Skip to main content

Cytokines and Growth Factors in Paget’s Disease

  • Chapter
The Molecular Biology of Paget’s Disease

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 22 Accesses

Abstract

Paget’s disease is a focal disorder of bone in which there is a localized increase in bone remodeling. The cellular actions which constitute normal bone remodeling are complex and require the spatially and temporally coordinated actions of several cell types.1 Remodeling commences with an initiation signal(s) leading to a phase of resorption where bone is excavated from the remodeling site by multinucleated osteoclasts. In pagetic foci, but not in unaffected sites, the osteoclasts exhibit increased multinuclearity and are overactive, resulting in excessive resorption. Normally resorption lacunae are then colonized by osteoblasts which synthesize bone matrix components (osteoid) and the bone is replaced. The mechanism(s) which ensures that the processes of bone resorption and formation remain tightly linked is termed “coupling.”2 The increased osteoclastic activity observed in Paget’s disease is matched by an increase in osteoblastic activity, so bone resorption and bone formation remain coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gallagher JA. Human bone remodeling. In: R. Dulbecco ed. Encyclopedia of Human Biology, volume 1. Academic Press, Inc. 1991: 811–824.

    Google Scholar 

  2. Parfitt AM. The coupling of bone formation to bone resorption: a critical analysis of the concept of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Rel Res 1982; 4: 1–6.

    CAS  Google Scholar 

  3. Raisz LG. Local and systemic factors in the pathogenesis of osteoporosis. New Eng J Med 1988; 318: 818–828.

    PubMed  CAS  Google Scholar 

  4. MacDonald BR, Gowen M. Cytokines and bone. Brit J Rheum 1992; 31: 149–155.

    CAS  Google Scholar 

  5. Nathan C, Sporn M. Cytokines in context. J Cell Biol 1991; 113: 981–986.

    PubMed  CAS  Google Scholar 

  6. Vaes G. Cellular biology and biochemical mechanism of bone resorption. Clin Ortho Rel Res 1988; 231: 239–270.

    CAS  Google Scholar 

  7. Gowen M, Mundy GR. Actions of recombinant interleukin-1, interleukin 2 and interferon y on bone resorption in vitro. J Immunol 1986; 136: 2478.

    Google Scholar 

  8. Pfeilschifter J, Chenu C, Bird A, Mundy GR, Roodman GD. Interleukin-1 and tumour necrosis factor stimulate the formation of human osteoclast-like cells in vitro. J Bone Miner Res 1989; 4: 113–118.

    PubMed  CAS  Google Scholar 

  9. Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR. Stimulation of bone resorption and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 1986; 319: 516–518.

    PubMed  CAS  Google Scholar 

  10. Scheven BAA, Visser JWM, Nijweide PJ. In vitro osteoclast generation from different bone marrow fractions, including a highly enriched haemopoietic stem cell population. Nature 1986; 321: 79–81.

    PubMed  CAS  Google Scholar 

  11. Hattersley G, Chambers TJ. Effects of interleukin 3 and of granulocyte-macrophage and macrophage colony stimulating factors on osteoclast differentiation from mouse haemopoietic tissue. J Cell Physiol 1990; 142: 201–209.

    PubMed  CAS  Google Scholar 

  12. Shinar DM, Sato M, Rodan GA. The effect of haemopoietic growth factors on the generation of osteoclast-like cells in mouse bone marrow cultures. Endocrinology 1990; 126: 1728–1735.

    PubMed  CAS  Google Scholar 

  13. MacDonald BR, Mundy GR, Clark S, Wang EA, Kuehl TJ, Stanley ER, Roodman GD. Effects of human recombinant CSF-GM and highly purified CSF-1 on the formation of multinucleated cells with osteoclast characteristics in long-term bone marrow cultures. J Bone Miner Res 1986; 1: 227–233.

    PubMed  CAS  Google Scholar 

  14. Lorenzo JA, Sousa SL, Fonseca JM, Hock JM, Medlock ES. Colony-stimulating factors regulate the development of multinucleated osteoclasts from recently replicated cells in vitro. J Clin Invest 1987; 80: 160–164.

    PubMed  CAS  Google Scholar 

  15. Antonioloi Corboz V, Cecchini MG, Felix R, Fleisch H, van der Pluijm G, Löwik CWGM. Effect of macrophage colony-stimulating factor on in vitro osteoclast generation and bone resorption. Endocrinology 1992; 180: 437–442.

    Google Scholar 

  16. Yoshida H, Hayashi SI, Kunisada T, Ogawa M, Nishikawa S, Okamura H, Sudo T, Shultz LD, Nishikawa S. The murine mutation osteoporosis is in the coding region of the macrophage colony stimulating factor gene. Nature 1990; 345: 442–444.

    PubMed  CAS  Google Scholar 

  17. Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD. Interleukin-6 stimulates osteoclast-like multinucleated cell formation in long-term human marrow cultures by inducing IL-1 release. J Immunol 1990; 144: 426–430.

    Google Scholar 

  18. Löwik CWGM, van der Pluijm G, Bloys H, Hoekman K, Bijvoet OLM, Aarden LA, Papapoulos SE. Parathyroid hormon (PTH) and PTH-like protein (PLP) stimulate interleukin-6 production by osteogenic cells: a possible role of interleukin-6 in osteoclastogenesis. Biochem Biophys Res Commun 1989; 162: 1546–1552.

    PubMed  Google Scholar 

  19. Ishimi Y, Miyaura C, Jin CH, Akatsu T, Abe E, Nakamura Y, Yamaguchi A, Yoshiki S, Matsuda T, Hirano T, Kishimoto T, Suda T. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990; 145: 3297–3303.

    PubMed  CAS  Google Scholar 

  20. Al-Humidan A, Ralston SH, Hughes DE, Chapman K, Aarden L, Graham R, Russell G, Gowen M. Interleukin-6 does not stimulate bone resorption in neonatal mouse calvariae. Jx Bone Miner Res 1991; 6: 3–8.

    CAS  Google Scholar 

  21. Barton BE, Mayer R. IL-3 and IL-6 do not induce bone resorpion in vitro. Cytokine 1990; 2: 217–220.

    PubMed  CAS  Google Scholar 

  22. Black K, Garrett IR, Mundy GR. Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcaemia as well as cachexia, leukocytosis and thrombocytosis in tumour-bearing nude mice. Endocrinology 1991; 128: 2657–2659.

    PubMed  CAS  Google Scholar 

  23. Reid IR, Lowe C, Cornish J, Skinner SJM, Hilton DJ, Wilson TA, Gearing DP, Martin TJ. Leukemia inhibitory factor—a novel bone-active cytokine. Endocrinology 1990; 126: 1416–1420.

    PubMed  CAS  Google Scholar 

  24. Tamura T, Udagawa N, Takahashi N, Miyaura C, Tanaka S, Yamada Y, Koishihara Y, Ohsugi Y, Kumaki K, Taga T, Kishimoto T, Suda T. Soluble interleukin-6 receptor triggers osteoclast formation by interleukin-6. Proc Natl Acad Sci USA 1993; 90: 11924–11928.

    PubMed  CAS  Google Scholar 

  25. Girasole G, Passeri G, Jilka RL, Manolagas SC. Interleukin-11: a new cytokine critical for osteoclast development. J Clin Invest 1994; 93: 1516–1524.

    PubMed  CAS  Google Scholar 

  26. Takahashi N, Mundy GR, Kuehl TJ, Roodman GD. Osteoclastlike formation in foetal and newborn long term baboon marrow cultures is more sensitive to 1,25-dihydroxyvitamin D3 than adult long term marrow cultures. J Bone Miner. Res 1987; 2: 311–317.

    PubMed  CAS  Google Scholar 

  27. Shioi A, Teitelbaum SL, Ross FP, Welgus HG, Suzuki H, Ohara J, Lacey DL. Interleukin-4 inhibits murine osteoclast formation in vitro. J Cell Biochem 1991; 47: 272–277.

    PubMed  CAS  Google Scholar 

  28. Chenu C, Pfeilschiffer J, Mundy GR, Roodman GD. Transforming growth actor 13 inhibits formation of osteoclast-like cells in longterm marrow cultures. Proc Natl Acad Sci 1988; 85: 5683–5687.

    PubMed  CAS  Google Scholar 

  29. Gowen M, Nedwin G, Mundy GR. Preferential inhibition of cytokine stimulated bone resorption by recombinant interferon gamma. J Bone Miner Res 1986; 1: 469–474.

    PubMed  CAS  Google Scholar 

  30. Watanabe K, Tanaka Y, Morimoto I, Yahata K, Zeki K, Fujihira T, Yamashita U, Eto S. Interleukin-4 as a potent inhibitor of bone resorption. Biochem Biophys Res Commun 1990; 172: 1035–1041.

    PubMed  CAS  Google Scholar 

  31. Thomson BM, Saklatvala J, Chambers TJ. Osteoblasts mediate interleukin-1 stimulation of resorption by rat osteoclasts. J Exp Med 1986; 164: 104–112.

    PubMed  CAS  Google Scholar 

  32. Thomson BM, Mundy GR, Chambers TJ. Tumour necrosis factors a and ß induce osteoblastic cells to stimulate osteoclastic bone resorption. J Immunol 1987; 138: 775.

    PubMed  CAS  Google Scholar 

  33. Stashenko P, Dewhirst FE, Peros WJ, Kent RL, Ago JM. Synergistic interactions between interleukin-1, tumour necrosis factor and lymphotoxin in bone resorption. J Immunol 1987; 138: 1464–1468.

    PubMed  CAS  Google Scholar 

  34. Dewhirst FE, Ago JM, Peros WJ, Stashenko P. Synergism between parathyroid hormone and interleukin-1 in stimulating bone resorption in organ culture. J Bone Miner Res 1987; 2: 127–134.

    PubMed  CAS  Google Scholar 

  35. Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption: an hypothesis. Calcif Tissue Int 1981; 33: 349–351.

    PubMed  CAS  Google Scholar 

  36. Oreffo ROC, Mundy GR, Seyedin SM, Bonewald LF. Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem Biophys Res Commun 1989; 158: 817–823.

    PubMed  CAS  Google Scholar 

  37. Fenton AJ, Martin TJ, Nicholson GC. Carboxyl-terminal parathyroid hormone-related protein inhibits bone resorption by isolated chicken osteoclasts. J Bone Miner Res 1994; 9: 515–519.

    PubMed  CAS  Google Scholar 

  38. Fenton AJ, Kemp BE, Hammonds RG, Mitchelhill K, Moseley JM, Martin TJ, Nicholson GC. A potent inhibitor of osteoclastic bone resorption within a highly conserved pentapeptide region of parathyroid hormone-related protein: PTHrP (107–111). Endocrinology 1991; 129: 3424–3426.

    PubMed  CAS  Google Scholar 

  39. Sone T, Kohno H, Kikuchi H, Ikeda T, Kasai R, Kikuchi Y, Takeuchi R, Konishi J, Shigeno C. Human parathyroid hormone-related peptide (107–111) does not inhibit bone resorption in neonatal mouse calvaria. Endocrinology 1992; 131: 2742–2746.

    PubMed  CAS  Google Scholar 

  40. Gowen M, Wood DD, Russell RGG. Stimulation of the proliferation of human bone cells in vitro by human monocyte products with interleukin-1-like activity. J Clin Invest 1985; 75: 1223–1229.

    PubMed  CAS  Google Scholar 

  41. Evans DB, Bunning RAD, Van Damme J, Russell RGG. Natural human IL-1ß exhibits regulatory actions on human bone-derived cells in vitro. Biochem Biophys Res Commun 1989; 159: 1242–1248.

    PubMed  CAS  Google Scholar 

  42. Gowen M, MacDonald BR, Russell RGG. Actions of recombinant human-interferon and tumour necrosis factor-a on the proliferation and osteoblastic characteristics of human trabecular bone cells in vitro. Arthritis Rheum 1988; 31: 1500–1507.

    PubMed  CAS  Google Scholar 

  43. Rickard DJ, Gowen M, MacDonald BR. Proliferation responses to estradiol, IL-la and TGFß by cells expressing alkaline phosphatase in human osteoblast-like cell cultures. Calcif Tissue Int 1993; 52: 227–233.

    PubMed  CAS  Google Scholar 

  44. Canalis E, Centrella M, McCarthy T. Effects of basic fibroblast growth factor on bone formation in vitro. J Clin Invest 1988; 81: 1572–1577.

    PubMed  Google Scholar 

  45. Canalis E, McCarthy TL, Centrella M. Effects of platelet-derived growth factor on bone formation in vitro. J Cell Physiol 1989; 140: 530–537.

    PubMed  Google Scholar 

  46. McCarthy TL, Centrella M, Canalis E. Regulatory effects of IGF-I and IGF-II on bone collagen synthesis in rat calvarial cultures. Endocrinology 1988; 124: 301–309.

    Google Scholar 

  47. Hock JM, Centrella M, Canalis E. IGF-I has independent effects on bone matrix formation and cell replication. Endocrinology 1988; 122: 254–260.

    Google Scholar 

  48. Merriman HL, LaTour D, Linkhart TA, Mohan S, Baylink DJ, Strong DD. IGF-I and IGF-II induce c-fos in mouse osteoblastic cells. Calcif Tissue Int 1990; 46: 258–262.

    PubMed  CAS  Google Scholar 

  49. Scheven BA, Hamilton NJ, Fakkeldij TM, Duursma SA. Effects of rh IGF-I and IGF-II and GH on the growth of normal human osteoblast-like cells and human osteogenic sarcoma cells. Growth Regul 1989; 1: 160–167.

    Google Scholar 

  50. Noda M, Camilliere JJ. In vivo stimulation of bone formation by transforming growth factor-beta. Endocrinology 1989; 124: 2991–2994.

    PubMed  CAS  Google Scholar 

  51. Marcelli C, Yates AJ, Mundy GR. In vivo effects of human recombinant transforming growth factor-beta on bone turnover in normal mice. J Bone Miner Res 1990; 5: 1087–1096.

    PubMed  CAS  Google Scholar 

  52. Mackie EJ, Trechsel U. Stimulation of bone formation in vivo by transforming growth factor-beta—remodeling of woven bone and lack of inhibition by indomethacin. Bone 1990; 11: 295–300.

    PubMed  CAS  Google Scholar 

  53. Hock JM, Canalis E, Centrella M. Transforming growth factor-beta stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology 1990; 126: 421–426.

    PubMed  Google Scholar 

  54. Centrella M, McCarthy TL, Canalis E. Transforming growth factor-beta is a bifunctional regulator of replication and collagen synthesis in osteoblast-enriched cell cultures from fetal rat bone. J Biol Chem 1987; 262: 2869–2874.

    Google Scholar 

  55. Bonewald LF, Kester MB, Schwartz Z, Swain L, Khare A, Johnson T, Leach R, Boyan B. Effects of combining transforming growth factor ß and 1,25(OH)2D3 on differentiation of a human osteosarcoma (MG-63). J Biol Chem 1991; 267: 8943–8949.

    Google Scholar 

  56. Noda M, Rodan G. Type B transforming growth factor inhibits proliferation and expression of alkaline phosphatase in murine osteoblast-like cells. Biochem Biophys Res Commun 1986; 140: 56–65.

    PubMed  CAS  Google Scholar 

  57. Luyten F, Cunningham N, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Wood W, Reddi AH. Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 1989; 264: 13377–13380.

    PubMed  CAS  Google Scholar 

  58. Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM. Purification and characterisation of other distinct bone-inducing factors. Proc Natl Acad Sci USA 1988; 85: 9484–9488.

    PubMed  CAS  Google Scholar 

  59. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA. Novel regulators of bone formation: molecular clones and activities. Science 1988; 242: 1528–1534.

    PubMed  CAS  Google Scholar 

  60. Dedhar S, Gaboury L, Galloway P, Eaves C. Human granulocyte-macrophage colony stimulating factor is a growth factor active on a variety of cell types of nonhemopoietic origin. Proc Natl Acad Sci USA 1988; 85: 9253–9257.

    PubMed  CAS  Google Scholar 

  61. Evans DB, Bunning RAD, Russell RGG. The effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on human osteoblast-like cells. Biochem Biophys Res Commun 1989; 160: 588–595.

    PubMed  CAS  Google Scholar 

  62. Lowe C, Cornish J, Callon K, Martin TJ, Reid IR. Regulation of osteoblast proliferation by leukemia inhibitory factor. J Bone Miner Res 1991; 6: 1277–1283.

    PubMed  CAS  Google Scholar 

  63. Evans DB, Gerber B, Feyen JHM. Recombinant human leukemia inhibitory factor is mitogenic for human bone-derived osteoblastlike cells. Biochem Biophys Res Commun 1994; 199: 220–226.

    PubMed  CAS  Google Scholar 

  64. Metcalf D, Gearing DP. A fatal syndrome in mice engrafted with cells producing high levels of the leukemia inhibitory factor (LIF). Proc Natl Acad Sci USA 1989; 86: 5948–5952.

    PubMed  CAS  Google Scholar 

  65. Civitelli R, Martin TJ, Fausto A, Gunsta SL, Hruska KA, Avioli LV. Parathyroid hormone-related peptide transiently increases cytosolic calcium in osteoblast-like cells—comparison with parathyroid hormone. Endocrinology 1989; 125: 1204–1210.

    PubMed  CAS  Google Scholar 

  66. Rodan SB, Noda M, Wesolowski G, Rosenblastt M, Rodan GA. Comparison of postreceptor effects of 1–34 human hypercalcemic factor and 1–34 human parathyroid hormone in rat osteosarcoma cells. J Clin Invest 1988; 81: 924–927.

    PubMed  CAS  Google Scholar 

  67. Canalis E. Interleukin-1 has independent effects on deoxyribonucleic acid and collagen synthesis in cultures of rat calvariae. Endocrinology 1986; 118: 74–81.

    PubMed  CAS  Google Scholar 

  68. Canalis E. Effects of tumour necrosis factor on bone formation in vitro. Endocrinology 1987; 121: 1596–1604.

    PubMed  CAS  Google Scholar 

  69. Hanazawa S, Ohmori Y, Amano S, Hirose K, Miyoshi T, Kumegowa M, Kitano S. Human purified interleukin-1 inhibits DNA synthesis and cell growth of osteoblastic cell line (MC3T3E1), but enhances alkaline phosphatase in the cells. FEBS Lett 1986; 203: 279–284.

    PubMed  CAS  Google Scholar 

  70. Dedhar S. Regulation of the expression of the cell adhesion receptors, integrins, by recombinant human interleukin-1(3 in human osteosarcoma cells: inhibition of cell proliferation and stimulation of alkaline phosphatase activity. J Cell Physiol 1989; 138: 291–299.

    PubMed  CAS  Google Scholar 

  71. Stashenko P, Dewhirst FE, Rooney ML, Desjardins LA, Heeley JD. Interelukin-113 is a potent stimulator of bone formation in vitro. J Bone Miner Res 1987; 2: 559–565.

    PubMed  CAS  Google Scholar 

  72. Riancho JA, Zarrabeitia MT, Olmos JM, Amado JA, Gonzalez-Macias J. Effects of interleukin-4 on human osteoblast-like cells. Bone Miner 1993; 21: 53–61.

    PubMed  CAS  Google Scholar 

  73. Ueno K, Katayama T, Miyamoto T, Koshihara Y. Interleukin-4 enhances in vitro mineralization in human osteoblast-like cells. Biochem Biophys Res Commun 1992; 189: 1521–1526.

    PubMed  CAS  Google Scholar 

  74. Hughes FJ, Howells GL. Interleukin-11 inhibits bone fromation in vitro. Calcif Tissue Int 1993; 53: 362–364.

    PubMed  CAS  Google Scholar 

  75. Canalis E, Effect of IGF-I on DNA and protein synthesis in cultured rat alvariae. J Clin Invest 1980; 66: 709–719.

    PubMed  CAS  Google Scholar 

  76. Fournier B, Ferralli JM, Price PA, Schlaerppi JM. Comparison of the effects of IGF-I and IGF-II on the human osteosarcoma cell line OHS-4. J Endocrinol 1993; 136: 173–180.

    PubMed  CAS  Google Scholar 

  77. Chenu C, Valentin-Opran A, Chavassieux P, Saez S, Meunier PJ, Delmas PD. IGF-I hormonal regulation by GH and 1,25 vitamin D and activity on human osteoblast-like cells in short term cultures. Bone 1990; 11: 81–86.

    PubMed  CAS  Google Scholar 

  78. Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, Feng JQ, Gnosh-Choudhury N, Wozney J, Mundy GR. Effects of transforming growth factor 13 on bone nodule formation and expression of bone morphogenetic protein 2, osteoclacin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial cells. J Bone Miner Res 1994; 9: 855–863.

    PubMed  CAS  Google Scholar 

  79. Birch MA, Ginty AF, Walsh CA, Fraser WD, Gallagher JA, Bilbe G. PCR detection of cytokines in normal human and pagetic osteoblast-like cells. J Bone Miner Res 1993; 8: 1155–1162.

    PubMed  CAS  Google Scholar 

  80. Chaudhary LR, Spelsberg TC, Riggs BL. Production of various cytokines by human osteoblast-like cells in response to interleukin113 and tumour necrosis factor-a: lack of regulation by 1713-estradiol. Endocrinology 1992; 130: 2528–2534.

    PubMed  CAS  Google Scholar 

  81. Elias JA, Tang W, Horowitz MC. Cytokine and hormonal stimulation of human osteosarcoma interleukin-11 production. Endocrinology 1995; 136: 489–498.

    PubMed  CAS  Google Scholar 

  82. Keeting PE, Rifas L, Harris SA, Colvard DS, Spelsberg TC, Peck WA, Riggs BL. Evidence for interleukin-1 ß production by cultured normal human osteoblast-like cells. J Bone Miner Res 1991; 6: 827–833.

    PubMed  CAS  Google Scholar 

  83. Gowen M, Chapman K, Littlewood AJ, Hughes DE, Evans DB, Russell RGG. Production of tumour necrosis factor by human osteoblasts is modulated by other cytokines, but not by osteotropic hormones. Endocrinology 1990; 126: 1250–1255.

    PubMed  CAS  Google Scholar 

  84. Littlewood AJ, Russell J, Harvey G, Hughes DE, Russell RGG. The modulation of the expression of IL-6 and its receptor in human osteoblasts in vitro. Endocrinology 1991; 129: 1513–1520.

    PubMed  CAS  Google Scholar 

  85. Oursler MJ, Cortese C, Keeting P, Anderson MA, Bonde SK, Riggs BL, Spelsberg TC. Modulation of transforming growth factor-13 production in normal human osteoblast-like cells by 17(3-estradiol and parathyroid hormone. Endocrinology 1991; 129: 3313–3320.

    PubMed  CAS  Google Scholar 

  86. McCarthy TL, Centrella M, Canalis E. PTH enhances the transcript and polypeptide levels of IGF-I in osteoblast-enriched cultures from fetal rat bone. Endocrinology 1989; 124: 1247–1253.

    Google Scholar 

  87. Gray TK, Mohan S, Linkhart TA, Baylink DJ. Estradiol stimulates in vitro the secretion of IGFs by the clonal osteoblastic cell line UMR 106. Biochem Biophys Res Commun 1989; 158: 407–412.

    PubMed  CAS  Google Scholar 

  88. Canalis E, Pash J, Gabbitas B, Rydziel S, Varghese S. Growth factors regulate the synthesis of insulin-like growth factor-I in bone cell cultures. Endocrinology 1993; 133: 33–38.

    PubMed  CAS  Google Scholar 

  89. Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell 1994; 76: 253–262.

    PubMed  CAS  Google Scholar 

  90. Nathan C, Sporn M. Cytokines in context. J Cell Biol 1991; 113: 981–986.

    PubMed  CAS  Google Scholar 

  91. Rogelj S, Klagsbrun M, Atzmon R, Kurokawa M, Haimovitz A, Fuks Z, Vlodaysky I. Basic fibroblast growth factor is an extracellular matrix component required for supporting the proliferation of vascular endothelial cells and the differentiation of PC12 cells. J Cell Biol 1989; 109: 823–831.

    PubMed  CAS  Google Scholar 

  92. Gordon MY, Rile GP, Watt SM, Greaves MF. Compartmentalization of a haemopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment. Nature 1987; 326: 403–405.

    PubMed  CAS  Google Scholar 

  93. Roberts R, Gallagher J, Spooncer E, Allen TD, Bloomfield F, Dexter TM. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 1988; 332: 376–378.

    PubMed  CAS  Google Scholar 

  94. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-(3 by the proteoglycan decorin. Nature 1990; 346: 281–284.

    PubMed  CAS  Google Scholar 

  95. Dike LE, Farmer SR. Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts. Proc Natl Acad Sci USA 1988; 85: 6792–6796.

    PubMed  CAS  Google Scholar 

  96. Hankey DP, Hughes AE, Mollan RAB, Nicholas RM. Extracellular protein secretion of cultured normal and pagetic osteoblasts. Electrophoresis 1993; 14: 644–649.

    PubMed  CAS  Google Scholar 

  97. Garrett IR, Durie BGM, Nedwin GE, Gillespie A, Bringman T, Sabatini M, Bertolini DR, Mundy GR. Production of lymphotoxin, a bone resorbing cytokine, by cultured human myeloma cells. N Engl J Med 1987; 526–532.

    Google Scholar 

  98. Cozzolino F, Torcia M, Aldinucci D, Rubartelli A, Miliani A, Shaw AR, Lansdorp PM, Diguglielmo R. Production of interleukin-1 by bone marrow myeloma cells. Blood 1989; 74: 380–387.

    PubMed  CAS  Google Scholar 

  99. Bataille R, Jourdan M, Zhang Xue-Guang, Klein B. Serum levels of interleukin-6, a potent myeloma cell growth factor as a reflection of disease severity in plasma cell dyscrasias. J Clin Invest 1989; 84: 2008–2011.

    PubMed  CAS  Google Scholar 

  100. Mundy GR. Hypercalcemia in hematologic malignancies and in solid tumors associated with extensive localised bone destruction. In: Favus MJ ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. Raven Press, New York, 1993: 173–176.

    Google Scholar 

  101. Nakamoto T, Chang C, Li A, Chodak GW. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res 1992; 52: 571–577.

    PubMed  CAS  Google Scholar 

  102. Massachusetts General Hospital: Case records of the Massachusetts General Hospital (Case 27461). N Engl J Med 1941; 225: 789–791.

    Google Scholar 

  103. Martin TJ, Moseley JM, Gillespie MT. Parathyroid hormone-related protein: biochemistry and molecular biology. Crit Rev Biochem Mol Biol 1991; 26: 377–395.

    PubMed  CAS  Google Scholar 

  104. Bouizar Z, Spyratos F, Deytieux S, De Vernejoul M, Julliene A. Polymerase chain reaction analysis of parathyroid hormone-related protein gene expression in breast cancer patients and occurence in bone metastases. Cancer Res 1993; 53: 5076–5078.

    PubMed  CAS  Google Scholar 

  105. Luparello C, Ginty AF, Gallagher JA, Pucci-Minafra S. Transforming growth factor 13–1,2 and 3, urokinase and parathyroid hormone-related peptide expression in 8701-BC breast cancer cells and clones. Differentiation 1993; 55: 73–80.

    PubMed  CAS  Google Scholar 

  106. Nouri AME, Panayi GS, Goodman SM. Cytokines and the chronic inflammation of rheumatic disease I. The presence of interleukin-1 in synovial fluids. Clin Exp Immunol 1984; 55:295–300

    PubMed  CAS  Google Scholar 

  107. Houssiau FA, Devogelaer JP, Van Damme J, Nagant de Deuxchaisnes C, van Nicj J. Interleukin-6 in synovial fluid and serum of patients with rheumatoid arthritis and other inflammatory arthritides. Arthritis Rheum 1988; 31: 784–788.

    PubMed  CAS  Google Scholar 

  108. Saxne T, Palladino MA, Heinegard D, Talal N, Wolheim FA. Detection of tumour necrosis factor a but not tumour necrosis factor ß in rheumatoid arthritis synovial fluid and serum. Arthritis Rheum 1988; 31: 1041–1045.

    PubMed  CAS  Google Scholar 

  109. Firestein GS, Xu WD, Townsend K, Broide D, Alvarogracia J, Glasebrook A, Zvaifler NJ. Cytokines in chronic inflammatory arthritis I. Failure to detect T cell lymphokines (interleukin 2 and interleukin 3) and presence of macrophage colony stimulating factor and a novel mast cell growth factor in rheumatoid synovitis. J Exp Med 1988; 168: 1573–1586.

    PubMed  CAS  Google Scholar 

  110. Pacifici R, Rifas L, Teitelbaum S, Slatopolsky E, McCraken R, Bergfeld M, Lee W, Avioli LV, Peck WA. Spontaneous release of interleukin-1 from human blood monocytes relects bone formation in idiopathic osteoporosis. Proc Nati Acad Sci USA 1987; 84: 4616–4620.

    CAS  Google Scholar 

  111. Ralston SH, Russell RGG, Gowen M. Estrogen inhibits release of tumour necrosis factor from peripheral blood mononuclear cells in postmenopausal women. J Bone Miner Res 1990; 5: 983–988.

    PubMed  CAS  Google Scholar 

  112. Pacifici R, Brown C, Puscheck E, Friedrich E, Slatopolsky E, Maggio D, McCracken R, Aviolo LV. Effect of surgical menopause and estrogen replacement on cytokine release from human blood mononuclear cells. Proc Natl Acad Sci USA 1991; 88: 5134–5138.

    PubMed  CAS  Google Scholar 

  113. Girasole G, Jilka RL, Passeri G, Boswell S, Boder G, Williams DC, Manolagas SC. 1713-estradiol inhibits interleukin-6 production by bone-marrow derived stromal cells and osteoblasts in vitro: a potential mechanism for the anti-osteoporotic effect of estrogens. J Clin Invest 1992; 89: 883–891.

    PubMed  CAS  Google Scholar 

  114. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after oestrogen loss: mediation by interleukin-6. Science 1992; 257: 88–91.

    PubMed  CAS  Google Scholar 

  115. Bennett AE, Wahner HW, Riggs BL, Hintz RL. Insulin-like growth factors I and II: aging and bone density in women. J Clin Endocrinol Metab 1984; 59: 701–704.

    PubMed  CAS  Google Scholar 

  116. Donahue LR, Hunter SJ, Sherblom AP, Rosen CJ. Age-related changes in serum IGFBPs in women. J Clin Endocrinol Metab 1990; 71: 575–579.

    PubMed  CAS  Google Scholar 

  117. Johansson AG, Burman P, Westermark K, Ljunghall S. Bone mineral density in acquired GH deficiency correlates with circulating levels of IGF-I. J Inten Med 1992; 232: 447–452.

    CAS  Google Scholar 

  118. Pioli G, Girasole G, Pedrazzoni M, Sansoni P, Erroi A, Davoli L, Ciotti G, Mantovani A, Passeri M. Spontaneous release of interleukin-1 (IL-1) from medullary mononuclear cells of pagetic subjects. Calcif Tissue Int 1989; 45: 257–259.

    PubMed  CAS  Google Scholar 

  119. Roodman GD, Kurihara N, Ohsaki Y, Kukita T, Hosking D, Demulder A, Singer FS. Interleukin-6: a potential autocrine/ paracrine factor in Paget’s disease of bone. J Clin Invest 1992; 89: 46–52.

    PubMed  CAS  Google Scholar 

  120. Hoyland JA, Freemont AJ, Sharpe PT. Interleukin-6, IL-6 receptor, and IL-6 nuclear factor gene expression in Paget’s disease. J Bone Miner Res 1994; 9: 75–80.

    PubMed  CAS  Google Scholar 

  121. Dodds RA, Merry K, Littlewood A, Gowen M. Expression of mRNA for IL113, IL6 and TGF131 in developing human bone and cartilage. J Histochem Cytochem 1994; 42: 733–744.

    PubMed  CAS  Google Scholar 

  122. Kiyokawa T, Yamaguchi K, Takaya M, Takahashi K, Watanabe T, Matsumoto T, Lee SY, Takatsuki K. Hypercalcemia and osteoclast proliferation in adult T-cell leukemia. Cancer 1987; 59: 1187.

    PubMed  CAS  Google Scholar 

  123. Shirakawa F, Yamashita U, Tanaka Y, Watanabe K, Sato K, Hiratake J, Fujihira T, Oda O, Eto S. Production of bone-resorbing activity corresponding to interleukin-la by adult T-cell leukaemia cells in humans. Cancer Res 1988; 48: 4284.

    PubMed  CAS  Google Scholar 

  124. Watanabe T, Yamaguchi K, Takatsuki K, Osame M, Yoshida M. Constitutive expression of parathyroid hormone-related protein gene in human T cell leukemia virus type 1 (HTLV-1) carriers and adult T cell leukemia patients that can be trans-activated by HTLV-1 tax gene. J Exp Med 1990; 172: 759–765.

    PubMed  CAS  Google Scholar 

  125. Bieberich CJ, King CM, Tinkle BT, Jay G. A transgenic model of transactivation by the tax protein of HTLV-1. Virology 1993; 196: 309–318.

    PubMed  CAS  Google Scholar 

  126. Elias J, Zheng T, Einarsson O, Landry M, Trow T, Rebert N, Panuska J. Epithelial interleukin-11: regulation by cytokines, respiratory syncytial virus and retinoic acid. J Biol Chem (in press).

    Google Scholar 

  127. Walsh CA, Birch MA, Fraser WD, Lawton R, Dorgan J, Walsh S, Sansom D, Beresford JN, Gallagher JA. Expression and secretion of parathyroid hormone-related protein by human bone-derived cells in vitro: effects of glucocorticoids. J Bone Miner Res 1995; 10: 17–25.

    PubMed  CAS  Google Scholar 

  128. Ralston SH, Hoey SA, Gallacher SJ, Adamson BB, Boyle IT. Cytokine and growth factor expression in Paget’s disease: analysis by reverse-transcription/polymerase chain reaction. Brit J Rheumat 1994; 33: 620–625.

    CAS  Google Scholar 

  129. Middleton J, Arnott N, Walsh S, Beresford JN. Osteoblasts and osteoclasts in adult human osteophyte tissue express the mRNAs for insulin-like growth factors I and II and the type 1 IGF receptor. Bone 1995; 16: 287–293.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Birch, M.A., Gallagher, J.A. (1996). Cytokines and Growth Factors in Paget’s Disease. In: The Molecular Biology of Paget’s Disease. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22505-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22505-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22507-3

  • Online ISBN: 978-3-662-22505-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics