Advertisement

Lateral Line Research: the Importance of Using Natural Stimuli in Studies of Sensory Systems

  • Horst Bleckmann
  • Joachim Mogdans
  • Guido Dehnhardt
Conference paper

Abstract

The mechanosensory lateral line is a hydrodynamic receptor system which allows fishes and some aquatic amphibians to detect minute water motions generated by conspecifics, predators, or prey. The sensory units of the lateral line, the neuromasts, can occur free-standing on the surface of the skin or embedded in lateral line canals. The morphological design of the peripheral lateral line varies across species and has long been thought to represent an adaptation to the hydrodynamic conditions that prevail in the habitat of a given species. This chapter argues that in order to fully comprehend lateral line information processing it is imperative to take into account the ecology of fishes, meaning that natural stimulus and noise conditions have to be considered. In all previous studies on lateral line function sinusoidal water motions were applied to a stationary fish in a low-noise environment, a highly unnatural situation. Thus, these studies have not revealed specialized form-function relationships. However, data from our laboratory indicate that morphological and physiological spezializations of the lateral line system can be correlated when experiments are performed in which the natural situation of fishes is considered, for instance when the lateral line is tested with hydrodynamic stimuli applied under different background noise conditions.

Key words

Lateral line mechanoreception fish ecology sensory physiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci 96: 7558–7562PubMedCrossRefGoogle Scholar
  2. Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167: 347–356CrossRefGoogle Scholar
  3. Bleckmann H, Bullock TH (1989) Central nervous physiology of the lateral line system, with special reference to cartilaginous fishes. In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer, pp. 387–408CrossRefGoogle Scholar
  4. Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: Anatomy, physiology, and Behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 501–526CrossRefGoogle Scholar
  5. Bleckmann H, Münz H (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav Evol 35: 240–250PubMedCrossRefGoogle Scholar
  6. Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semi-aquatic animals. In: Rathmayer W (ed) Progress in Zoology, Vol 41. Stuttgart, Gustav Fischer, pp. 1–115Google Scholar
  7. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128CrossRefGoogle Scholar
  8. Bodznick D, Schmidt AW (1984) Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea. J Comp Neurol 225: 581–590PubMedCrossRefGoogle Scholar
  9. Boord RL, Montgomery JC (1989) Central mechanosensory lateral line centers and pathways among the elasmobranchs. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 323–340CrossRefGoogle Scholar
  10. Bullock TH, Heiligenberg W (1986) Electroreception. New York: John Wiley and Sons, pp. 1–722Google Scholar
  11. Catania KC, Kaas JH (1995) Organization of the somatosensory cortex of the star-nosed mole. J Comp Neurol 351: 549–567PubMedCrossRefGoogle Scholar
  12. Chapman B, Stryker MP, Bonhoeffer T (1996) Development of orientation preference maps in ferret primary visual cortex. J Neurosci 16: 6443–6453PubMedGoogle Scholar
  13. Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems. Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York, Springer, pp. 553–593CrossRefGoogle Scholar
  14. Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Coitus bairdi). In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 299–319CrossRefGoogle Scholar
  15. Coombs S, Janssen J, Montgomery J (1992) Functional and evolutionary implications of peripheral diversity in lateral line systems. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York, Springer, pp. 267–294CrossRefGoogle Scholar
  16. Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182: 609–626CrossRefGoogle Scholar
  17. Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394: 235–236CrossRefGoogle Scholar
  18. Delcomyn F (1997) Foundations of Neurobiology. New York: Freeman and Company, pp. 1–648Google Scholar
  19. DeYoe EA, van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends in Neurosci 11: 219–226CrossRefGoogle Scholar
  20. Dijkgraaf S (1952) Bau and Funktionen der Seitenorgane and des Ohrlabyrinths bei Fischen. Experientia 8: 205–215PubMedCrossRefGoogle Scholar
  21. Friedrich RW, Korsching SI (1998) Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb–visualized by optical imaging. Neuron 18: 737–752CrossRefGoogle Scholar
  22. Fritzsch, B (1989) Diversity and regression in the amphibian lateral line and electrosensory system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 99114Google Scholar
  23. Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203: 1193–1200PubMedGoogle Scholar
  24. Harris GG, Bergeijk WA van (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841CrossRefGoogle Scholar
  25. Heil P, Langner G, Scheich H (1992) Processing of frequency-modulated stimuli in the chick auditory cortex analogue: Evidence for topographic representations and possible mechanisms of rate and directional sensitivity. J Comp Physiol A 171: 583–600Google Scholar
  26. Heil P, Scheich H (1992) Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick. J Comp Neurol 322: 548–565PubMedCrossRefGoogle Scholar
  27. Heiligenberg W (1991) The neural basis of behavior: A neuroethological view. Annu Rev Neurosci 14: 247–267PubMedCrossRefGoogle Scholar
  28. Hensel H (1974) Cutaneous thermoreceptors. In: Autrum H, Jung R, Loewenstein WR, MacKay DM (eds) Electroreceptors and Other Specialized Receptors in Lower Vertebrates. New York, Springer, pp. 79–110Google Scholar
  29. Hildebrand JG (1995) Analysis of chemical signals by nervous systems. Proc Acad Nat Sci USA 92: 67–74CrossRefGoogle Scholar
  30. Kalmijn Al (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 187–216CrossRefGoogle Scholar
  31. Keller CH (1988) Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter. J Comp Physiol A 162: 747–757PubMedCrossRefGoogle Scholar
  32. Konishi M (1986) Centrally synthesized maps of sensory space. Trends in Neurosci 100: 163–168CrossRefGoogle Scholar
  33. Krebs JR, Davies NB (1991) Behavioural Ecology. London, Edinburgh, Boston, Blackwell scientific publications, pp. 1–482Google Scholar
  34. McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 341–364CrossRefGoogle Scholar
  35. McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47: 113–138PubMedCrossRefGoogle Scholar
  36. Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50: 261–283PubMedCrossRefGoogle Scholar
  37. Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving object. J Comp Physiol A 182: 659–676CrossRefGoogle Scholar
  38. Mogdans J, Goenechea L (1999) Responses of medullary lateral line units in the goldfish, Carassius auratus,to sinusoidal and complex wave stimuli. Zoology (in press)Google Scholar
  39. Montgomery J, Coombs S, Halstead M (1995a) Biology of the mechanosensory lateral line in fishes. Rev Fish Bioland Fisheries 5: 399–416CrossRefGoogle Scholar
  40. Montgomery JC, Coombs S, Conley RA, Bodznick D (1995b) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Auditory Neuroscience 1: 207–231Google Scholar
  41. Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963CrossRefGoogle Scholar
  42. Müller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179: 455–471CrossRefGoogle Scholar
  43. Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 285–298CrossRefGoogle Scholar
  44. Münz H, Claas B (1991) Activity of lateral line efferents in the axolotl (Ambystoma mexicanum). J Comp Physiol A 169: 461–469CrossRefGoogle Scholar
  45. Newby TC, Hart FM, Arnold RA (1970) Weight and blindness of Harbour seals. J Mammal 51: 152CrossRefGoogle Scholar
  46. Plachta D, Mogdans J, Bleckmann H (1999) The responses of midbrain lateral line units to amplitude modulated hydrodynamic stimuli. J Comp Physiol A 185: 405–417CrossRefGoogle Scholar
  47. Prechtl JC, Emde G von der, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18: 7381–7393PubMedGoogle Scholar
  48. Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 445–459CrossRefGoogle Scholar
  49. Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum Neurobiol 3: 209–222PubMedGoogle Scholar
  50. Schellart NAM, Wubbels RJ (1998) The auditory and mechanosensory lateral line system. In: Evans DH (ed) The Physiology of Fishes. New York, CRC Press, pp. 245–282Google Scholar
  51. Song J, Northcutt RG (1991) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63Google Scholar
  52. Suga N ( 1990 ) Biosonar and neural computation in bats. Sci Amer 34–41Google Scholar
  53. Vanegas H, Williams B, Essayag E (1984) Electrophysiological and behavioral aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative Neurology of the Optic Tectum. New York, Plenum Press, pp. 121–161Google Scholar
  54. Whaling CS, Solis MM, Doupe AJ, Soha JA, Marler P (1997) Acoustic and neural bases for innate recognition of song. Proc Natl Acad Sci USA 94: 12694–12698PubMedCrossRefGoogle Scholar
  55. Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101: 6982Google Scholar
  56. Wullimann MF (1998) The central nervous system. In: Evans DH (ed) The Physiology of Fishes. New York, CRC Press, pp. 245–282Google Scholar
  57. Zittlau KE, Claas B, Miinz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158: 469–477CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Horst Bleckmann
    • 1
  • Joachim Mogdans
    • 1
  • Guido Dehnhardt
    • 1
  1. 1.Institut für ZoologieUniversität BonnBonnGermany

Personalised recommendations