Other Loci Implicated in Wilms Tumor

  • Max J. Coppes
  • Christine Campbell
  • Bryan R. G. Williams
Part of the Molecular Biology Intelligence Unit book series (MBIU)

Abstract

There are several features of Wilms tumor and WT1 mutations that make it clear that the original two-hit hypothesis proposed by Knudson and Strong1 is inadequate to explain the etiology of this tumor. Although inactivation as proposed in the two-hit hypothesis of the WT1 gene has indeed been described in certain Wilms tumors (see chapter 7), its incidence (less than 15%) indicates the likely existence of alternative loci involved in the development of this pediatric renal malignancy. Moreover, at least some Wilms tumors are heterozygous for the mutant WT1 allele: that is, tumor initiation did not require the loss of both wild-type alleles (see chapter 7).

Keywords

Leukemia Recombination Adenosine Oncol Osteosarcoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knudson AG, Strong LC: Mutation and cancer: A model for Wilms’ tumor of kidney. J Natl Cancer Inst 1972; 48: 313–324.PubMedGoogle Scholar
  2. 2.
    Beckwith JB: Precursor lesions of Wilms tumor: clinical and biological implications. Med Pediatr Oncol 1993; 21: 158–168.PubMedCrossRefGoogle Scholar
  3. 3.
    Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin HA, Haber DA: Inactivation of WTI in nephrogenic rests, genetic precursors to Wilms’ tumour. Nature Genetics 1993; 5: 363–367.PubMedCrossRefGoogle Scholar
  4. 4.
    Haber DA, Park S, Maheswaran S, Englert C, Re GG, Hazen-Martin DJ, Sens DA, Garvin AJ: WT-1-mediated growth suppression of Wilms tumor cells expressing WTI splicing variant. Science 1993; 262: 2057–2059.PubMedCrossRefGoogle Scholar
  5. 5.
    Royer PB, Schneider S: Wilms’ tumor-specific methylation pattern in 11p13 detected by PFGE. Genes Chromo Cancer 1992; 5: 132–140.CrossRefGoogle Scholar
  6. 6.
    Armstrong BC, Krystal GW: Isolation and characterization of complementary DNA from N-cym, a gene encoded by the DNA strand opposite to N-myc. Cell Growth Diff 1992; 3: 385–390.PubMedGoogle Scholar
  7. 7.
    Campbell CE, Huang A, Gurney AL, Kessler PM, Hewitt JA, Williams BRG: Antisense transcripts and protein binding motifs within the Wilms tumour (WT1) locus. Oncogene 1994; 9: 583–595.PubMedGoogle Scholar
  8. 8.
    Eccles MR, Grubb G, Ogawa O, Szeto J, Reeve AE: Cloning of novel Wilms tumor gene (WT1) cDNAs: evidence for antisense transcription of WT1. Oncogene 1994; 9: 2059–2063.PubMedGoogle Scholar
  9. 9.
    Huang A, Campbell CE, Bonetta L, McAndrews -Hill M, Chilton-MacNeill S, Coppes MJ, Law DJ, Feinberg AP, Yeger H, Williams BRG: Tissue, developmental, and tumor-specific expression of divergent transcripts in Wilms tumor. Science 1990; 250: 991–994.PubMedCrossRefGoogle Scholar
  10. 10.
    Yeger H, Cullinane C, Flenniken A, Chilton-MacNeill S, Campbell C, Huang A, Bonetta L, Coppes MJ, Thorner P, Williams BRG: Coordinate expression of Wilms tumor genes correlates with Wilms tumor phenotypes. Cell Growth Differentiation 1992; 3: 855–864.PubMedGoogle Scholar
  11. 11.
    Kimelmann D: Regulation of eukaryotic gene expression by natural antisense transcripts–the case of the modifying reaction. Gene Regulation 1992; 1: 1–10.Google Scholar
  12. 12.
    Liebhaber SA, Russell JE, Cash FE, Eshleman SS: Inhibition of messenger RNA translation by antisense sequences. Gene Regulation 1992; 1: 163–174.Google Scholar
  13. 13.
    Silverman TA, Noguchi M, Safer B: Corrdinate expression of Wilms tumor genes correlates with Wilms tumor phenotypes. Cell Growth Differentiation 1992; 3: 855–864.Google Scholar
  14. 14.
    Maw MA, Grundy PE, Millow LJ, Eccles MR, Dunn RS, Smith PJ, Feinberg AP, Law DJ, Paterson MC, Telzerow PE, Callen DF, Thompson AD, Richards RI, Reeve AE: A third Wilms’ tumor locus on chromosome 16q. Cancer Res 1992; 52: 3094–3098.PubMedGoogle Scholar
  15. 15.
    Coppes MJ, Bonetta L, Huang A, Hoban P, Chilton-MacNeill S, Campbell CE, Weksberg R, Yeger H, Reeve AE, Williams BRG: Loss of heterozygosity mapping in Wilms tumor indicates the involvement of three distinct regions and a limited role for non-disjunction or mitotic recombination. Genes Chrom Cancer 1992; 5: 326–334.PubMedCrossRefGoogle Scholar
  16. 16.
    Grundy PE, Telzerow PE, Breslow N, Moskess J, Huff V, Paterson MC: Loss of heterozygosity for chromosomes 16q and 1p in Wilms’ tumors predicts an adverse outcome. Cancer Res 1994; 54: 2331–2333.PubMedGoogle Scholar
  17. 17.
    Bussemakers JJG, Vanmoorselaar RJA, Giroldi LA, Ichikawa T, Isaacs JT, Takeichi M, Debruyne FJ, Schalken JA: Decreased expression of E-cadherin in the progression of rat prostatic cancer. Cancer Res 1992; 52: 2916–2922.PubMedGoogle Scholar
  18. 18.
    Umbas R, Schalken JA, Aalders TW, Carter BS, Karthaus HFM, Schaafsma HE, Debruyne FMJ, Isaacs WB: Expression of the cellular adhesion molecule E-caherin is reduced or absent in high-grade prostate cancer. Cancer Res 1992; 52: 5104–5109.PubMedGoogle Scholar
  19. 19.
    Sommers CL, E. HS, Skerker JM, Worland P, Torri JA, Thompson EW, Byers SW, Gelmann EP: Loss of epithelial markers and acquisition of vimentin expression in adriamycin-resistant and vinblastine-resistant human breast cancer cell lines. Cancer Res 1992; 52: 5190–5197.PubMedGoogle Scholar
  20. 20.
    Inoue M, Ogawa H, Miyata M, Shiozaki H, Tanizawa O: Expression of E-cadherin in normal, benign, and malignant tissues of female genital organs. Am J Clin Pathol 1992; 98: 76–80.PubMedGoogle Scholar
  21. 21.
    Behrens J: The role of cell adhesion molecules in cancer invasion and metastasis. Breast Cancer Res Treat 1993; 24: 175–184.PubMedCrossRefGoogle Scholar
  22. 22.
    Ruggeri B, Caamano J, Slaga TJ, Conti CJ, Nelson WJ, Kleinszanto AJP: Alterations in the expression of uvomorulin and Na+, K+–adenosine triphosphatase during mouse skin tumor progression. Am J Pathol 1992; 140: 1179–1185.PubMedGoogle Scholar
  23. 23.
    Rocco MV, Neilson EG, Hoyer JR, Ziyadeh FN: Attenuated expression of epithelial cell adhesion molecules in murine polycystic kidney disease. Am J Physiol 1992; 262: F679 - F686.PubMedGoogle Scholar
  24. 24.
    Jeanpierre C, Antignac C, Beroud C, Lavedan C, Henry I, Saunders G, Williams B, Glaser T, Junien C: Constitutional and somatic deletions of two different regions of maternal chromosome 11 in Wilms tumor. Genomics 1990; 7: 434–438.PubMedCrossRefGoogle Scholar
  25. 25.
    Baird P, Wadey R, Cowell J: Loss of heterozygosity for chromosome region 11 p15 in Wilms tumours is not related to HRAS gene transforming mutations. Oncogene 1991; 6: 1147–1149.PubMedGoogle Scholar
  26. 26.
    Chao LY, Huff G, Tomlinson G, Riccardi VM, Strong LC, Saunders GF: Genetic mosaicism in normal tissues of Wilms tumor patients. Nature Genetics 1993; 3: 127–131.PubMedCrossRefGoogle Scholar
  27. 27.
    Gerald WL: The molecular genetics of Wilms tumor: a paradigm of heterogeneity in tumor development. Cancer Investigation 1994; 12: 350–359.PubMedCrossRefGoogle Scholar
  28. 28.
    Schneid H, Vazquez MP, Seurin D, le BY: Loss of heterozygosity in non-tumoral tissue in two children with Beckwith-Wiedemann syndrome. Growth Regulation 1991; 1: 168–170.PubMedGoogle Scholar
  29. 29.
    Weksberg R, Shen DR, Fei YL, Song QL, Squire J: Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet 1993; 5: 143–150.PubMedCrossRefGoogle Scholar
  30. 30.
    Wiedemann H-R: Tumours and hemihypertrophy associated with Wiedemann-Beckwith syndrome. Eur J Pediatr 1983; 141: 129.CrossRefGoogle Scholar
  31. 31.
    Beckwith JB, Kiviat NB, Bonadio JF: Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediatr Pathol 1990; 10: 1–36.PubMedCrossRefGoogle Scholar
  32. 32.
    Heppe RK, Koyle MA, Beckwith JB: Nephrogenic rests in Wilms tumor patients with the Drash syndrome. J Urol 1991; 145: 1225–1228.PubMedGoogle Scholar
  33. 33.
    Grundy RG, Pritchard J, Baraitser M, Risdon A, Robards M: Perlman and Wiedemann-Beckwith syndromes: two distinct conditions associated with Wilms tumor. Eur J Pediatr 1992; 151: 895–898.PubMedCrossRefGoogle Scholar
  34. 34.
    Reeve AE, Eccles MR, Wilkins RJ, Bell GI, Millow LJ: Expression of insulin-like growth factor-II transcripts in Wilms tumor. Nature 1985; 317: 258–260.PubMedCrossRefGoogle Scholar
  35. 35.
    DeChiara TM, Robertson EJ, Efstratiadias A: Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64: 849–859.PubMedCrossRefGoogle Scholar
  36. 36.
    Giannoukakis N, Deal C, Paquette J, Goodyer CG, Polychronakos C: Parental genomic imprinting of the human IGF-2 gene. Nature Genetics 1993; 4: 98–101.PubMedCrossRefGoogle Scholar
  37. 37.
    Davies SM: Developmental regulation of genomic imprinting of the IGF2 gene in human liver. Cancer Res 1994; 54: 2560–2562.PubMedGoogle Scholar
  38. 38.
    Vu TH, Hoffman AR: Promoter-specific imprinting of the human insulin-like growth factor-II gene. Nature 1994; 371: 714–717.PubMedCrossRefGoogle Scholar
  39. 39.
    Ogawa O, Eccles MR, Szeto J, McNoe LA, Yun K, Maw MA, Smith PJ, Reeve AE: Relaxation of Insulin-like Growth factor II gene imprinting implicated in Wilms tumour. Nature 1993; 362: 749–751.PubMedCrossRefGoogle Scholar
  40. 40.
    Rainier S, Johnson LA, Dobry CJ, Ping AJ, Grundy PE, Feinberg AP: Relaxation of imprinted genes in human cancer. Nature 1993; 362: 747–749.PubMedCrossRefGoogle Scholar
  41. 41.
    Steenman MJC, Rainier S, Dobry CJ, Grundy P, Horon IL, Feinberg AP: Loss of imprinting of IGF2 is linked to reduced expression and abnormal methylation of H19 in Wilms tumour. Nature Genetics 1994; 7: 433–439.PubMedCrossRefGoogle Scholar
  42. 42.
    Moulton T, Crenshaw T, Hao Y, Moosikasuwan J, Lin N, Dembitzer F, Hensle T, Weiss L, McMorrow L, Loew T, Kraus W, W. G, Tycko B: Epigenetic lesions at the H19 locus in Wilms tumour patients. Nature Genetics 1994; 7: 440–447.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhan S, Shapiro DN, Helman LJ: Activation of an imprinted allele of the insulin-like growth factor II gene implicated in rhabdomyosarcoma. J Clin Invest 1994; 94: 445–448.PubMedCrossRefGoogle Scholar
  44. 44.
    Van Gurp RJ, Oosterhuis JW, Kalscheuer V, Mariman EC, Looijenga LH: Biallelic expression of the H19 and IGF2 genes in human testicular germ cell tumors. J Natl Cancer Inst 1994; 86: 1071–1075.Google Scholar
  45. 45.
    Davies SM: Maintenance of genomic imprinting at the IGF2 locus in hepatoblastoma. Cancer Res 1993; 53: 4781–4783.PubMedGoogle Scholar
  46. 46.
    Ohlsson R, Nystrom A, Pfeifer OS, Tohonen V, Hedborg F, Schofield P, Flam F, Ekstrom TJ: IGF2 is parentally imprinted during human embryogenesis and in the Beckwith-Wiedemann syndrome. Nature Genetics 1993; 4: 94–97.PubMedCrossRefGoogle Scholar
  47. 47.
    Christofori G, Naik P, Hanahan D: A second signal supplied by insulin-like growth factor II in oncogene-induced tumorigenesis. Nature 1994; 369: 414–418.PubMedCrossRefGoogle Scholar
  48. 48.
    Rogler CE, Yang D, Rossetti L, Donohoe J, Alt E, Chang CJ, Rosenfeld R, Nelly K, Hintz R: Altered body compostion and increased frequency of diverse malignancies in insulin-like growth factor-II transgenic mice. J Biol Chem 1994; 269: 13779–13784.PubMedGoogle Scholar
  49. 49.
    Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW: The murine H19 gene is activated during embroyonic stem cell differentiation in vitro and at the time of implantation in the developing embryo. Development 1991; 113: 1105–1114.PubMedGoogle Scholar
  50. 50.
    Zhang Y, Tycko B: Monoallelic expression of the human H19 gene. Nature Genetics 1992; 1: 40–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Brannan CI, Dees EC, Ingram RS, Tilghman SM: The product of the H19 gene may function as an RNA. Mol Cell Biol 1990; 10: 28–36.PubMedGoogle Scholar
  52. 52.
    Zemel S, Bartolomei MS, Tilghman SM: Physical linkage of 2 mammalian imprinted genes, H19 and insulin-like growth factor-2. Nat Genet 1992; 2: 61–65.PubMedCrossRefGoogle Scholar
  53. 53.
    Bartolomei MS, Zemel S, Tilghman S: Parental imprinting of the mouse H19 gene. Nature 1991; 351: 153–155.PubMedCrossRefGoogle Scholar
  54. 54.
    Rachmilewitz J, Goshen R, Ariel I, Schneider T, de GN, Hochberg A: Parental imprinting of the human H19 gene. Febs Letters 1992; 309: 25–28.PubMedCrossRefGoogle Scholar
  55. 55.
    Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B: Tumour-suppressor activity of H19 RNA. Nature 1993; 365: 764–767.PubMedCrossRefGoogle Scholar
  56. 56.
    Garvin AJ, Re GG, Tarnowski BI, Hazan-Martin DJ, Sens DA: The G401 cell line, utilized for studies of chromosomal changes in Wilms tumor, is derived from a rhabdoid tumor of the kidney. Am J Pathol 1993; 142: 375–380.PubMedGoogle Scholar
  57. 57.
    Byrne JA, Simms LA, Little MH, Algar EM, Smith PJ: Three non-overlapping regions of chromosome arm llp allele loss identified in infantile tumors of adrenal and liver. Genes Chromosomes Cancer 1993; 8: 104–111.PubMedCrossRefGoogle Scholar
  58. 58.
    Bepler G, Garcia-Blanco MA: Three tumor-suppressor regions on chromsome 11p identified by high-resolution deletion mapping in human non-small-cell lung cancer. Proc Natl Acad Sci USA 1994; 91: 5513–5517.PubMedCrossRefGoogle Scholar
  59. 59.
    Little MH, Dunn R, Byrne JA, Seawright A, Smith PJ, Pritchard JK, van HV, Hastie ND: Equivalent expression of paternally and maternally inherited WT1 alleles in normal fetal tissue and Wilms’ tumours. Oncogene 1992; 7: 635–641.PubMedGoogle Scholar
  60. 60.
    Jinno Y, Yun K, Hishiwaki K, Kubota T, Ogawa O, Reeve AE, Hiikawa N: Mosaic and polymorphic imprinting of the WT1 gene in humans. Nature Genetics 1994; 6: 305–309.PubMedCrossRefGoogle Scholar
  61. 61.
    Malkin D: P53 and the Li-Fraumeni syndrome. Cancer Genet Cytogenet 1993; 66: 83–92.PubMedCrossRefGoogle Scholar
  62. 62.
    Hinds PW, Weinberg RA: Tumor suppressor genes. Current Opinion in Genet Development 1994; 4: 135–141.CrossRefGoogle Scholar
  63. 63.
    Hartley AL, Birch JM, Tricker K, Wallace SA, Kelsey AM, Harris M, Jones PH: Wilms tumor in the Li-Fraumeni cancer family syndrome. Cancer Genet Cytogenet 1993; 67: 133–135.PubMedCrossRefGoogle Scholar
  64. 64.
    Waber PG, Chen J, Nisen PD: Infrequency of ras, p53, WT1, or RB gene alternations in Wilms tumors. Cancer 1993; 72: 3732–3738.PubMedCrossRefGoogle Scholar
  65. 65.
    Malkin D, Sexsmith E, Yeger H, Williams BRG, Coppes MJ: Mutations of the p53 tumor suppressor gene occur infrequently in Wilms tumor. Cancer Res 1994; 54: 2077–2079.PubMedGoogle Scholar
  66. 66.
    Bardeesy N, falkoff D, Petruzii M-J, Nowak N, Zabel B, Adam M, Aguiar MC, Grundy P, Shows T, Pelletier J: Anaplastic Wilms’ tumour, a subtype displaying poor prognosis, harbours p53 gene mutations. Nature Genetics 1994; 7: 91–97.PubMedCrossRefGoogle Scholar
  67. 67.
    Grundy P, Koufos A, Morgan K, Li FP, Meadows AT, Cavenee WK: Familial predisposition to Wilms’ tumour does not map to the short arm of chromosome 11. Nature 1988; 336: 374–376.PubMedCrossRefGoogle Scholar
  68. 68.
    Huff V, Compton DA, Chao LY, Strong LC, Geiser CF, Saunders GF: Lack of linkage of familial Wilms’ tumour to chromosomal band 11p13. Nature 1988; 336: 377–378.PubMedCrossRefGoogle Scholar
  69. 69.
    Schwartz CE, Haber DA, Stanton VP, Strong LC, Skolnick MH, Housman DE: Familial predisposition to Wilms tumor does not segregate with the WT1 gene. Genomics 1991; 10: 927–30.PubMedCrossRefGoogle Scholar
  70. 70.
    Huff V, Reeve AE, Leppert M, Strong LC, Douglass EC, Geiser CF, Li FP, Meadows A, Callen DF, Lenoir G, Saunders GF: Nonlinkage of 16q markers to familial predisposition to Wilms tumor. Cancer Res 1992; 52: 6117–6120.PubMedGoogle Scholar
  71. 71.
    Perilongo G, Felix CA, Meadows AT, Nowell P, Biegel J, Lange BJ: Sequential development of Wilms tumor, T-cell acute lymphoblastic leukemia, medulloblastoma and myeloid leukemia in a child with type 1 neurofibromatosis: a clinical and cytogenetic case report. Leukemia 1993; 7: 912–915.PubMedGoogle Scholar
  72. 72.
    Coppes MJ, Sohl H, Teshima IE, Ledbetter DH, Weksberg R: Wilms tumor in a patient with Prader-Willi syndrome. J Pediatr 1993; 122: 730–733.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Max J. Coppes
    • 1
  • Christine Campbell
    • 2
  • Bryan R. G. Williams
    • 2
  1. 1.Tom Baker Cancer Centre and University of CalgaryCalgaryCanada
  2. 2.Department of Cancer Biology Research InstituteCleveland Clinic FoundationClevelandUSA

Personalised recommendations