Skip to main content

Retroviruses, Cancer Genes, and Tumor Suppressor Genes

  • Chapter
c-Myc Function in Neoplasia

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 31 Accesses

Abstract

Cellular transformation may occur spontaneously as a result of errors in cellular safeguard mechanisms such as faulty DNA repair, exposure to physical and chemical mutagens or infection by tumorigenic viruses. Studies of tumorigenic DNA and RNA viruses have contributed profoundly to our understanding of molecular oncogenesis, since these viruses contribute to tumor formation by usurping the machineries involved in the control of cell proliferation. Some of the RNA retroviruses transduce captured cellular proto-oncogenes termed viral oncogenes which have undergone mutations. Other retroviruses can transform in the absence of a viral oncogene by inserting strong transcriptional activating elements near cellular genes that contribute positively to cell growth. The DNA tumor viruses often carry viral genes that are oncogenic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dyson N, Buchkovich K, Whyte P, Harlow E. The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 1989; 58: 249–55.

    PubMed  CAS  Google Scholar 

  2. Dilworth SM. Cell alterations induced by the large T-antigens of SV40 and polyoma virus. [Review]. Semin Cancer Biol 1990; 1: 407–14.

    PubMed  CAS  Google Scholar 

  3. Butel JS. SV40 large T-antigen: dual oncogene. Cancer Sury 1986; 5: 343–65.

    CAS  Google Scholar 

  4. Lane DP, Simanis V, Bartsch R, Yewdell J, Gannon J, Mole S. Cellular targets for SV40 large T-antigen. Proc R Soc Lond B Biol Sci 1985; 226: 25–42.

    PubMed  CAS  Google Scholar 

  5. Zhu JY, Abate M, Rice PW, Cole CN. The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53. J Virol 1991; 65: 6872–80.

    PubMed  CAS  Google Scholar 

  6. Ewen ME, Ludlow JW, Marsilio E, et al. An N-terminal transformation-governing sequence of SV40 large T antigen contributes to the binding of both p1lORb and a second cellular protein, p120. Cell 1989; 58: 257–67.

    PubMed  CAS  Google Scholar 

  7. Tack LC, Wright JH, Deb SP, Tegtmeyer P. The p53 complex from monkey cells modulates the biochemical activities of simian virus 40 large T antigen. J Virol 1989; 63: 1310–7.

    PubMed  CAS  Google Scholar 

  8. Tan TH, Wallis J, Levine AJ. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen-p53 protein complex. J Virol 1986; 59: 574–83.

    PubMed  CAS  Google Scholar 

  9. Yew PR, Liu X, Berk AJ. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev 1994; 8: 190–202.

    PubMed  CAS  Google Scholar 

  10. Lin J, Chen J, Elenbaas B, Levine AJ. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 1994; 8: 1235–46.

    PubMed  CAS  Google Scholar 

  11. White E, Cipriani R, Sabbatini P, Denton A. Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J Virol 1991; 65: 2968–78.

    PubMed  CAS  Google Scholar 

  12. Sabbatini P, Chiou SK, Rao L, White E. Modulation of p53-mediated transcriptional repression and apoptosis by the adenovirus E1B 19K protein. Mol Cell Biol 1995; 15: 1060–70.

    PubMed  CAS  Google Scholar 

  13. Boyd JM, Malstrom S, Subramanian T, et al. Adenovirus E1B 19 kDa and Bd-2 proteins interact with a common set of cellular proteins. Cell 1994; 79: 1121.

    PubMed  CAS  Google Scholar 

  14. Boyd JM, Malstrom S, Subramanian T, et al. Adenovirus E1B 19 kDa and Bd-2 proteins interact with a common set of cellular proteins [see comments] [published erratum appears in Cell 1994 Dec 16;79(6):following 1120]. Cell 1994; 79: 341–51.

    PubMed  CAS  Google Scholar 

  15. Farrow SN, White JH, Martinou I, et al. Cloning of a bd-2 homologue by interaction with adenovirus E1B 19K. Nature 1995; 374: 731–3.

    PubMed  CAS  Google Scholar 

  16. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. The HPV16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993; 75: 495–505.

    PubMed  CAS  Google Scholar 

  17. Ciechanover A, Shkedy D, Oren M, Bercovich B. Degradation of the tumor suppressor protein p53 by the ubiquitin-mediated proteolytic system requires a novel species of ubiquitin-carrier protein, E2. J Biol Chem 1994; 269: 9582–9.

    PubMed  CAS  Google Scholar 

  18. Rolfe M, Beer-Romero P, Glass S, et al. Reconstitution of p53-ubiquitinylation reactions from purified components: the role of human ubiquitin-conjugating enzyme UBC4 and E6-associated protein (E6AP). Proc Natl Acad Sci USA 1995; 92: 3264–8.

    PubMed  CAS  Google Scholar 

  19. Davies R, Hicks R, Crook T, Morris J, Vousden K. Human papillomavirus type 16 E7 associates with a histone H1 kinase and with p107 through sequences necessary for transformation. J Virol 1993; 67: 2521–8.

    PubMed  CAS  Google Scholar 

  20. Arroyo M, Bagchi S, Raychaudhuri P. Association of the human papillomavirus type 16 E7 protein with the S-phase-specific E2F-cyclin A complex. Mol Cell Biol 1993; 13: 6537–46.

    PubMed  CAS  Google Scholar 

  21. Ciccolini F, Di Pasquale G, Carlotti F, Crawford L, Tommasino M. Functional studies of E7 proteins from different HPV types. Oncogene 1994; 9: 2633–8.

    PubMed  CAS  Google Scholar 

  22. Seto E, Mitchell PJ, Yen TS. Transactivation by the hepatitis B virus X protein depends on AP-2 and other transcription factors. Nature 1990; 344: 72–4.

    PubMed  CAS  Google Scholar 

  23. Balsano C, Avantaggiati ML, Natoli G, et al. Full-length and truncated versions of the hepatitis B virus (HBV) X protein (pX) transactivate the cmyc protooncogene at the transcriptional level. Biochem Biophys Res Commun 1991; 176: 985–92.

    PubMed  CAS  Google Scholar 

  24. Bishop JM. Retroviruses. [Review]. Annu Rev Biochem 1978; 47: 35–88.

    PubMed  CAS  Google Scholar 

  25. Bishop JM. Retroviruses and cancer genes. [Review]. Adv Cancer Res 1982; 37: 1–32.

    PubMed  CAS  Google Scholar 

  26. Bishop JM. Viruses, genes, and cancer. II. Retroviruses and cancer genes. Cancer 1985; 55: 2329–33.

    PubMed  CAS  Google Scholar 

  27. Swanstrom R, Parker RC, Varmus HE, Bishop JM. Transduction of a cellular oncogene: the genesis of Rous sarcoma virus. Proc Natl Acad Sci USA 1983; 80: 2519–23.

    PubMed  CAS  Google Scholar 

  28. Bister K, Jansen HW. Oncogenes in retroviruses and cells: biochemistry and molecular genetics. [Review]. Adv Cancer Res 1986; 47: 99–188.

    PubMed  CAS  Google Scholar 

  29. Hayward WS, Neel BG, Astrin SM. Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 1981; 290: 475–80.

    PubMed  CAS  Google Scholar 

  30. Neel BG, Hayward WS, Robinson HL, Fang J, Astrin SM. Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: oncogenesis by promoter insertion. Cell 1981; 23: 323–34.

    PubMed  CAS  Google Scholar 

  31. Dang CV. Oncogenes and proto-oncogenes: General concepts. In: Benz C, Liu E, eds. Oncogenes: Kluwer Academic Publishers, 1989: 3–24.

    Google Scholar 

  32. Alitalo K, Schwab M. Oncogene amplification in tumor cells. [Review]. Adv Cancer Res 1986; 47: 235–81.

    PubMed  CAS  Google Scholar 

  33. Bishop JM. Molecular themes in oncogenesis. [Review]. Cell 1991; 64: 235–48.

    PubMed  CAS  Google Scholar 

  34. Bishop JM. Cellular oncogenes and retroviruses. [Review]. Annu Rev Biochem 1983; 52: 301–54.

    PubMed  CAS  Google Scholar 

  35. Doolittle RF, Hunkapiller MW, Hood LE, et al. Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 1983; 221: 275–7.

    PubMed  CAS  Google Scholar 

  36. Keating MT, Williams LT. Autocrine stimulation of intracellular PDGF receptors in v-sis-transformed cells. Science 1988; 239: 914–6.

    PubMed  CAS  Google Scholar 

  37. Cavalieri F, Goldfarb M. Growth factor-deprived BALB/c 3T3 murine fibroblasts can enter the S phase after induction of c-myc gene expression. Mol Cell Biol 1987; 7: 3554–60.

    PubMed  CAS  Google Scholar 

  38. Zhan X, Goldfarb M. Growth factor requirements of oncogene-transformed NIH 3T3 and BALB/c 3T3 cells cultured in defined media. Mol Cell Biol 1986; 6: 3541–4.

    PubMed  CAS  Google Scholar 

  39. Fantl WJ, Escobedo JA, Martin GA, et al. Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 1992; 69: 413–23.

    PubMed  CAS  Google Scholar 

  40. Nusse R, van Ooyen A, Cox D, Fung YK, Varmus H. Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature 1984; 307: 131–6.

    PubMed  CAS  Google Scholar 

  41. van Ooyen A, Nusse R. Structure and nucleotide sequence of the putative mammary oncogene int-1; proviral insertions leave the protein-encoding domain intact. Cell 1984; 39: 233–40.

    PubMed  Google Scholar 

  42. Hing HK, Sun X, Artavanis-Tsakonas S. Modulation of wingless signaling by Notch in Drosophila. Mech Dev 1994; 47: 261–8.

    PubMed  CAS  Google Scholar 

  43. Siegfried E, Wilder EL, Perrimon N. Components of wingless signalling in Drosophila. Nature 1994; 367: 76–80.

    PubMed  CAS  Google Scholar 

  44. Papkoff J, Schryver B. Secreted int-1 protein is associated with the cell surface. Mol Cell Biol 1990; 10: 2723–30.

    PubMed  CAS  Google Scholar 

  45. Bradley RS, Brown AM. The proto-oncogene int-1 encodes a secreted protein associated with the extracellular matrix. EMBO J 1990; 9: 1569–75.

    PubMed  CAS  Google Scholar 

  46. Hinck L, Nathke IS, Papkoff J, Nelson WJ. Beta-catenin: a common target for the regulation of cell adhesion by Wnt-1 and Src signaling pathways. [Review]. Trends Biochem Sci 1994; 19: 538–42.

    PubMed  CAS  Google Scholar 

  47. Dickinson ME, Krumlauf R, McMahon AP. Evidence for a mito-genic effect of Wnt-1 in the developing mammalian central nervous system. Development 1994; 120: 1453–71.

    PubMed  CAS  Google Scholar 

  48. Burrus LW. Wnt-1 as a short-range signaling molecule. [Review]. Bioessays 1994; 16: 155–7.

    PubMed  CAS  Google Scholar 

  49. Hinck L, Nelson WJ, Papkoff J. Wnt-1 modulates cell-cell adhesion in mammalian cells by stabilizing beta-catenin binding to the cell adhesion protein cadherin. J Cell Biol 1994; 124: 729–41.

    PubMed  CAS  Google Scholar 

  50. Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell 1993; 4: 1267–75.

    PubMed  CAS  Google Scholar 

  51. Parkin NT, Kitajewski J, Varmus HE. Activity of Wnt-1 as a trans-membrane protein. Genes Dev 1993; 7: 2181–93.

    PubMed  CAS  Google Scholar 

  52. Wellstein A, Lupu R, Zugmaier G, et al. Autocrine growth stimulation by secreted Kaposi fibroblast growth factor but not by endogenous basic fibroblast growth factor. Cell Growth Differ 1990; 1: 63–71.

    PubMed  CAS  Google Scholar 

  53. Delli Bovi P, Curatola AM, Kern FG, Greco A, Ittmann M, Basilico C. An oncogene isolated by transfection of Kaposi’s sarcoma DNA encodes a growth factor that is a member of the FGF family. Cell 1987; 50: 729–37.

    PubMed  CAS  Google Scholar 

  54. Taira M, Yoshida T, Miyagawa K, Sakamoto H, Terada M, Sugimura T. cDNA sequence of human transforming gene hst and identification of the coding sequence required for transforming activity. Proc Natl Acad Sci USA 1987; 84: 2980–4.

    PubMed  CAS  Google Scholar 

  55. Peters G, Brookes S, Smith R, Placzek M, Dickson C. The mouse homolog of the hst/k-FGF gene is adjacent to int-2 and is activated by proviral insertion in some virally induced mammary tumors. Proc Natl Acad Sci USA 1989; 86: 5678–82.

    PubMed  CAS  Google Scholar 

  56. Sakamoto H, Mori M, Taira M, et al. Transforming gene from human stomach cancers and a noncancerous portion of stomach mucosa. Proc Natl Acad Sci USA 1986; 83: 3997–4001.

    PubMed  CAS  Google Scholar 

  57. Mansour SL, Martin GR. Four classes of mRNA are expressed from the mouse int-2 gene, a member of the FGF gene family. EMBO J 1988; 7: 2035–41.

    PubMed  CAS  Google Scholar 

  58. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984; 307: 521–7.

    PubMed  CAS  Google Scholar 

  59. Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984; 312: 513–6.

    PubMed  CAS  Google Scholar 

  60. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encodes an epidermal growth factor receptor-related protein. Nature 1986; 319: 226–30.

    PubMed  CAS  Google Scholar 

  61. Schechter AL, Hung MC, Vaidyanathan L, et al. The neu gene: an erbB-homologous gene distinct from and unlinked to the gene encoding the EGF receptor. Science 1985; 229: 976–8.

    PubMed  CAS  Google Scholar 

  62. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–82.

    PubMed  CAS  Google Scholar 

  63. Borg A, Baldetorp B, Ferno M, Killander D, Olsson H, Sigurdsson H. ERBB2 amplification in breast cancer with a high rate of proliferation. Oncogene 1991; 6: 137–43.

    PubMed  CAS  Google Scholar 

  64. Kallioniemi OP, Kallioniemi A, Kurisu W, et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA 1992; 89: 5321–5.

    PubMed  CAS  Google Scholar 

  65. Walker RA, Varley JM. The molecular pathology of human breast cancer. [Review]. Cancer Sury 1993; 16: 31–57.

    CAS  Google Scholar 

  66. Holmes WE, Sliwkowski MX, Akita RW, et al. Identification of heregulin, a specific activator of p185erbB2. Science 1992; 256: 1205–10.

    PubMed  CAS  Google Scholar 

  67. Peles E, Yarden Y. Neu and its ligands: from an oncogene to neural factors. [Review]. Bioessays 1993; 15: 815–24.

    PubMed  CAS  Google Scholar 

  68. Plowman GD, Green JM, Culouscou JM, Carlton GW, Rothwell VM, Buckley S. Heregulin induces tyrosine phosphorylation of HER4/p180erbB4. Nature 1993; 366: 473–5.

    PubMed  CAS  Google Scholar 

  69. Rettenmier CW, Roussel MF, Quinn CO, Kitchingman GR, Look AT, Sherr CJ. Transmembrane orientation of glycoproteins encoded by the v-fms oncogene. Cell 1985; 40: 971–81.

    PubMed  CAS  Google Scholar 

  70. Sacca R, Stanley ER, Sherr CJ, Rettenmier CW. Specific binding of the mononuclear phagocyte colony-stimulating factor CSF-1 to the product of the v-fms oncogene. Proc Natl Acad Sci USA 1986; 83: 3331–5.

    PubMed  CAS  Google Scholar 

  71. Wheeler EF, Rettenmier CW, Look AT, Sherr CJ. The v-fms oncogene induces factor independence and tumorigenicity in CSF-1 dependent macrophage cell line. Nature 1986; 324: 377–80.

    PubMed  CAS  Google Scholar 

  72. Roussel MF, Dull TJ, Rettenmier CW, Ralph P, Ullrich A, Sherr CJ. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature 1987; 325: 549–52.

    PubMed  CAS  Google Scholar 

  73. Sherr CJ. The fms oncogene. [Review]. Biochim Biophys Acta 1988; 948: 225–43.

    PubMed  CAS  Google Scholar 

  74. Copeland NG, Gilbert DJ, Cho BC, et al. Mast cell growth factor maps near the steel locus on mouse chromosome 10 and is deleted in a number of steel alleles. Cell 1990; 63: 175–83.

    PubMed  CAS  Google Scholar 

  75. Anderson DM, Lyman SD, Baird A, et al. Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms [published erratum appears in Cell 1990 Nov 30;63(5):following 1112]. Cell 1990; 63: 235–43.

    PubMed  CAS  Google Scholar 

  76. Huang E, Nocka K, Beier DR, et al. The hematopoietic growth factor KL is encoded by the S1 locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 1990; 63: 225–33.

    PubMed  CAS  Google Scholar 

  77. Matsui Y, Zsebo KM, Hogan BL. Embryonic expression of a haematopoietic growth factor encoded by the SI locus and the ligand for c-kit. Nature 1990; 347: 667–9.

    PubMed  CAS  Google Scholar 

  78. Flanagan JG, Leder P. The kit ligand: a cell surface molecule altered in steel mutant fibroblasts. Cell 1990; 63: 185–94.

    PubMed  CAS  Google Scholar 

  79. Parker RC, Varmus HE, Bishop JM. Cellular homologue (c-src) of the transforming gene of Rous sarcoma virus: isolation, mapping, and transcriptional analysis of c-src and flanking regions. Proc Natl Acad Sci USA 1981; 78: 5842–6.

    PubMed  CAS  Google Scholar 

  80. Cohen GB, Ren R, Baltimore D. Modular binding domains in signal transduction proteins. [Review]. Cell 1995; 80: 237–48.

    PubMed  CAS  Google Scholar 

  81. Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G. Structural organization of the bcr gene and its role in the Ph’ translocation. Nature 1985; 315: 758–61.

    PubMed  CAS  Google Scholar 

  82. Shtivelman E, Lifshitz B, Gale RP, Roe BA, Canaani E. Alternative splicing of RNAs transcribed from the human abl gene and from the bcr-abl fused gene. Cell 1986; 47: 277–84.

    PubMed  CAS  Google Scholar 

  83. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 1986; 233: 212–4.

    PubMed  CAS  Google Scholar 

  84. Collins S, Coleman H, Groudine M. Expression of bcr and bcr-abl fusion transcripts in normal and leukemic cells. Mol Cell Biol 1987; 7: 2870–6.

    PubMed  CAS  Google Scholar 

  85. McLaughlin J, Chianese E, Witte ON. In vitro transformation of immature hematopoietic cells by the P210 BCR/ABL oncogene product of the Philadelphia chromosome. Proc Natl Acad Sci USA 1987; 84: 6558–62.

    PubMed  CAS  Google Scholar 

  86. Hariharan IK, Adams JM. cDNA sequence for human bcr, the gene that translocates to the abl oncogene in chronic myeloid leukaemia. EMBO J 1987; 6: 115–9.

    PubMed  CAS  Google Scholar 

  87. Fainstein E, Marcelle C, Rosner A, et al. A new fused transcript in Philadelphia chromosome positive acute lymphocytic leukaemia. Nature 1987; 330: 386–8.

    PubMed  CAS  Google Scholar 

  88. Chan LC, Karhi KK, Rayter SI, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987; 325: 635–7.

    PubMed  CAS  Google Scholar 

  89. Kurzrock R, Shtalrid M, Romero P, et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukaemia. Nature 1987; 325: 631–5.

    PubMed  CAS  Google Scholar 

  90. Clark SS, McLaughlin J, Crist WM, Champlin R, Witte ON. Unique forms of the abl tyrosine kinase distinguish Phi-positive CML from Phl-positive ALL. Science 1987; 235: 85–8.

    PubMed  CAS  Google Scholar 

  91. Walker LC, Ganesan TS, Dhut S, et al. Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature 1987; 329: 851–3.

    PubMed  CAS  Google Scholar 

  92. Naldini L, Stacchini A, Cirillo DM, Aglietta M, Gavosto F, Comoglio PM. Phosphotyrosine antibodies identify the p210c-abl tyrosine kinase and proteins phosphorylated on tyrosine in human chronic myelogenous leukemia cells. Mol Cell Biol 1986; 6: 1803–11.

    PubMed  CAS  Google Scholar 

  93. Clark SS, McLaughlin J, Timmons M, et al. Expression of a distinctive BCR-ABL oncogene in Phl-positive acute lymphocytic leukemia (ALL). Science 1988; 239: 775–7.

    PubMed  CAS  Google Scholar 

  94. Timmons MS, Witte ON. Structural characterization of the BCR gene product. Oncogene 1989; 4: 559–67.

    PubMed  CAS  Google Scholar 

  95. Elefanty AG, Hariharan IK, Cory S. bcr-abl, the hallmark of chronic myeloid leukaemia in man, induces multiple haemopoietic neoplasms in mice. Embo J 1990; 9: 1069–78.

    PubMed  CAS  Google Scholar 

  96. Afar DE, Goga A, McLaughlin J, Witte ON, Sawyers CL. Differential complementation of Bcr-Abl point mutants with c-Myc. Science 1994; 264: 424–6.

    PubMed  CAS  Google Scholar 

  97. Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993; 75: 175–85.

    PubMed  CAS  Google Scholar 

  98. Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M. Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 1982; 300: 762–5.

    PubMed  CAS  Google Scholar 

  99. Taparowsky E, Shimizu K, Goldfarb M, Wigler M. Structure and activation of the human N-ras gene. Cell 1983; 34: 581–6.

    PubMed  CAS  Google Scholar 

  100. Fasano O, Taparowsky E, Fiddes J, Wigler M, Goldfarb M. Sequence and structure of the coding region of the human H-ras-1 gene from T24 bladder carcinoma cells. J Mol Appl Genet 1983; 2: 173–80.

    PubMed  CAS  Google Scholar 

  101. Der CJ. The ras family of oncogenes. [Review]. Cancer Treat Res 1989; 47: 73–119.

    PubMed  CAS  Google Scholar 

  102. Casey PJ, Solski PA, Der CJ, Buss JE. p2lras is modified by a farnesyl isoprenoid. Proc Natl Acad Sci USA 1989; 86: 8323–7.

    PubMed  CAS  Google Scholar 

  103. Buss JE, Solski PA, Schaeffer JP, MacDonald MJ, Der CJ. Activation of the cellular proto-oncogene product p21 Ras by addition of a myristylation signal. Science 1989; 243: 1600–3.

    PubMed  CAS  Google Scholar 

  104. Finkel T, Der CJ, Cooper GM. Activation of ras genes in human tumors does not affect localization, modification, or nucleotide binding properties of p21. Cell 1984; 37: 151–8.

    PubMed  CAS  Google Scholar 

  105. Der CJ, Finkel T, Cooper GM. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 1986; 44: 167–76.

    PubMed  CAS  Google Scholar 

  106. Bos JL, Fearon ER, Hamilton SR, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327: 293–7.

    PubMed  CAS  Google Scholar 

  107. Maruta H, Burgess AW. Regulation of the Ras signalling network. [Review]. Bioessays 1994; 16: 489–96.

    PubMed  CAS  Google Scholar 

  108. Schlaepfer DD, Hanks SK, Hunter T, van der Geer P. Integrinmediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase. Nature 1994; 372: 786–91.

    PubMed  CAS  Google Scholar 

  109. Chardin P, Camonis JH, Gale NW, et al. Human Sos 1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science 1993; 260: 1338–43.

    PubMed  CAS  Google Scholar 

  110. Skolnik EY, Batzer A, Li N, et al. The function of GRB2 in linking the insulin receptor to Ras signaling pathways. Science 1993; 260: 1953–5.

    PubMed  CAS  Google Scholar 

  111. Buday L, Downward J. Epidermal growth factor regulates p2l ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell 1993; 73: 611–20.

    CAS  Google Scholar 

  112. Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D. The

    Google Scholar 

  113. SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator Sosl. Nature 1993; 363: 83–5.

    Google Scholar 

  114. Olivier JP, Raabe T, Henkemeyer M, et al. A Drosophila SH2-

    Google Scholar 

  115. SH3 adaptor protein implicated in coupling the sevenless tyrosine kinase to an activator of Ras guanine nucleotide exchange, Sos. Cell 1993; 73: 179–91.

    Google Scholar 

  116. Baltensperger K, Kozma LM, Cherniack AD, et al. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes. Science 1993; 260: 1950–2.

    PubMed  CAS  Google Scholar 

  117. Karlovich CA, Bonfini L, McCollam L, et al. In vivo functional analysis of the Ras exchange factor son of sevenless. Science 1995; 268: 576–9.

    PubMed  CAS  Google Scholar 

  118. Avruch J, Zhang XF, Kyriakis JM. Raf meets Ras: completing the framework of a signal transduction pathway. [Review]. Trends Biochem Sci 1994; 19: 279–83.

    PubMed  CAS  Google Scholar 

  119. Vogelstein B, Fearon ER, Hamilton SR, et al. Genetic alterations during colorectal-tumor development. N Engl J Med 1988; 319: 525–32.

    PubMed  CAS  Google Scholar 

  120. Sutrave P, Bonner TI, Rapp UR, Jansen HW, Patschinsky T, Bister K. Nucleotide sequence of avian retroviral oncogene v-mil: homologue of murine retroviral oncogene v-raf. Nature 1984; 309: 85–8.

    PubMed  CAS  Google Scholar 

  121. Klinken SP, Alexander WS, Adams JM. Hemopoietic lineage switch: v-raf oncogene converts Emu-myc transgenic B cells into macrophages. Cell 1988; 53: 857–67.

    PubMed  CAS  Google Scholar 

  122. Magnuson NS, Beck T, Vahidi H, Hahn H, Smola U, Rapp UR. The Raf-1 serine/threonine protein kinase. [Review]. Semin Cancer Biol 1994; 5: 247–53.

    PubMed  CAS  Google Scholar 

  123. Fabian JR, Vojtek AB, Cooper JA, Morrison DK. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc Natl Acad Sci USA 1994; 91: 5982–6.

    PubMed  CAS  Google Scholar 

  124. Pumiglia K, Chow YH, Fabian J, Morrison D, Decker S, Jove R. Raf-1 N-terminal sequences necessary for Ras-Raf interaction and signal transduction. Mol Cell Biol 1995; 15: 398–406.

    PubMed  CAS  Google Scholar 

  125. Koide H, Satoh T, Nakafuku M, Kaziro Y. GTP-dependent association of Raf-1 with Ha-Ras: identification of Raf as a target downstream of Ras in mammalian cells. Proc Natl Acad Sci USA 1993; 90: 8683–6.

    PubMed  CAS  Google Scholar 

  126. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 1994; 369: 411–4.

    PubMed  CAS  Google Scholar 

  127. Stokoe D, Macdonald SG, Cadwallader K, Symons M, Hancock JF. Activation of Raf as a result of recruitment to the plasma membrane [see comments] [published erratum appears in Science 1994 Dec 16;266(5192):1792–3]. Science 1994; 264: 1463–7.

    Google Scholar 

  128. Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. Science 1993; 260: 1658–61.

    PubMed  CAS  Google Scholar 

  129. Howe LR, Leevers SJ, Gomez N, Nakielny S, Cohen P, Marshall CJ. Activation of the MAP kinase pathway by the protein kinase raf. Cell 1992; 71: 335–42.

    PubMed  CAS  Google Scholar 

  130. Kyriakis JM, App H, Zhang XF, et al. Raf-1 activates MAP kinase-kinase. Nature 1992; 358: 417–21.

    PubMed  CAS  Google Scholar 

  131. Mansour SJ, Matten WT, Hermann AS, et al. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 1994; 265: 966–70.

    PubMed  CAS  Google Scholar 

  132. Ruderman JV. MAP kinase and the activation of quiescent cells. [Review]. Curr Opin Cell Biol 1993; 5: 207–13.

    PubMed  CAS  Google Scholar 

  133. Bold RJ, Donoghue DJ. Biologically active mutants with deletions in the v-mos oncogene assayed with retroviral vectors. Mol Cell Biol 1985; 5: 3131–8.

    PubMed  CAS  Google Scholar 

  134. Bold RJ, Hannink M, Donoghue DJ. Functions of the mos oncogene family and associated gene products. Cancer Sury 1986; 5: 243–55.

    CAS  Google Scholar 

  135. Freeman RS, Kanki JP, Ballantyne SM, Pickham KM, Donoghue DJ. Effects of the v-mos oncogene on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos. J Cell Biol 1990; 111: 533–41.

    PubMed  CAS  Google Scholar 

  136. Yew N, Mellini ML, Vande Woude GF. Meiotic initiation by the mos protein in Xenopus. Nature 1992; 355: 649–52.

    PubMed  CAS  Google Scholar 

  137. Daar I, Paules RS, Vande Woude GF. A characterization of cytostatic factor activity from Xenopus eggs and c-mos-transformed cells. J Cell Biol 1991; 114: 329–35.

    PubMed  CAS  Google Scholar 

  138. Zhou RP, Oskarsson M, Paules RS, Schulz N, Cleveland D, Vande Woude GF. Ability of the c-mos product to associate with and phosphorylate tubulin. Science 1991; 251: 671–5.

    PubMed  CAS  Google Scholar 

  139. Yew N, Oskarsson M, Daar I, Blair DG, Vande Woude GF. mos gene transforming efficiencies correlate with oocyte maturation and cytostatic factor activities. Mol Cell Biol 1991; 11: 604–10.

    PubMed  CAS  Google Scholar 

  140. Fukasawa K, Vande Woude GF. Mos overexpression in Swiss 3T3 cells induces meiotic-like alterations of the mitotic spindle. Proc Natl Acad Sci USA 1995; 92: 3430–4.

    PubMed  CAS  Google Scholar 

  141. Wang XM, Yew N, Peloquin JG, Vande Woude GF, Borisy GG. Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression. Proc Natl Acad Sci USA 1994; 91: 8329–33.

    PubMed  CAS  Google Scholar 

  142. Yew N, Strobel M, Vande Woude GF. Mos and the cell cycle: the molecular basis of the transformed phenotype. [Review]. Curr Opin Genet Dev 1993; 3: 19–25.

    PubMed  CAS  Google Scholar 

  143. Brechot C. Oncogenic activation of cyclin A. [Review]. Curr Opin Genet Dev 1993; 3: 11–8.

    PubMed  CAS  Google Scholar 

  144. Henglein B, Chenivesse X, Wang J, Eick D, Brechot C. Structure and cell cycle-regulated transcription of the human cyclin A gene. Proc Natl Acad Sci USA 1994; 91: 5490–4.

    PubMed  CAS  Google Scholar 

  145. Wang J, Zindy F, Chenivesse X, Lamas E, Henglein B, Brechot C. Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene 1992; 7: 1653–6.

    PubMed  CAS  Google Scholar 

  146. Rosenberg CL, Motokura T, Kronenberg HM, Arnold A. Coding sequence of the overexpressed transcript of the putative oncogene PRAD1/cyclin D1 in two primary human tumors. Oncogene 1993; 8: 519–21.

    PubMed  CAS  Google Scholar 

  147. Motokura T, Arnold A. Cyclin D and oncogenesis. [Review]. Curr Opin Genet Dev 1993; 3: 5–10.

    PubMed  CAS  Google Scholar 

  148. Bosch F, Jares P, Campo E, et al. PRAD-1/cyclin DI gene overexpression in chronic lymphoproliferative disorders: a highly specific marker of mantle cell lymphoma. Blood 1994; 84: 2726–32.

    PubMed  CAS  Google Scholar 

  149. de Boer CJ, Loyson S, Kluin PM, Kluin-Nelemans HC, Schuuring E, van Krieken JH. Multiple breakpoints within the BCL-1 locus in B-cell lymphoma: rearrangements of the cyclin D1 gene. Cancer Res 1993; 53: 4148–52.

    PubMed  Google Scholar 

  150. Wotherspoon AC, Pan LX, Diss TC, Isaacson PG. A genotypic study of low grade B-cell lymphomas, including lymphomas of mucosa associated lymphoid tissue (MALT). J Pathol 1990; 162: 135–40.

    PubMed  CAS  Google Scholar 

  151. Ince C, Blick M, Lee M, et al. Bd-1 gene rearrangements in B cell lymphoma. Leukemia 1988; 2: 343–6.

    PubMed  CAS  Google Scholar 

  152. Tsujimoto Y, Jaffe E, Cossman J, Gorham J, Nowell PC, Croce CM. Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation. Nature 1985; 315: 340–3.

    PubMed  CAS  Google Scholar 

  153. Erikson J, Finan J, Tsujimoto Y, Nowell PC, Croce CM. The chromosome 14 breakpoint in neoplastic B cells with the t(11;14) translocation involves the immunoglobulin heavy chain locus. Proc Natl Acad Sci USA 1984; 81: 4144–8.

    PubMed  CAS  Google Scholar 

  154. Withers DA, Harvey RC, Faust JB, Melnyk O, Carey K, Meeker TC. Characterization of a candidate bd-1 gene. Mol Cell Biol 1991; 11: 4846–53.

    PubMed  CAS  Google Scholar 

  155. Leach FS, Elledge SJ, Sherr CJ, et al. Amplification of cyclin genes in colorectal carcinomas. Cancer Res 1993; 53: 1986–9.

    PubMed  CAS  Google Scholar 

  156. Marshall CJ. Tumor suppressor genes. [Review]. Cell 1991; 64: 313–26.

    PubMed  CAS  Google Scholar 

  157. Levine AJ, Momand J. Tumor suppressor genes: the p53 and retinoblastoma sensitivity genes and gene products. [Review]. Biochim Biophys Acta 1990; 1032: 119–36.

    PubMed  CAS  Google Scholar 

  158. Nevins JR. E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 1992; 258: 424–9.

    PubMed  CAS  Google Scholar 

  159. Levine AJ. Tumor suppressor genes. [Review]. Bioessays 1990; 12: 60–6.

    PubMed  CAS  Google Scholar 

  160. Haber DA, Park S, Maheswaran S, et al. WT1-mediated growth suppression of Wilms tumor cells expressing a WT1 splicing variant. Science 1993; 262: 2057–9.

    PubMed  CAS  Google Scholar 

  161. Coppes MJ, Campbell CE, Williams BR. The role of WT1 in Wilms tumorigenesis. [Review]. FASEB J 1993; 7: 886–95.

    PubMed  CAS  Google Scholar 

  162. Varanasi R, Bardeesy N, Ghahremani M, et al. Fine structure analysis of the WT1 gene in sporadic Wilms tumors. Proc Natl Acad Sci USA 1994; 91: 3554–8.

    PubMed  CAS  Google Scholar 

  163. Pelletier J, Bruening W, Kashtan CE, et al. Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal uro-genital development in Denys-Drash syndrome. Cell 1991; 67: 437–47.

    PubMed  CAS  Google Scholar 

  164. Haber DA, Buckler AJ, Glaser T, et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms’ tumor. Cell 1990; 61: 1257–69.

    PubMed  CAS  Google Scholar 

  165. Madden SL, Cook DM, Morris JF, Gashler A, Sukhatme VP, Rauscher F, III. Transcriptional repression mediated by the WT1 Wilms tumor gene product. Science 1991; 253: 1550–3.

    PubMed  CAS  Google Scholar 

  166. Gessler M, Konig A, Arden K, et al. Infrequent mutation of the WT1 gene in 77 Wilms’ Tumors. Hum Mutat 1994; 3: 212–22.

    PubMed  CAS  Google Scholar 

  167. Brown KW, Wilmore HP, Watson JE, Mott MG, Berry PJ, Maitland NJ. Low frequency of mutations in the WT1 coding region in Wilms’ tumor. Genes Chromosom Cancer 1993; 8: 74–9.

    PubMed  CAS  Google Scholar 

  168. Haber DA, Housman DE. Role of the WT1 gene in Wilms’ tumour. [Review]. Cancer Sury 1992; 12: 105–17.

    CAS  Google Scholar 

  169. Huff V, Saunders GF. Wilms tumor genes. [Review]. Biochim Biophys Acta 1993; 1155: 295–306.

    PubMed  CAS  Google Scholar 

  170. Hastie ND. Wilms’ tumour gene and function. [Review]. Curr Opin Genet Dev 1993; 3: 408–13.

    PubMed  CAS  Google Scholar 

  171. Finlay CA, Hinds PW, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–93.

    PubMed  CAS  Google Scholar 

  172. Hinds P, Finlay C, Levine AJ. Mutation is required to activate the p53 gene for cooperation with the ras oncogene and transformation. J Virol 1989; 63: 739–46.

    PubMed  CAS  Google Scholar 

  173. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. [Review]. Cell 1990; 61: 759–67.

    PubMed  CAS  Google Scholar 

  174. Modrich P. Mismatch repair, genetic stability, and cancer. [Review]. Science 1994; 266: 1959–60.

    PubMed  CAS  Google Scholar 

  175. Merlo A, Mabry M, Gabrielson E, Vollmer R, Baylin SB, Sidransky D. Frequent microsatellite instability in primary small cell lung cancer. Cancer Res 1994; 54: 2098–101.

    PubMed  CAS  Google Scholar 

  176. Horii A, Han HJ, Shimada M, et al. Frequent replication errors at microsatellite loci in tumors of patients with multiple primary cancers. Cancer Res 1994; 54: 3373–5.

    PubMed  CAS  Google Scholar 

  177. Jiricny J. Colon cancer and DNA repair: have mismatches met their match?. [Review]. Trends Genet 1994; 10: 164–8.

    PubMed  CAS  Google Scholar 

  178. Orth K, Hung J, Gazdar A, Bowcock A, Mathis JM, Sambrook J. Genetic instability in human ovarian cancer cell lines. Proc Natl Acad Sci USA 1994; 91: 9495–9.

    PubMed  CAS  Google Scholar 

  179. Fong KM, Zimmerman PV, Smith PJ. Microsatellite instability and other molecular abnormalities in non-small cell lung cancer. Cancer Res 1995; 55: 28–30.

    PubMed  CAS  Google Scholar 

  180. Parsons R, Li GM, Longley MJ, et al. Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 1993; 75: 1227–36.

    PubMed  CAS  Google Scholar 

  181. Tautz D, Schlotterer. Simple sequences. [Review]. Curr Opin Genet Dev 1994; 4:832–7.

    Google Scholar 

  182. Liu B, Nicolaides NC, Markowitz S, et al. Mismatch repair gene defects in sporadic colorectal cancers with microsatellite instability. Nat Genet 1995; 9: 48–55.

    PubMed  CAS  Google Scholar 

  183. Nystrom-Lahti M, Parsons R, Sistonen P, et al. Mismatch repair genes on chromosomes 2p and 3p account for a major share of hereditary nonpolyposis colorectal cancer families evaluable by linkage. Am J Hum Genet 1994; 55: 659–65.

    PubMed  CAS  Google Scholar 

  184. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 1994; 368: 258–61.

    PubMed  CAS  Google Scholar 

  185. Hemminki A, Peltomaki P, Mecklin JP, et al. Loss of the wild type MLH1 gene is a feature of hereditary nonpolyposis colorectal cancer. Nat Genet 1994; 8: 405–10.

    PubMed  CAS  Google Scholar 

  186. Kolodner RD, Hall NR, Lipford J, et al. Structure of the human MLH1 locus and analysis of a large hereditary nonpolyposis colorectal carcinoma kindred for mlhl mutations. Cancer Res 1995; 55: 242–8.

    PubMed  CAS  Google Scholar 

  187. Nicolaides NC, Papadopoulos N, Liu B, et al. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 1994; 371: 75–80.

    PubMed  CAS  Google Scholar 

  188. Liu B, Parsons RE, Hamilton SR, et al. hMSH2 mutations in hereditary nonpolyposis colorectal cancer kindreds. Cancer Res 1994; 54: 4590–4.

    PubMed  CAS  Google Scholar 

  189. Papadopoulos N, Nicolaides NC, Wei YF, et al. Mutation of a mutL homolog in hereditary colon cancer [see comments]. Science 1994; 263: 1625–9.

    PubMed  CAS  Google Scholar 

  190. Leach FS, Nicolaides NC, Papadopoulos N, et al. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 1993; 75: 1215–25.

    PubMed  CAS  Google Scholar 

  191. Vogelstein B, Fearon ER, Kern SE, et al. Allelotype of colorectal carcinomas. Science 1989; 244: 207–11.

    PubMed  CAS  Google Scholar 

  192. Fearon ER, Hamilton SR, Vogelstein B. Clonal analysis of human colorectal tumors. Science 1987; 238: 193–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dang, C.V., Lee, L.A. (1995). Retroviruses, Cancer Genes, and Tumor Suppressor Genes. In: c-Myc Function in Neoplasia. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22681-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22681-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22683-4

  • Online ISBN: 978-3-662-22681-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics