Skip to main content

Impedance Matching in Sound Production and Hearing: a Comparative Study

  • Conference paper
Ecology of Sensing

Abstract

Sound production involves stages of impedance matching between the higher-density body of the animal and lower-density air. Hearing involves further impedance matching, from air to the higher-density sensory cells. Initial stages of sound production may include a frequency multiplier that converts slow muscle contractions into higher frequency mechanical vibrations. The frequency multiplier may also determine the sound frequency. Larger sound sources allow better impedance amtching with the air so sound radiation often exploits acoustic transformers to increase the effective size of the sound source. In many cases the conversion efficiency of muscle power to sound power is high, giving a large effective range for the signal. Sound detection often uses acoustic transformers to concentrate the sound onto relatively dense vibrating sturctures that are coupled to the sensory cells, providing the inverse of the impedance matching that occurs in sound production. These transformers may be associated with directional mechanisms and may drive arrays of receptors that allow frequency analysis. Sound production and hearing are special cases of the general phenomenon of impedance matching that occurs throughout biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander RMcN (1973) Muscle performance in locomotion and other strenuous activities. In: Bolis L, Schmidt-Nielsen K, Maddrell S H P (eds) Comparative Physiology: Locomotion, Respiration, Transport and Blood. North-Holland: Amsterdam. pp 1–21

    Google Scholar 

  • Alexander RMcN (1988) Elastic Mechanisms in Animal Movement. Cambridge University Press, Cambridge

    Google Scholar 

  • Alexander RMcN (1996) Optima for Animals. 2nd edn Princeton University Press, Princeton, NJ

    Google Scholar 

  • Autrum H (1963) Anatomy and physiology of sound sensory cells. In: Busnel R-G (ed) Acoustic Behaviour of Animals. Elsevier, Amsterdam. pp 412–433

    Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R. (1993) Dynamics of arthopod filiform hairs. II Mechanical properties of spider trichobothria (Cupiennius salei Keys.). Phil Trans R Soc Lond B. 340: 445–461

    Article  Google Scholar 

  • Békésy G von (1960) Experiments in Hearing. McGraw-Hill, New York

    Google Scholar 

  • Bennet-Clark HC (1970) The mechanism and efficiency of sound production in mole crickets. J Exp Biol 52: 619–652

    Google Scholar 

  • Bennet-Clark HC (1971) Acoustics of insect song. Nature 234: 255–259

    Article  Google Scholar 

  • Bennet-Clark HC (1987) The tuned singing burrow of mole crickets. J Exp Biol 128: 383–409

    Google Scholar 

  • Bennet-Clark HC (1989) Songs and the physics of sound production. In: Huber F, Moore TE, Loher W (eds) Cricket Behavior and Neurobiology. Cornell University Press, Ithaca, NewYork pp 227–261

    Google Scholar 

  • Bennet-Clark HC (1995) Insect sound production: transduction mechanisms and impedance matching. In: Ellington C P, Pedley T J (eds) Biological Fluid Dynamics. Company of Biologists, Cambridge. pp. 199–218

    Google Scholar 

  • Bennet-Clark HC (1997) Tymbal mechanics and the control of song frequency in the cicada Cyclochila australasiae. J Exp Biol 200: 1681–1694

    PubMed  Google Scholar 

  • Bennet-Clark HC (1998) Size and scale effects as constraints in insect sound communication. Phil Trans R Soc Lond B 353: 407–419

    Article  Google Scholar 

  • Bennet-Clark HC (1999) Resonators in insect sound production: how insects produce loud pure-tone songs. J Exp Biol (in press)

    Google Scholar 

  • Bennet-Clark HC, Daws AG (1999) Transduction of mechanical energy into sound energy in the cicada Cyclochila australasiae. J Exp Biol 202: 1803–1817

    PubMed  Google Scholar 

  • Bennet-Clark HC, Young D (1992) A model of the mechanism of sound production in cicadas. J Exp Biol 173: 123–153

    Google Scholar 

  • Bennet-Clark HC, Young D (1998) Sound radiation by the bladder cicada Cystosoma saundersii. J Exp Biol 201: 701–715

    PubMed  Google Scholar 

  • Breckow J, Sippel M (1985) Mechanics of the transduction of sound in the tympanal organ of adults and larvae of locusts. J Comp Physiol A 157: 619629

    Google Scholar 

  • Busnel R-G (1963) (ed) Acoustic Behaviour of Animals. Elsevier, Amsterdam

    Google Scholar 

  • Daws AG (1996) Resonance and frequency selectivity in insect sound communication. Ph.D. thesis, University of Melbourne

    Google Scholar 

  • Daws AG, Bennet-Clark HC, Fletcher NH (1996) The mechanism of tuning of the mole cricket singing burrow. Bioacoustics 7: 81–117

    Article  Google Scholar 

  • Doolan JM, Young D (1981) The organization of the auditory organ of the bladder cicada, Cystosoma saundersii. Phil Trans R Soc Lond B 291: 525–540

    Article  Google Scholar 

  • Duellman WE, Trueb L (1985) Biology of Amphibians. McGraw-Hill, New York

    Google Scholar 

  • Dumortier B (1963a) Morphology of sound emission apparatus in Arthropoda. In: Busnel R-G (ed) Acoustic Behaviour of Animals. Elsevier, Amsterdam. Pp 277–345

    Google Scholar 

  • Dumortier B (1963b) The physical characteristics of sound emissions in Arthropoda. In: Busnel R-G (ed) Acoustic Behaviour of Animals. Elsevier, Amsterdam. pp 346–373

    Google Scholar 

  • Elliott CJH, Koch UT (1985) The clockwork cricket. Naturwissenschaften 72: 150–153

    Article  Google Scholar 

  • Fletcher NH (1978) Acoustical response of hair sensory cells in insects. J Comp Physiol 127: 185–189

    Article  Google Scholar 

  • Fletcher NH (1992) Acoustic Systems in Biology. Oxford University Press, Oxford

    Google Scholar 

  • Göpfert MC, Briegel H, Robert D (1999) Mosquito hearing: Sound-induced antenna) vibrations in male and female Aedes aegypti. J Exp Biol. 202: 2727–2738

    PubMed  Google Scholar 

  • Gray EG (1960) The fine structure of the insect ear. Phil Trans R Soc Lond B 243: 75–94

    Article  Google Scholar 

  • Hill KG, Oldfield BP (1981) Auditory function in Tettigoniidae ( Orthoptera: Ensifera). J Comp Physiol 142: 169–180

    Google Scholar 

  • Humphrey JAC, Devarakonda R, Iglesias I, Barth FG (1993) Dynamics of arthropod filiform hairs. I Mathematical Modelling of the hair and air motions. Phil Trans R Soc Lond B. 340: 423–444

    Google Scholar 

  • Josephson RK, Young D (1981) Synchronous and asynchronous muscles in cicadas. J Exp Biol 91: 219–237

    Google Scholar 

  • Josephson RK, Young D (1985) A synchronous insect muscle with an operating frequency greater than 500Hz. J Exp Biol 118: 185–208

    Google Scholar 

  • Koch UT, Elliott CJH, Schäffner K, Kleindienst H (1988) The mechanics of stridulation in the cricket Gryllus campestris. J Comp Physiol A 162: 213–223

    Article  Google Scholar 

  • Langford-Smith F (1953) Radio Designer’s Handbook. (4th ed) Iliffe and Sons, London

    Google Scholar 

  • Leroy Y (1966) Signaux acoustiques, comportement et systématique de quelques espèces de Gryllidae (Orthoptères, Ensiferes). Bull Biol Fr Belg 100: 1–134

    Google Scholar 

  • Lewis DB (1983) Directional cues for auditory localisation. In: Lewis D B (ed) Bioacoustics: A Comparative Approach. Academic Press, London. pp. 233–257

    Google Scholar 

  • Michelsen A (1971) The physiology of the locust ear. I Frequency sensitivity of single cells in the isolated ear. Z vergl Physiol 71: 49–62

    Article  Google Scholar 

  • Michelsen A (1983) Biophysical basis of sound communication. In: Lewis B (ed) Bioacoustics: A Comparative Approach. Academic Press, London. pp 3–38

    Google Scholar 

  • Moller AR (1974) Function of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology V/1 Springer, Berlin. pp. 491–517

    Google Scholar 

  • Morse PM (1948). Vibration and Sound. McGraw-Hill, New York

    Google Scholar 

  • Nocke H (1971) Biophysik der Schallerzeugung durch die Vorderflügel der Grillen. Z vergl Physiol 74: 272–314

    Article  Google Scholar 

  • Oldfield BP (1982) Tonotopic organisation of auditory sensory cells in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147: 221–241

    Article  Google Scholar 

  • Olson HF (1957) Acoustical Engineering. Van Nostrand, Princeton

    Google Scholar 

  • Pringle JWS (1954) A physiological analysis of cicada song. J Exp Biol 32: 525–560

    Google Scholar 

  • Prozesky-Schulze L, Prozesky OPM, Anderson F, van der Merwe GJJ (1975) Use of a self-made sound baffle by a tree cricket. Nature 255: 142–143

    Article  Google Scholar 

  • Shaw EAG (1974) The external ear. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology V/1 Springer, Berlin. pp. 454–490

    Google Scholar 

  • Simmons LW, Ritchie MG (1996) Symmetry in the songs of crickets. Proc Roy Soc Lond B 263: 305–311

    Google Scholar 

  • Stephen RO, Bennet-Clark HC (1982) The anatomical and mechanical basis of stimulation and frequency analysis in the locust ear. J Exp Biol 99: 279–314

    Google Scholar 

  • Treat AE, Roeder KD (1959) A nervous element of unknown function in the tympanic organs of moths. J Insect Physiol 3: 262–270

    Article  Google Scholar 

  • Weis-Fogh T (1972) Energetics of hovering flight in hummingbirds and in Drosophila. J Exp Biol 56: 79–104

    Google Scholar 

  • Weis-Fogh T, Alexander RMcN (1977) The sustained power output obtainable from striated muscle. In: Pedley TJ (ed) Scale Effects in Animal Locomotion. Academic Press, London. pp 511–525

    Google Scholar 

  • Young D (1990) Do cicadas radiate sound through their ear drums? J Exp Biol 151: 41–56

    Google Scholar 

  • Young D, Bennet-Clark HC (1995) The role of the tymbal in cicada sound production. J Exp Biol 198: 1001–1019

    PubMed  Google Scholar 

  • Young D, Josephson RK (1983) Pure-tone songs in cicadas with special reference to the genus Magicicada. J Comp Physiol 152: 197–204

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bennet-Clark, H.C. (2001). Impedance Matching in Sound Production and Hearing: a Comparative Study. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics