Skip to main content

Lateral Line Research: the Importance of Using Natural Stimuli in Studies of Sensory Systems

  • Conference paper
Ecology of Sensing

Abstract

The mechanosensory lateral line is a hydrodynamic receptor system which allows fishes and some aquatic amphibians to detect minute water motions generated by conspecifics, predators, or prey. The sensory units of the lateral line, the neuromasts, can occur free-standing on the surface of the skin or embedded in lateral line canals. The morphological design of the peripheral lateral line varies across species and has long been thought to represent an adaptation to the hydrodynamic conditions that prevail in the habitat of a given species. This chapter argues that in order to fully comprehend lateral line information processing it is imperative to take into account the ecology of fishes, meaning that natural stimulus and noise conditions have to be considered. In all previous studies on lateral line function sinusoidal water motions were applied to a stationary fish in a low-noise environment, a highly unnatural situation. Thus, these studies have not revealed specialized form-function relationships. However, data from our laboratory indicate that morphological and physiological spezializations of the lateral line system can be correlated when experiments are performed in which the natural situation of fishes is considered, for instance when the lateral line is tested with hydrodynamic stimuli applied under different background noise conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci 96: 7558–7562

    Article  PubMed  CAS  Google Scholar 

  • Bartels M, Münz H, Claas B (1990) Representation of lateral line and electrosensory systems in the midbrain of the axolotl, Ambystoma mexicanum. J Comp Physiol A 167: 347–356

    Article  Google Scholar 

  • Bleckmann H, Bullock TH (1989) Central nervous physiology of the lateral line system, with special reference to cartilaginous fishes. In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York: Springer, pp. 387–408

    Chapter  Google Scholar 

  • Bleckmann H, Tittel G, Blübaum-Gronau E (1989) The lateral line system of surface-feeding fish: Anatomy, physiology, and Behavior. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 501–526

    Chapter  Google Scholar 

  • Bleckmann H, Münz H (1990) Physiology of lateral-line mechanoreceptors in a teleost with highly branched, multiple lateral lines. Brain Behav Evol 35: 240–250

    Article  PubMed  CAS  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semi-aquatic animals. In: Rathmayer W (ed) Progress in Zoology, Vol 41. Stuttgart, Gustav Fischer, pp. 1–115

    Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol A 172: 115–128

    Article  Google Scholar 

  • Bodznick D, Schmidt AW (1984) Somatotopy within the medullary electrosensory nucleus of the little skate, Raja erinacea. J Comp Neurol 225: 581–590

    Article  PubMed  CAS  Google Scholar 

  • Boord RL, Montgomery JC (1989) Central mechanosensory lateral line centers and pathways among the elasmobranchs. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 323–340

    Chapter  Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. New York: John Wiley and Sons, pp. 1–722

    Google Scholar 

  • Catania KC, Kaas JH (1995) Organization of the somatosensory cortex of the star-nosed mole. J Comp Neurol 351: 549–567

    Article  PubMed  CAS  Google Scholar 

  • Chapman B, Stryker MP, Bonhoeffer T (1996) Development of orientation preference maps in ferret primary visual cortex. J Neurosci 16: 6443–6453

    PubMed  CAS  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems. Evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory Biology of Aquatic Animals. New York, Springer, pp. 553–593

    Chapter  Google Scholar 

  • Coombs S, Janssen J (1989) Peripheral processing by the lateral line system of the mottled sculpin (Coitus bairdi). In: Coombs S, Gömer P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 299–319

    Chapter  Google Scholar 

  • Coombs S, Janssen J, Montgomery J (1992) Functional and evolutionary implications of peripheral diversity in lateral line systems. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York, Springer, pp. 267–294

    Chapter  Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182: 609–626

    Article  Google Scholar 

  • Dehnhardt G, Mauck B, Bleckmann H (1998) Seal whiskers detect water movements. Nature 394: 235–236

    Article  CAS  Google Scholar 

  • Delcomyn F (1997) Foundations of Neurobiology. New York: Freeman and Company, pp. 1–648

    Google Scholar 

  • DeYoe EA, van Essen DC (1988) Concurrent processing streams in monkey visual cortex. Trends in Neurosci 11: 219–226

    Article  CAS  Google Scholar 

  • Dijkgraaf S (1952) Bau and Funktionen der Seitenorgane and des Ohrlabyrinths bei Fischen. Experientia 8: 205–215

    Article  PubMed  CAS  Google Scholar 

  • Friedrich RW, Korsching SI (1998) Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb–visualized by optical imaging. Neuron 18: 737–752

    Article  Google Scholar 

  • Fritzsch, B (1989) Diversity and regression in the amphibian lateral line and electrosensory system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 99114

    Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203: 1193–1200

    PubMed  CAS  Google Scholar 

  • Harris GG, Bergeijk WA van (1962) Evidence that the lateral line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34: 1831–1841

    Article  Google Scholar 

  • Heil P, Langner G, Scheich H (1992) Processing of frequency-modulated stimuli in the chick auditory cortex analogue: Evidence for topographic representations and possible mechanisms of rate and directional sensitivity. J Comp Physiol A 171: 583–600

    Google Scholar 

  • Heil P, Scheich H (1992) Spatial representation of frequency-modulated signals in the tonotopically organized auditory cortex analogue of the chick. J Comp Neurol 322: 548–565

    Article  PubMed  CAS  Google Scholar 

  • Heiligenberg W (1991) The neural basis of behavior: A neuroethological view. Annu Rev Neurosci 14: 247–267

    Article  PubMed  CAS  Google Scholar 

  • Hensel H (1974) Cutaneous thermoreceptors. In: Autrum H, Jung R, Loewenstein WR, MacKay DM (eds) Electroreceptors and Other Specialized Receptors in Lower Vertebrates. New York, Springer, pp. 79–110

    Google Scholar 

  • Hildebrand JG (1995) Analysis of chemical signals by nervous systems. Proc Acad Nat Sci USA 92: 67–74

    Article  CAS  Google Scholar 

  • Kalmijn Al (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 187–216

    Chapter  Google Scholar 

  • Keller CH (1988) Stimulus discrimination in the diencephalon of Eigenmannia: the emergence and sharpening of a sensory filter. J Comp Physiol A 162: 747–757

    Article  PubMed  CAS  Google Scholar 

  • Konishi M (1986) Centrally synthesized maps of sensory space. Trends in Neurosci 100: 163–168

    Article  Google Scholar 

  • Krebs JR, Davies NB (1991) Behavioural Ecology. London, Edinburgh, Boston, Blackwell scientific publications, pp. 1–482

    Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 341–364

    Chapter  Google Scholar 

  • McCormick CA, Hernandez DV (1996) Connections of the octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav Evol 47: 113–138

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H, Menger N (1997) Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli. Brain Behav Evol 50: 261–283

    Article  PubMed  CAS  Google Scholar 

  • Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving object. J Comp Physiol A 182: 659–676

    Article  Google Scholar 

  • Mogdans J, Goenechea L (1999) Responses of medullary lateral line units in the goldfish, Carassius auratus,to sinusoidal and complex wave stimuli. Zoology (in press)

    Google Scholar 

  • Montgomery J, Coombs S, Halstead M (1995a) Biology of the mechanosensory lateral line in fishes. Rev Fish Bioland Fisheries 5: 399–416

    Article  Google Scholar 

  • Montgomery JC, Coombs S, Conley RA, Bodznick D (1995b) Hindbrain sensory processing in lateral line, electrosensory, and auditory systems: a comparative overview of anatomical and functional similarities. Auditory Neuroscience 1: 207–231

    Google Scholar 

  • Montgomery JC, Baker CF, Carton AG (1997) The lateral line can mediate rheotaxis in fish. Nature 389: 960–963

    Article  CAS  Google Scholar 

  • Müller HM, Fleck A, Bleckmann H (1996) The responses of central octavolateralis cells to moving sources. J Comp Physiol A 179: 455–471

    Article  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 285–298

    Chapter  Google Scholar 

  • Münz H, Claas B (1991) Activity of lateral line efferents in the axolotl (Ambystoma mexicanum). J Comp Physiol A 169: 461–469

    Article  Google Scholar 

  • Newby TC, Hart FM, Arnold RA (1970) Weight and blindness of Harbour seals. J Mammal 51: 152

    Article  Google Scholar 

  • Plachta D, Mogdans J, Bleckmann H (1999) The responses of midbrain lateral line units to amplitude modulated hydrodynamic stimuli. J Comp Physiol A 185: 405–417

    Article  Google Scholar 

  • Prechtl JC, Emde G von der, Wolfart J, Karamürsel S, Akoev GN, Andrianov YN, Bullock TH (1998) Sensory processing in the pallium of a mormyrid fish. J Neurosci 18: 7381–7393

    PubMed  CAS  Google Scholar 

  • Roberts BL, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The Mechanosensory Lateral Line. Neurobiology and Evolution. New York, Springer, pp. 445–459

    Chapter  Google Scholar 

  • Rolls ET (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum Neurobiol 3: 209–222

    PubMed  CAS  Google Scholar 

  • Schellart NAM, Wubbels RJ (1998) The auditory and mechanosensory lateral line system. In: Evans DH (ed) The Physiology of Fishes. New York, CRC Press, pp. 245–282

    Google Scholar 

  • Song J, Northcutt RG (1991) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63

    Google Scholar 

  • Suga N ( 1990 ) Biosonar and neural computation in bats. Sci Amer 34–41

    Google Scholar 

  • Vanegas H, Williams B, Essayag E (1984) Electrophysiological and behavioral aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative Neurology of the Optic Tectum. New York, Plenum Press, pp. 121–161

    Google Scholar 

  • Whaling CS, Solis MM, Doupe AJ, Soha JA, Marler P (1997) Acoustic and neural bases for innate recognition of song. Proc Natl Acad Sci USA 94: 12694–12698

    Article  PubMed  CAS  Google Scholar 

  • Wojtenek W, Mogdans J, Bleckmann H (1998) The responses of midbrain lateral line units of the goldfish Carassius auratus to moving objects. Zoology 101: 6982

    Google Scholar 

  • Wullimann MF (1998) The central nervous system. In: Evans DH (ed) The Physiology of Fishes. New York, CRC Press, pp. 245–282

    Google Scholar 

  • Zittlau KE, Claas B, Miinz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158: 469–477

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bleckmann, H., Mogdans, J., Dehnhardt, G. (2001). Lateral Line Research: the Importance of Using Natural Stimuli in Studies of Sensory Systems. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics