sheiness D, Fanshier L, Bishop JM. Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. J Virol 1978; 28: 600–10.PubMedGoogle Scholar
  9. 9.
    Moelling K, Owada MK, Greiser-Wilke I, Bunte T, Donner P. Biochemical characterization of transformation-specific proteins of acute avian leukemia and sarcoma viruses. J Cell Biochem 1982; 20: 63–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Sovova V, Travnicek M, Hlozanek I, Cerna H. In vitro cleavage of gag-myc fused protein P110 of a defective leukaemia virus MC29 by retroviral protease p15. Folia Biol 1982; 28: 369–76.Google Scholar
  11. 11.
    Reddy EP, Reynolds RK, Watson DK, Schultz RA, Lautenberger J, Papas TS. Nucleotide sequence analysis of the proviral genome of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 1983; 80: 2500–4.PubMedCrossRefGoogle Scholar
  12. 12.
    Bunte T, Greiser-Wilke I, Moelling K. The transforming protein of the MC29-related virus CMII is a nuclear DNA-binding protein whereas MH2 codes for a cytoplasmic RNA-DNA binding polyprotein. EMBO J 1983; 2: 1087–92.PubMedGoogle Scholar
  13. 13.
    Alitalo K, Bishop JM, Smith DH, Chen EY, Colby WW, Levinson AD. Nucleotide sequence to the v-myc oncogene of avian retrovirus MC29. Proc Natl Acad Sci USA 1983; 80: 100–4.PubMedCrossRefGoogle Scholar
  14. 14.
    Bister K, Trachmann C, Jansen HW, Schroeer B, Patschinsky T. Structure of mutant and wild-type MC29 v-myc alleles and biochemical properties of their protein products. Oncogene 1987; 1: 97–109.PubMedGoogle Scholar
  15. 15.
    Saule S, Coll J, Righi M, Lagrou C, Raes MB, Stehelin D. Two different types of transcription for the myelocytomatosis viruses MH2 and CMII. EMBO J 1983; 2: 805–9.PubMedGoogle Scholar
  16. 16.
    Walther N, Lurz R, Patschinsky T, Jansen HW, Bister K. Molecular cloning of proviral DNA and structural analysis of the transduced myc oncogene of avian oncovirus CMII. J Virol 1985; 54: 576–85.PubMedGoogle Scholar
  17. 17.
    Chiswell DJ, Ramsay G, Hayman MJ. Two virus-specific rna species are present in cells transformed by defective leukemia virus OK10. J Virol 1981; 40: 301–4.PubMedGoogle Scholar
  18. 18.
    Hann SR, Abrams HD, Rohrschneider LR, Eisenman RN. Proteins encoded by v-myc and c-myc oncogenes: identification and localization in acute leukemia virus transformants and bursal lymphoma cell lines. Cell 1983; 34: 789–98.PubMedCrossRefGoogle Scholar
  19. 19.
    Patschinsky T, Walter G, Bister K. Immunological analysis of v-myc gene products using antibodies against a myc-specific synthetic peptide. Virology 1984; 136: 348–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Bunte T, Donner P, Pfaff E, et al. Inhibition of DNA binding of purified p55v-myc in vitro by antibodies against bacterially expressed myc protein and a synthetic peptide. EMBO J 1984; 3: 1919–24.PubMedGoogle Scholar
  21. 21.
    Jansen HW, Patschinsky T, Bister K. Avian oncovirus MH2: molecular cloning of proviral DNA and structural analysis of viral RNA and protein. J Virol 1983; 48: 61–73.PubMedGoogle Scholar
  22. 22.
    Kan NC, Flordellis CS, Garon CF, Duesberg PH, Papas TS. Avian carcinoma virus MH2 contains a transformation-specific sequence, mht, and shares the myc sequence with MC29, CMII, and OK10 viruses. Proc Natl Acad Sci USA 1983; 80: 6566–70.Google Scholar
  23. 23.
    Tikhonenko AT, Linial ML. Transforming variants of the avian myc-containing retrovirus FH3 arise prior to phenotypic selection. J Virol 1993; 67: 3635–8.PubMedGoogle Scholar
  24. 24.
    Parker RC, Varmus HE, Bishop JM. Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: isolation, mapping, and transcriptional analysis of c-src and flanking regions. Proc Natl Acad Sci USA 1981; 78: 5842–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Sheiness DK, Hughes SH, Varmus HE, Stubblefield E, Bishop JM. The vertebrate homolog of the putative transforming gene of avian myelocytomatosis virus: characteristics of the DNA locus and its RNA transcript. Virology 1980; 105: 415–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Lautenberger JA, Schulz RA, Garon CF, Tsichlis PN, Papas TS. Molecular cloning of avian myelocytomatosis virus (MC29) transforming sequences. Proc Natl Acad Sci USA 1981; 78: 1518–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Vennstrom B, Sheiness D, Zabielski J, Bishop JM. Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 1982; 42: 773–9.PubMedGoogle Scholar
  28. 28.
    Collins S, Groudine M. Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 1982; 298: 679–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Dalla-Favera R, Gelmann EP, Martinotti S, et al. Cloning and characterization of different human sequences related to the onc gene (v-myc) of avian myelocytomatosis virus (MC29). Proc Natl Acad Sci USA 1982; 79: 6497–501.PubMedCrossRefGoogle Scholar
  30. 30.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 1982; 79: 7824–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Watson DK, Psallidopoulos MC, Samuel KP, Dalla-Favera R, Papas TS. Nucleotide sequence analysis of human c-myc locus, chicken homologue, and myelocytomatosis virus MC29 transforming gene reveals a highly conserved gene product. Proc Natl Acad Sci USA 1983; 80: 3642–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Dalla-Favera R, Martinotti S, Gallo RC, Erikson J, Croce CM. Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 1983; 219: 963–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Nowell P, Finan J, Dalla-Favera R, et al. Association of amplified oncogene c-myc with an abnormally banded chromosome 8 in a human leukaemia cell line. Nature 1983; 306: 494–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Gelmann EP, Psallidopoulos MC, Papas TS, Dalla-Favera R. Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin mu locus in a Burkitt lymphoma. Nature 1983; 306: 799–803.PubMedCrossRefGoogle Scholar
  35. 35.
    Battey J, Moulding C, Taub R, et al. The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell 1983; 34: 779–87.PubMedCrossRefGoogle Scholar
  36. 36.
    Watt R, Stanton LW, Marcu KB, Gallo RC, Croce CM, Rovera G. Nucleotide sequence of cloned cDNA of human c-myc oncogene. Nature 1983; 303: 725–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Hayward WS, Neel BG, Astrin SM. Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 1981; 290: 475–80.PubMedCrossRefGoogle Scholar
  38. 38.
    Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 1981; 23: 323–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Payne GS, Bishop JM, Varmus HE. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 1982; 295: 209–14.PubMedCrossRefGoogle Scholar
  40. 40.
    Pachl C, Schubach W, Eisenman R, Linial M. Expression of c-myc RNA in bursal lymphoma cell lines: identification of c-myc-encoded proteins by hybrid-selected translation. Cell 1983; 33: 335–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Chi V. Dang
    • 1
  • Linda A. Lee
    • 1
  1. 1.School of MedicineThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations