Skip to main content

The Geomagnetic Field and its Role in Directional Orientation

  • Conference paper
Book cover Ecology of Sensing

Abstract

A magnetic compass has been demonstrated in vertebrates, arthropods and a nudibranch. Two different functional modes have been described: birds and marine turtles use an inclination compass based on the inclination of the field lines, while mammals, fishes and arthropods use a polarity compass based on their polarity. For amphibians, both mechanisms have been described. In birds and amphibians, magnetic compass orientation proved light-dependent, with normal responses being observed only at the short-wavelength end of the spectrum. This suggests an involvement of photopigments, which is in agreement with the hypothesis assuming magnetoreception by excited-state macromolecules. The nature of the non-light dependent primary processes of magnetoreception in turtles, mammals and arthropods are unclear; magnetite-based mechanisms are discussed. Animals use magnetic compass information in a wide variety of behaviors. Birds orient their homing flights and their migration with the help of the magnetic field, newly-hatched salmon and marine turtles use a magnetic compass to reach suitable habitats, amphibians and amphipods use it for orientation between land and water, insects for building activities. In many of these behaviors, the animals can also use celestial cues for locating directions. Ecological requirements determine how the various cues interact in a given situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arendse MC (1978) Magnetic field detection is distinct from light detection in the invertebrates Tenebrio and Talitrus. Nature 274: 358–362

    Article  Google Scholar 

  • Arendse MC, Vrins JCM (1975) Magnetic orientation and its relation to photic orientation in Tenebrio molitor L ( Coleoptera, Tenebrionidae). Neth J Zool 25: 407–437

    Article  Google Scholar 

  • Baker RR (1989) Navigation and magnetoreception by horses and other nonhuman land mammals. In: Orientation and Navigation - Birds, Humans and other Animals. Royal Institute of Navigation, Cardiff, Paper 12

    Google Scholar 

  • Beason RC, Nichols JE (1984) Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309: 151–153

    Article  Google Scholar 

  • Beason RC, Semm P (1987) Magnetic responses of the trigeminal nerve system of the Bobolink (Dolichonyx oryzivorus). Neurosci Lett 80: 229–234

    Article  PubMed  CAS  Google Scholar 

  • Beason RC, Semm P (1996) Does the avian ophthalmic nerve carry magnetic navigational information? J Exp Biol 199: 1241–1244

    PubMed  Google Scholar 

  • Beason RC, Dussourd N, Deutschlander M (1995) Behavioral evidence for the use of magnetic material in magnetoreception by a migratory bird. J Exp Biol 198: 141–146

    PubMed  Google Scholar 

  • Beason RC, Wiltschko R, Wiltschko W (1997) Pigeon homing: effects of magnetic pulses on initial orientation. Auk 114: 405–415

    Article  Google Scholar 

  • Beck W, Wiltschko W (1982) The magnetic field as reference system for the genetically encoded migratory direction in Pied Flycatchers (Ficedula hypoleuca Pallas). Z Tierpsychol 60: 41–46

    Article  Google Scholar 

  • De Jong D (1982) Orientation of comb building by honeybees. J Comp Physiol 147: 495–501

    Article  Google Scholar 

  • Deutschlander ME, Borland SC, Phillips JB (1999) Extraocular magnetic compass in newts. Nature 400: 324–325

    Article  PubMed  CAS  Google Scholar 

  • Edmonds DT (1996) A sensitive optically detected magnetic compass for animals. Proc R Soc Lond B 263: 295–298

    Article  CAS  Google Scholar 

  • Etheredge JA, Perez SM, Taylor OR, Jander R (1999) Monarch butterflies (Danaus plexippus L.) use a magnetic compass for navigation. Proc Nat Acad Sci USA 96: 13845–13846

    Article  PubMed  CAS  Google Scholar 

  • Ferguson DE (1967) Sun-compass orientation in anurans. In: Storm RM (ed) Animal Orientation and Navigation. Oregon State University Press, Corvallis, pp 21–32

    Google Scholar 

  • Goff M, Salmon M, Lohmann KJ (1998) Hatchling sea turtles use surface waves to establish a magnetic compass direction. Anim Behav 55: 69–77

    Article  PubMed  Google Scholar 

  • Groot C (1982) Modification on a theme–a perspective on migratory behavior of Pacific salmon. In: Brannon EL, Salo EO (eds) Proc Salmon Trout Migratory Behav Symp. University of Washington, Seattle, pp 1–21

    Google Scholar 

  • Helbig AJ (1991) Inheritance of migratory direction in a bird species: a crossbreeding experiment with SE- and SW-migrating Blackcaps (Sylvia atricapilla). Behav Ecol Sociobiol 28: 9–12

    Article  Google Scholar 

  • Holtkamp-Rötzler E, Fleissner G, Hanzlik M, Wiltschko W, Petersen N (1997) Mechanoreceptors in the upper beak of homing pigeons (Columba livia) as putative structural candidates for magnetoreception. Verh Dtsch Zool Ges 90: 290

    Google Scholar 

  • Jacklyn, PM (1990) Orientation in meridional mounds of Amitermes meridionalis (Froggatt) and Amitermes laurensis (Mjöberg). PhD Thesis, University of Sydney, Sydney

    Google Scholar 

  • Kirschvink JL (1989) Magnetite biomineralization and geomagnetic sensitivity in higher animals: an update and recommendations for future study. Bioelectromagnetics 10: 239–259

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Gould JL (1981) Biogenic magnetite as a basis for magnetic field detection in animals. BioSystems 13: 181–201

    Article  PubMed  CAS  Google Scholar 

  • Kirschvink JL, Jones DS, MacFadden BJ (eds) (1985) Magnetite Biominerali-zation and Magnetoreception in Organisms. Plenum Press, New York

    Google Scholar 

  • Kramer G (1959) Recent experiments on bird orientation. Ibis 101: 399–416

    Article  Google Scholar 

  • Leask MJM (1977) A physico-chemical mechanism for magnetic field detection by migratory birds and homing pigeons. Nature 267: 144–145

    Article  PubMed  CAS  Google Scholar 

  • Light P, Salmon M, Lohmann KJ (1993) Geomagnetic orientation of Loggerhead Sea Turtles: evidence for an inclination compass. J Exp Biol 182: 1–10

    Google Scholar 

  • Lohmann KJ, Lohmann CMF (1993) A light-independent magnetic compass in the Leatherback Sea Turtle. Biol Bull 185: 149–151

    Article  Google Scholar 

  • Lohmann KJ, Lohmann CMF (1994) Acquisition of magnetic directional preferences in hatchling Loggerhead Sea Turtles. J Exp Biol 190: 1–8

    PubMed  Google Scholar 

  • Lohmann KJ, Willows AOD (1987) Lunar-modulated geomagnetic orientation by a marine mollusk. Science 235: 331–334

    Article  PubMed  CAS  Google Scholar 

  • Lohmann KJ, Pentcheff ND, Nevitt GA, Stetten GD, Zimmer-Faust RK, Jarrard HE, Boles LC (1995) Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems. J Exp Biol 198: 2041–2048

    PubMed  Google Scholar 

  • Lowenstam HA (1962) Magnetite in denticle capping in recent chitons (Polyplacophora). Geol Soc Am Bull 73: 435–438

    Article  CAS  Google Scholar 

  • Maffei L, Meschini E, Papi F (1983) Pineal body and magnetic sensitivity: homing in pineal-ectomized pigeons under overcast. Z Tierpsychol 62: 151–156

    Article  Google Scholar 

  • Marhold S, Wiltschko W, Burda H (1997a): A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84: 421–423

    Article  CAS  Google Scholar 

  • Marhold S, Burda H, Kreilos I, Wiltschko W (1997b) Magnetic orientation in common mole-rats from Zambia. In: Orientation and Navigation - Birds, Humans and other Animals. Royal Institute of Navigation, Oxford, pp 51 — 59

    Google Scholar 

  • Mather JG, Baker RR (1981) Magnetic sense of direction in woodmice for route-based navigation. Nature 291: 152–155

    Article  Google Scholar 

  • Munro U, Wiltschko W (1993) Magnetic compass orientation in the yellow-faced honeyeater, Lichenostomus chrysops, a day-migrating bird from Australia. Behav Ecol Sociobiol 32: 141–145

    Article  Google Scholar 

  • Munro U, Munro JA, Phillips JB, Wiltschko W (1997) Wavelength of light and pulse magnetization affect different magnetoreception systems in a migratory bird. Austr J Zool 45: 189–198

    Article  Google Scholar 

  • Pardi L, Ugolini A, Faqi AS, Scapini F, Ercolini A (1988) Zonal recovering in equatorial sandhoppers: interaction between magnetic and solar orientation. In: Chelazzi G, Vannini M (eds) Behavioral Adaptation to Intertidal Life. Plenum Press, New York, pp 79–92

    Google Scholar 

  • Phillips JB (1986a) Two magnetoreception pathways in a migratory salamander. Science 233: 765–767

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB (1986b) Magnetic compass orientation in the Eastern Red-spotted Newt (Notophthalmus viridescens). J Comp Physiol A 158: 103–109

    Article  PubMed  CAS  Google Scholar 

  • Phillips JB, Borland SC (1992a) Magnetic compass orientation is eliminated under near-infrared light in the Eastern Red-spotted Newt Anim Behav 44: 796–797

    Google Scholar 

  • Phillips JB, Borland SC (1992b) Behavioral evidence for use of a light-dependent magnetoreception mechanism by a vertebrate. Nature 359: 142–144

    Article  Google Scholar 

  • Phillips JB, Borland SC (1994) Use of a specialized magnetoreception system for homing by the Eastern Red-spotted Newt, Notophthalmus viridescens. J Exp Biol 188: 275–291

    PubMed  Google Scholar 

  • Phillips JB, Sayeed O (1993) Wavelength-dependent effects of light on magnetic compass orientation in Drosophila melanogaster. J Comp Physiol A 172: 303–308

    Article  PubMed  CAS  Google Scholar 

  • Quinn TP (1980) Evidence for celestial and magnetic compass orientation in lake migrating Sockeye Salmon fry. J Comp Physiol 137: 243–248

    Article  Google Scholar 

  • Quinn TP, Brannon EL (1982) The use of celestial and magnetic cues by orienting Sockeye Salmon smolts. J Comp Physiol 147: 547–552

    Article  Google Scholar 

  • Quinn TP, Merrill RT, Brannon, EL (1981) Magnetic field detection in Sockeye Salmon. J Exp Zool 217: 137–142

    Article  Google Scholar 

  • Rappl R, Wiltschko R, Weindler P, Berthold P, Wiltschko W (2000) Orientation behavior of Garden Warblers, Sylvia borin, under monochromatic light of various wavelengths. Auk 117: 256–260

    Article  Google Scholar 

  • Ritz T, Adern S, Schulten K (2000) A model for vision-based magnetoreception in birds. Biophysic J 78: 707–718

    Article  CAS  Google Scholar 

  • Salmon M, Wynecken J (1994) Orientation by hatchling sea turtles: mechanisms and implications. Herpetol Nat Hist 2: 13–24

    Google Scholar 

  • Schmitt DE, Esch HE (1993) Magnetic orientation of honeybees in the laboratory. Naturwissenschaften 80: 41–43

    Article  Google Scholar 

  • Schneider T, Thalau HP, Semm P, Wiltschko W (1994) Melatonin is crucial for the migratory orientation of Pied Flycatchers (Ficedula hypoleuca Pallas). J Exp Biol 194: 255–262

    PubMed  CAS  Google Scholar 

  • Schulten K, Windemuth A (1986) Model for a physiological magnetic compass. In: Maret G, Boccara N, Kiepenheuer J (eds) Biophysical Effects of Steady Magnetic Fields. Springer, Berlin Heidelberg New York, pp 99–106

    Chapter  Google Scholar 

  • Semm P, Beason RC (1990) Responses to small magnetic variations by the trigeminal system of the Bobolink. Brain Res Bull 25: 735–740

    Article  PubMed  CAS  Google Scholar 

  • Semm P, Demaine C (1986) Neurophysiological properties of magnetic cells in the pigeon’s visual system. J Comp Physiol A 159: 619–625

    Article  PubMed  CAS  Google Scholar 

  • Semm P, Nohr D, Demaine C, Wiltschko W (1984) Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J Comp Physiol A 155: 283–288

    Article  Google Scholar 

  • Shcherbakov VP, Winklhofer M (1999) The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals. Eur Biophys J 28: 380–392

    Article  CAS  Google Scholar 

  • Skiles DD (1985) The geomagnetic field: its nature, history, and biological relevance. In: Kirschvink JL, Jones DS, MacFadden BJ (eds) Magnetite Biomineralization and Magnetoreception in Organisms. Plenum, New York, pp 43–102

    Chapter  Google Scholar 

  • Ugolini A, Pardi L (1992) Equatorial sandhoppers do not have a good clock. Naturwissenschaften 79: 279–281

    Article  Google Scholar 

  • Ugolini A, Felicioni S, Macchi T (1991) Orientation in the water and learning in Talitrus saltator Montagu. J Exp Mar Biol Ecol 151: 113–119

    Article  Google Scholar 

  • Walker MM, Diebel CE, Haugh CV, Pankhurst PM, Montgomery JC, Green CR (1997) Structure and function of the vertebrate magnetic sense. Nature 390: 371–376

    Article  PubMed  CAS  Google Scholar 

  • Wallraff HG (1974) Das Navigationssystem der Vögel. Schriftenreihe “Kybernetik”, R Oldenbourg, München Wien

    Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Ann Rev Entomol 29: 277–298

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (1978) Evidence for the use of magnetic outward-journey information in homing pigeons. Naturwissenschaften 65: 112

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (1990) Zur Entwicklung des Sonnenkompaß bei jungen Brieftauben. J Ornithol 131: 1–20

    Article  Google Scholar 

  • Wiltschko R, Wiltschko W (1995) Magnetic Orientation in Animals. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Wiltschko R, Wiltschko W (1998) Pigeon homing: effect of various wavelengths of light during displacement. Naturwissenschaften 85: 164–167

    Article  CAS  Google Scholar 

  • Wiltschko R, Wiltschko W (1999) Compass orientation as a basic element in avian orientation and navigation. In: Golledge RG (ed) Wayfinding Behavior. Johns Hopkins University Press, London Baltimore, pp 259–294

    Google Scholar 

  • Wiltschko R, Wiltschko W, Munro U (1997) Migratory orientation in birds: the effects and after-effects of exposure to conflicting celestial and magnetic cues. In: Orientation and Navigation - Birds, Humans and other Animals. Royal Institute of Navigation, Oxford, pp 61 — 614

    Google Scholar 

  • Wiltschko R, Munro U, Ford H, Wiltschko W (1999) After-effects of exposure to conflicting celestial and magnetic cues at sunset in migratory Silvereyes Zosterops 1. lateralis. J Avian Biol 30: 56–62

    Article  Google Scholar 

  • Wiltschko W (1968) Über den Einfluß statischer Magnetfelder auf die Zugorientierung der Rotkehlchen (Erithacus rubecula). Z Tierpsychol 25: 537–558

    Article  CAS  Google Scholar 

  • Wiltschko W (1978) Further analysis of the magnetic compass of migratory birds. In: Schmidt-Koenig K, Keeton WT (eds) Animal Migration, Navigation, and Homing. Springer, Berlin Heidelberg New York, pp 302–310

    Google Scholar 

  • Wiltschko W, Wiltschko R (1972) Magnetic compass of European Robins. Science 176: 62–64

    Article  PubMed  CAS  Google Scholar 

  • Wiltschko W, Wiltschko R (1981) Disorientation of inexperienced young pigeons after transportation in total darkness. Nature 291: 433–434

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1995) Migratory orientation of European Robins is affected by the wavelength of light as well as by a magnetic pulse. J Comp Physiol A 177: 363–369

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (1999) The effect of yellow and blue light on magnetic compass orientation in European Robins, Erithacus rubecula. J Comp Physiol A 184: 295–299

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R (2000): Light-dependent magnetoreception in birds: does directional information change with light intensity? Naturwissenschaften 86: 36–40

    Article  Google Scholar 

  • Wiltschko W, Wiltschko R, Keeton WT, Madden R (1983) Growing up in an altered magnetic field affects the initial orientation of young homing pigeons. Behav Ecol Sociobiol 12: 135–142

    Article  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (1993) Red light disrupts magnetic orientation of migratory birds. Nature 364: 525–527

    Article  Google Scholar 

  • Wiltschko W, Munro U, Beason RC, Ford H, Wiltschko R (1994) A magnetic pulse leads to a temporary deflection in the orientation of migratory birds. Experientia 50: 697–700

    Article  Google Scholar 

  • Wiltschko W, Munro U, Ford H, Wiltschko R (1998a) Effect of a magnetic pulse on the orientation of Silvereyes, Zosterops 1. lateralis, during spring migration. J Exp Biol 201: 3257–3261

    PubMed  Google Scholar 

  • Wiltschko W, Weindler P, Wiltschko R (1998b) Interaction of magnetic and celestial cues in the migratory orientation of passerines. J Avian Biol 29: 606–617

    Article  Google Scholar 

  • Yorke ED (1979) A possible magnetic transducer in birds. J Theor Biol 77: 101–105

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wiltschko, W., Wiltschko, R. (2001). The Geomagnetic Field and its Role in Directional Orientation. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics