Skip to main content

The Design of Compound Eyes and the Illumination of Natural Habitats

  • Conference paper
Ecology of Sensing

Abstract

Compound eyes are the most abundant eye design in the animal kingdom, and probably its most adaptable. In this chapter I describe the ways in which compound eyes have evolved in response to the intensity and direction of natural illumination. Species active in bright light generally have no need for compound eyes of high sensitivity. Instead, their eyes frequently possess acute zones, regions where spatial resolution is greatly enhanced, and where the spatial layout of ommatidia is often matched to the spatial layout of the habitat. Such matched filtering is not confined to habitat structure. Acute zones may also behave as matched filters for an animal’s motion flow-field or for localizing other animals. In dim light, sensitivity becomes the overriding priority, and at night, or in the depths of sea, compound eyes of immense sensitivity have evolved. Those from increasing depths in the sea also tend to have an increasingly dorsal bias that reflects the dominance of dorsal (down-welling) illumination. These and other aspects of compound eye design are illustrated using a broad range of aquatic and terrestrial invertebrates as examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aho A-C, Donner K, Hydén C, Larsen LO, Reuter T (1988). Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334: 348–350

    Article  PubMed  CAS  Google Scholar 

  • Barlow HB (1956) Retinal noise and absolute threshold. J Opt Soc Am 46: 634–639

    Article  PubMed  CAS  Google Scholar 

  • Brännström PA, Nilsson D-E (2000) Gradations of eye design in the superposition eyes of male mayflies. J Comp Physiol A, in press

    Google Scholar 

  • Dahmen H (1991) Eye specialisation in waterstriders: an adaptation to life in a flat world. J Comp Physiol A 169: 623–632

    Article  Google Scholar 

  • Denton EJ (1990) Light and vision at depths greater than 200 metres. In: Herring PJ, Campbell AK, Whitfield M, Maddock L (eds) Light and Life in the Sea. Cambridge University Press, Cambridge, pp 127–148

    Google Scholar 

  • Exner S (1891) Die Physiologie der facettirten Augen von Krebsen und Insecten. Franz Deuticke, Leipzig Vienna. English translation: Hardie RC ( 1988 ) The Physiology of the Compound Eyes of Insects and Crustaceans. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Franceschini N, Hardie R, Ribi W, Kirschfeld K (1981) Sexual dimorphism in a photoreceptor. Nature 291: 241–244

    Article  Google Scholar 

  • Gibson JJ (1950) The Perception of the Visual World. Houghton Mifflin, Boston

    Google Scholar 

  • Gilbert C, Strausfeld NJ (1991) The functional organization of male-specific visual neurons in flies. J Comp Physiol A 169: 395–411

    Article  PubMed  CAS  Google Scholar 

  • Gronenberg W, Strausfeld NJ (1991) Descending pathways connecting the male-specific visual system of flies to the neck and flight motor. J Comp Physiol A 169: 413–426

    Article  PubMed  CAS  Google Scholar 

  • Hardie R (1979) Electrophysiological analysis of fly retina. I: Comparative properties of R1–6 and R7 and 8. J Comp Physiol A 129: 19–33

    Article  Google Scholar 

  • Horridge GA (1978) The separation of visual axes in apposition compound eyes. Phil Trans R Soc Lond B 285: 1–59

    Article  CAS  Google Scholar 

  • Horridge GA, Duelli, P (1979) Anatomy of the regional differences in the eye of the mantis Ciulfina. J Exp Biol 80: 165–190

    Google Scholar 

  • Hughes A (1977) The topography of vision in mammals of contrasting life style: comparative optics and retinal organisation. In: Crescitelli F (ed) Handbook of Sensory Physiology, Vol. VII/5. Springer, Berlin Heidelberg New York, pp 613–756

    Google Scholar 

  • Jerlov NG (1976) Marine Optics. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3: 248–270

    Article  PubMed  CAS  Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Z Naturforsch 29C: 592–596

    Google Scholar 

  • Krapp HG, Hengstenberg R (1996) Estimation of self-motion by optic flow processing in single visual neurons. Nature 384: 463–466

    Article  PubMed  CAS  Google Scholar 

  • Labhart T, Nilsson D-E (1995) The dorsal eye of the dragonfly Sympetrum: specializations for prey detection against the blue sky. J Comp Physiol A 176: 437–453

    Article  Google Scholar 

  • Land MF (1976) Superposition images are formed by reflection in the eyes of some oceanic decapod cn.istacea. Nature 263: 764–765

    Article  PubMed  CAS  Google Scholar 

  • Land MF (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of Sensory Physiology, Vol VII/6B. Springer, Berlin Heidelberg New York, pp 471–592

    Google Scholar 

  • Land MF (1984) The resolving power of diurnal superposition eyes measured with an ophthalmoscope. J Comp Physiol 154: 515–533

    Article  Google Scholar 

  • Land MF (1989a) Variations in the structure and design of compound eyes. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer, Berlin Heidelberg New York, pp 90–111

    Chapter  Google Scholar 

  • Land MF (1989b) The eyes of hyperiid amphipods: relations of optical structure to depth. J Comp Physiol A 164: 751–762

    Article  Google Scholar 

  • Land MF (1999) Compound eye structure: Matching eye to environment. In: Archer SN, Djamgoz MBA, Loew ER, Partridge JC, Vallerga S (eds). Adaptive Mechanisms in the Ecology of Vision. Kluwer Academic Publishers, Dordrecht, Boston, London, pp 51–71

    Google Scholar 

  • Land MF, Burton FA, Meyer-Rochow VB (1979) The optical geometry of euphausiid eyes. J Comp Physiol 130: 49–62

    Article  Google Scholar 

  • Land MF, Eckert H (1985) Maps of the acute zones of flies. J Comp Physiol A 156: 525–538

    Article  Google Scholar 

  • Land MF, Gibson G, Horwood J (1997) Mosquito eye design: conical rhabdoms are matched to wide aperture lenses. Proc R Soc Lond B 264: 1183–1187

    Article  Google Scholar 

  • Land MF, Gibson G, Horwood J, Zeil J (1999) Fundamental differences in the optical structure of the eyes of nocturnal and diurnal mosquitoes. J Comp Physiol A 185: 91–103

    Article  Google Scholar 

  • Layne J, Land MF, Zeit J (1997) Fiddler crabs use the visual horizon to distinguish predators from conspecifics: a review of the evidence. J Mar Biol Assoc UK 77: 43–54

    Article  Google Scholar 

  • Lillywhite PG, Laughlin SB (1979) Transducer noise in a photoreceptor. Nature 277: 569–572

    Article  PubMed  CAS  Google Scholar 

  • McIntyre PD, Caveney S (1998) Superposition optics and the time of flight in onitine dung beetles. J Comp Physiol A 183: 45–60

    Article  Google Scholar 

  • Melzer RR, Zimmermann T, Smola U (1997) Modification of branched photoreceptor axons, and the evolution of neural superposition. Cell Mol Life Sci 53: 242–247

    Article  CAS  Google Scholar 

  • Nilsson D-E (1988) A new type of imaging optics in compound eyes. Nature 332: 76–78

    Article  Google Scholar 

  • Nilsson D-E (1989) Optics and evolution of the compound eye. In: Stavenga DG, Hardie RC (eds) Facets of Vision. Springer, Berlin Heidelberg New York, pp 3073

    Google Scholar 

  • Nilsson D-E, Nilsson HL (1981) A crustacean compound eye adapted for low light intensities ( Isopoda ). J Comp Physiol 143: 503–510

    Google Scholar 

  • Nilsson D-E, Ro A-I (1994) Did neural pooling for night vision lead to the evolution of neural superposition eyes? J Comp Physiol A 175: 289–302

    Article  Google Scholar 

  • Nilsson D-E, Gislén L, Brännström PA (2000) Principles and constraints in the design of superposition eyes. J Comp Physiol A, in press

    Google Scholar 

  • Olberg R (1981) Object-and self-movement detectors in the ventral cord of the dragonfly. J Comp Physiol A 141: 327–334

    Article  Google Scholar 

  • Olberg R (1986) Identified target-selective visual interneurons descending from the dragonfly brain. J Comp Physiol A 159: 827–840

    Article  Google Scholar 

  • Schwind R (1978) Visual system of Notonecta glauca: a neuron sensitive to movement in the binocular visual field. J Comp Physiol 123: 315–328

    Article  Google Scholar 

  • Schwind R (1980) Geometrical optics of the Notonecta eye: adaptations to optical environment and way of life. J Comp Physiol 140: 59–68

    Article  Google Scholar 

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). III. Adult compound eyes. J Exp Zoo! 203: 61–80

    Article  CAS  Google Scholar 

  • Snyder AW (1977) Acuity of compound eyes: physical limitations and design. J Comp Physiol 116: 161–182

    Article  Google Scholar 

  • Snyder AW (1979) Physics of vision in compound eyes. In: Autrum (ed) Handbook of Sensory Physiology, Vol VII/6A. Springer, Berlin Heidelberg New York. pp 225–313

    Google Scholar 

  • Srinivasan MV, Bernard GD (1975) The effect of motion on visual acuity of the compound eye: a theoretical analysis. Vision Res 15: 515–525

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1991) Structural organization of male-specific visual neurons in calliphorid optic lobe. J Comp Physiol A 169: 379–393

    Article  PubMed  CAS  Google Scholar 

  • Tyler JE, Smith RC (1970) Measurement of Spectral Irradiance Underwater. Gordon and Breach, New York

    Google Scholar 

  • Vogt K (1975) Zur Optik des Flußkrebsauges. Z Naturforsch 30: 691

    CAS  Google Scholar 

  • Walls GL (1942) The Vertebrate Eye and its Adaptive Radiation. The Cranbrook Press, Bloomfield Hills

    Book  Google Scholar 

  • Warrant EJ (1999) Seeing better at night: life style, eye design and the optimum strategy of spatial and temporal summation. Vision Res 39: 1611–1630

    Article  PubMed  CAS  Google Scholar 

  • Warrant EJ, McIntyre PD (1990a) Limitations to resolution in superposition eyes. J Comp Physiol A 167: 785–803

    Google Scholar 

  • Warrant EJ, McIntyre PD (1990b) Maturation of optics and resolution in adult dung beetle superposition eyes. J Comp Physiol A 167: 805–815

    Google Scholar 

  • Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low F-number. J Comp Physiol A 168: 499–512

    Article  Google Scholar 

  • Warrant EJ, McIntyre PD (1992) The trade-off between resolution and sensitivity in compound eyes. In: Pinter RB, Nabet B (eds) Nonlinear Vision, CRC Press Inc, Boca Raton. pp 391–421

    Google Scholar 

  • Warrant EJ, McIntyre PD (1993) Arthropod eye design and the physical limits to spatial resolving power. Prog Neurobiol 40: 413–461

    Article  PubMed  CAS  Google Scholar 

  • Warrant EJ, Porombka T, Kirchner WH (1996) Neural image enhancement allows honeybees to see at night. Proc R Soc Lond B 263: 1521–1526

    Article  Google Scholar 

  • Warrant EJ, Nilsson D-E (1998) Absorption of white light in photoreceptors. Vision Res 38: 195–207

    Article  PubMed  CAS  Google Scholar 

  • Warrant EJ, Bartsch K, Günther C (1999) Physiological optics in the hummingbird hawkmoth: a compound eye without ommatidia. J Exp Biol 202: 497–511

    PubMed  Google Scholar 

  • Wehner R (1987) “Matched filters” - neural models of the external world. J Comp Physiol A 161: 511–531

    Google Scholar 

  • Zeil J (1983) Sexual dimorphism in the visual system of flies: the compound eyes and neural superposition in Bibionidae (Diptera). J Comp Physiol 150: 379–393

    Article  Google Scholar 

  • Zeil J, Nalbach G, Nalbach H-O (1986) Eyes, eye stalks and the visual world of semi-terrestrial crabs. J Comp Physiol 159: 801–811

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Warrant, E.J. (2001). The Design of Compound Eyes and the Illumination of Natural Habitats. In: Barth, F.G., Schmid, A. (eds) Ecology of Sensing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22644-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22644-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08619-9

  • Online ISBN: 978-3-662-22644-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics