Skip to main content
Book cover

Turbulence pp 289–324Cite as

Two-Phase and Non-Newtonian Flows

  • Chapter

Part of the book series: Topics in Applied Physics ((TAP,volume 12))

Abstract

Two-phase turbulent flow covers an enormous range of technically important situations. The two phases can be solid/fluid or fluid/fluid; if the former, the solid phase may be flexible or rigid, spherical or non-spherical. The concentration of one phase in the other may be such that individual morsels of one phase may be regarded as isolated, or such that adjacent morsels interact strongly. The characteristic dimensions of the distribution of one phase in the other may be such, relative to the dimensions characterizing the flow, that the two-phase mixture may be regarded as a continuum, or not. Most of these situations are extremely complicated, and relatively little of a scientific nature has been done, the literature consisting for the most part of the results of observation organized by dimensional reasoning and empirical models. In the space available here, we will be able to give detailed attention only to the simplest case, that of rigid, spherical particles, separated sufficiently to be considered isolated, and small enough so that the flow in their vicinity may be taken as simple. However, we will outline some of the considerations which are relevant to the other, more complicated cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.K. Batchelor, J.J. Green: J. Fluid Mech. 56, 401 (1972)

    Article  ADS  MATH  Google Scholar 

  2. H. Hasimoto: J. Fluid Mech. 5, 317 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. B.D. Coleman, W. Noll: Ann. NY Acad. Sci. 89, 672 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. G.K. Batchelor: J. Fluid Mech. 46, 813 (1971)

    Article  ADS  MATH  Google Scholar 

  5. D.H. Slade (ed.): Meteorology and Atomic Energy 1968 (USAEC Division of Technical Information Extension, Oak Ridge, Tennessee 1968)

    Google Scholar 

  6. L.T. Matveev: Fundamentals of General Meteorology: Physics of the Atmosphere (Israel Program for Scientific Translations, Jerusalem 1967)

    Google Scholar 

  7. E.J. Hinch, L.G. Leal: J. Fluid Mech. 52, 683 (1972)

    Article  ADS  MATH  Google Scholar 

  8. E.J. Hinch, L.G. Leal: J. Fluid Mech. 57, 753 (1973)

    Article  ADS  MATH  Google Scholar 

  9. L.G. Leal, E.J. Hinch: J. Fluid Mech. 46, 685 (1971)

    Article  ADS  MATH  Google Scholar 

  10. L.G. Leal, E.J. Hinch: J. Fluid Mech. 55, 745 (1972)

    Article  ADS  MATH  Google Scholar 

  11. J. J. Bikerman, J. M. Perri, R. B. Booth, C. C. Currie: Foams: Theory and Industrial Applications (Reinhold Publishing Corp., New York 1953)

    Google Scholar 

  12. W.C. Mih, C.K. Chen, J.F. Orsborn: Bibliography of Solid-Liquid Transport in Pipelines (Albrook Hydraulic Laboratory, College of Engineering Research Division, Washington State University, Pullman, Washington 1971)

    Google Scholar 

  13. S. Yalin: Mechanics of Sediment Transport (Pergamon Press, New York 1972)

    Google Scholar 

  14. P.G. Saffman: J. Fluid Mech. 22, 385 (1965)

    Article  ADS  MATH  Google Scholar 

  15. J.L. Lumley, H.A. Panofsky: The Structure of Atmospheric Turbulence (Interscience Publishers, New York 1964)

    Google Scholar 

  16. M.I. Yudine: Advances in Geophysics 6, 185 (1959)

    Article  MathSciNet  ADS  Google Scholar 

  17. G.T. Csanady: J. Atmospheric Sci. 2, 201 (1963)

    Article  ADS  Google Scholar 

  18. S. Corrsin, J.L. Lumley: Appl. Sci. Res. A 6, 114 (1965)

    MathSciNet  Google Scholar 

  19. J.L. Lumley: PhD Thesis (Aeronautics), The Johns Hopkins University, Baltimore (1957)

    Google Scholar 

  20. M. van Dyke: Perturbation Methods in Fluid Mechanics (Academic Press, New York 1964)

    MATH  Google Scholar 

  21. J. L. Lumley: In: A. Favre (Ed.): The Mechanics of Turbulence (Gordon and Breach, New York 1964)

    Google Scholar 

  22. W.H. Snyder, J.L. Lumley: J. Fluid Mech. 48, 41 (1971)

    Article  ADS  Google Scholar 

  23. J.L. Lumley: Lecture Notes in Physics, Vol. 12: Statistical Models and Turbulence (Springer, Berlin, Heidelberg, New York 1972)

    Google Scholar 

  24. W.C. Mih: Sedimentation (H. W. Shen, P. O. Box 606, Fort Collins, Colorado 1972)

    Google Scholar 

  25. J.L. Lumley: J. Polymer Sci.: Macromolecular Reviews 7, 263 (1973)

    Article  Google Scholar 

  26. R.C. Vaseleski, A.B. Metzner: AIChE J. 20, 301 (1974)

    Article  Google Scholar 

  27. L. Lumley: Symposia Mathematica 9, 315 (1972)

    Google Scholar 

  28. N.S. Berman, W. George: Phys. Fluids 17, 250 (1974)

    Article  ADS  Google Scholar 

  29. S.L. Soo: Fluid Dynamics of Multiphase Systems (Blaisdell, Waltham, Mass. 1967)

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lumley, J.L. (1976). Two-Phase and Non-Newtonian Flows. In: Bradshaw, P. (eds) Turbulence. Topics in Applied Physics, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22568-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22568-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22570-7

  • Online ISBN: 978-3-662-22568-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics