Paramyxoviruses and Their Possible Role in Paget’s Disease

  • Andrew P. Mee
Part of the Medical Intelligence Unit book series (MIU.LANDES)


Despite the many studies which have been carried out since Sir James Paget’s classical description of the disorder,1 the exact cause of Paget’s disease remains a mystery. Many theories have been proposed, including inflammatory, autoimmune, endocrine and neoplastic etiologies. However, for several years, the consensus of opinion has been that one or more of the paramyxoviruses might be responsible. It is generally thought that, if paramyxoviruses are the cause of the disease, infection occurs in early childhood, and the virus persists in the bone cells to cause disease later in life.


Respiratory Syncytial Virus Newcastle Disease Virus Measle Virus Canine Distemper Virus Subacute Sclerosing Panencephalitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paget J. On a form of chronic inflammation of bones (osteitis deformans). Medico-Chirurg Trans London 1877; 60: 37–63.Google Scholar
  2. 2.
    Kingsbury DW. Paramyxoviridae and their replication. In: Fields BN, Knipe DM, eds. Fields Virology, Volume 1, 2nd ed. New York: Raven Press, 1990: 945–962.Google Scholar
  3. 3.
    Hosaka Y, Kitano H, Ikeguchi S. Studies on the pleomorphism of HVJ virions. Virol 1966; 29: 205–221.CrossRefGoogle Scholar
  4. 4.
    Matthews REF. Classification and nomenclature of viruses. Intervirol 1982; 17: 104–105.CrossRefGoogle Scholar
  5. 5.
    Galinski MS, Wechsler SL. The molecular biology of the Paramyxovirus genus. In: Kingsbury DW, ed. The Paramyxoviruses. New York: Plenum Press, 1991: 41–81.CrossRefGoogle Scholar
  6. 6.
    Scheid A, Choppin PW. Identification of biological activities of Paramyxovirus glycoproteins. Activation of cell fusion, haemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virol 1974; 57: 475–490.CrossRefGoogle Scholar
  7. 7.
    Scheid A, Choppin PW. Two disulphide-linked polypeptide chains constitute the active F protein of Paramyxoviruses. Virol 1977; 80: 54–66.CrossRefGoogle Scholar
  8. 8.
    Choppin PW, Compans RW. Reproduction of Paramyxoviruses. In: Fraenkal-Conrat H, Wagner RR, eds. Comprehensive Virology. New York: Plenum Press, 1975: 95–178.CrossRefGoogle Scholar
  9. 9.
    Oglesbee M. Intranuclear inclusions in paramyxovirus-induced encephalitis: evidence for altered nuclear body differentiation. Acta Neuropath 1992; 84: 407–415.PubMedCrossRefGoogle Scholar
  10. 10.
    Oglesbee M, Krakowka S. Cellular stress response induces selective intranuclear trafficking and accumulation of morbillivirus major core protein. Lab Invest 1993; 68: 109–117.PubMedGoogle Scholar
  11. 11.
    Tsipis JE, Bratt M. Isolation and preliminary characterisation of temperature-sensitive mutants of Newcastle disease virus. J Virol 1976; 18: 848–855.PubMedGoogle Scholar
  12. 12.
    Portner A, Marx PA, Kingsbury DW. Isolation and characterisation of Sendai virus temperature-sensitive mutants. J Virol 1974; 13: 298–304.PubMedGoogle Scholar
  13. 13.
    Yamazi Y, Black FL. Isolation of temperature-sensitive mutants of measles virus. Med Biol 1972; 84: 47–51.Google Scholar
  14. 14.
    Ber gholz CM, Kiley MP, Payne FE. Isolation and characterization of temperature-sensitive mutants of measles virus. J Virol 1975; 16: 192–202.PubMedGoogle Scholar
  15. 15.
    Cosby SL, Lyons C, Fitzgerald SP et al. The isolation of large and small plaque canine distemper viruses which differ in their neurovirulence for hamsters. J Gen Virol 1981; 52: 345–353.PubMedCrossRefGoogle Scholar
  16. 16.
    Cosby SL, Lyons C, Rima BK, Martin SJ. The generation of small-plaque mutants during undiluted passage of canine distemper virus. Intervirol 1985; 23: 157–166.CrossRefGoogle Scholar
  17. 17.
    Perrault J. Origin and replication of defective interfering particles. Cur Top Microbiol and Immunol 1981; 93: 151–207.CrossRefGoogle Scholar
  18. 18.
    Morgan EM, Rapp F. Measles virus and its associated diseases. Bacteriol Rev 1977; 41: 636–666.PubMedGoogle Scholar
  19. 19.
    Tobler LH, Imagawa DT. Mechanism of persistence with canine distemper virus: Difference between a laboratory strain and an isolate from a dog with chronic neurological disease. Intervirol 1984; 21: 77–86.CrossRefGoogle Scholar
  20. 20.
    Cattaneo R, Schmid A, Eschle D et al. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 1988; 55: 255–265.PubMedCrossRefGoogle Scholar
  21. 21.
    Oldstone MBA, Fujinami RS. Virus persistence and avoidance of immune surveillance: How measles can be induced to persist in cells, escape immune assault and injure tissues. In: Mahy BWJ, Minson AC, Darby GK, eds. Virus Persistence. Cambridge: Cambridge University Press, 1982.Google Scholar
  22. 22.
    Joseph BS, Oldstone MBA. Antibody-induced redistribution of measles virus antigens on the cell surface. J Immunol 1974; 113: 1205–1209.PubMedGoogle Scholar
  23. 23.
    Joseph BS, Oldstone MBA. Immunologic injury in measles virus infection. II. Suppression of immune injury through antigenic modulation. J Exp Med 1975; 142: 864–876.PubMedCrossRefGoogle Scholar
  24. 24.
    Fujinami RS, Oldstone MBA. Antiviral antibody reacting on the plasma membrane alters measles virus expression inside the cell. Nature 1979; 279: 935–940.CrossRefGoogle Scholar
  25. 25.
    Fujinami RS, Oldstone MBA. Alterations in expression of measles virus polypeptides by antibody: Molecular events in antibody-induced antigenic modulation. J Immunol 1980; 125: 78–85.PubMedGoogle Scholar
  26. 26.
    Wear DJ, Rapp F. Latent measles virus infection of the hamster central nervous system. J Immunol 1971; 107: 1593–1598.PubMedGoogle Scholar
  27. 27.
    Albrecht P, Burnstein T, Klutch MJ et al. Subacute sclerosing panencephalitis: Experimental infection in primates. Science 1977; 195: 64–66.PubMedCrossRefGoogle Scholar
  28. 28.
    Russell WC, Goswami KKA. Antigenic relationships in the Paramyxoviridae—Implications for persistent infections in the central nervous system. In: Mims C, Cuzner ML, Kelly RE, eds. Viruses and Demyelinating Diseases. London: Academic Press, 1984: 89–99.Google Scholar
  29. 29.
    Maehlen J, Olsson T, Love A et al. Persistence of measles virus in rat brain neurons is promoted by depletion of CD8+ T cells. J Neuroimmunol 1989; 21: 149–155.PubMedCrossRefGoogle Scholar
  30. 30.
    McChesney MB, Oldstone MBA. Viruses perturb lymphocyte functions: Selected principles characterising virus-induced immunosuppression. Ann Rev Immunol 1987; 5: 279–304.CrossRefGoogle Scholar
  31. 31.
    Blaese RM, Hofstrand H. Immunocompetence of patients with SSPE. Arch Neurol 1975; 32: 494–495.Google Scholar
  32. 32.
    Sell KW, Ahmed A. Humoral and cellular immune responses in patients with SSPE. Arch Neurol 1975; 32: 496.Google Scholar
  33. 33.
    Oldstone MBA. Viral persistence. Cell 1989; 56: 517–520.PubMedCrossRefGoogle Scholar
  34. 34.
    Randall RE, Russell WC. Paramyxovirus persistence. Consequences for host and virus. In: Kingsbury DW, ed. The Paramyxoviruses. New York: Plenum Press, 1991: 299–321.CrossRefGoogle Scholar
  35. 35.
    Joseph BS, Lampert PW, Oldstone MBA. Replication and persistence of measles virus in defined subpopulations of human leucocytes. J Virol 1975; 16: 1638–1649.PubMedGoogle Scholar
  36. 36.
    Sullivan JL, Barry DW, Lucas SJ, Albrecht P. Measles infection of human mononuclear cells. I. Acute infections of peripheral blood lymphocytes and monocytes. J Exp Med 1975; 142: 773–784.PubMedCrossRefGoogle Scholar
  37. 37.
    Appel MJG. Canine distemper virus. In: Appel MJG, ed. Virus Infections of Vertebrates. Amsterdam: Elsevier, 1987: 133–159.Google Scholar
  38. 38.
    Horta-Barbosa L, Hamilton R, Witting B et al. Subacute sclerosing panencephalitis: Isolation of suppressed measles virus from lymph node biopsies. Science 1971; 173: 840–841.PubMedCrossRefGoogle Scholar
  39. 39.
    Robbins SJ, Wrzas H, Kline AL et al. Rescue of a cytopathic paramyxovirus from peripheral blood leucocytes in subacute sclerosing panencephalitis. J Infect Dis 1981; 144: 396–403.CrossRefGoogle Scholar
  40. 40.
    Goswami KKA, Cameron KR, Russell WC et al. Evidence for the persistence of Paramyxoviruses in human bone marrow cells. J Gen Virol 1984; 65: 1881–1888.PubMedCrossRefGoogle Scholar
  41. 41.
    Swoveland PT, Johnson KP. Subacute sclerosing panencephalitis and other paramyxovirus infections. In: McKendall RR, ed. Handbook of Clinical Neurology, Volume 12. Amsterdam: Elsevier, 1989: 417–437.Google Scholar
  42. 42.
    Dawson JR. Cellular inclusions in cerebral lesions of lethargic encephalitis. Am J Path 1933; 9: 7–15.PubMedGoogle Scholar
  43. 43.
    Van Bogaert L. Une leuco-encéphalite sclérosante subaigüe. J Neurol, Neurosurg Psych 1945, 8: 101–120.CrossRefGoogle Scholar
  44. 44.
    Greenfield JG. Encephalitis and encephalomyelitis in England and Wales during the last decade. Brain 1950; 73: 141–166.PubMedCrossRefGoogle Scholar
  45. 45.
    Connolly JH, Allen IV, Hurwitz LJ, Miller JHD. Measles virus antibody and antigen in subacute sclerosing panencephalitis. Lancet 1967; 1: 542–544.PubMedCrossRefGoogle Scholar
  46. 46.
    Billeter MA, Cattaneo R. Molecular biology of defective measles viruses persisting in the human central nervous system. In: Kingsbury DW, ed. The Paramyxoviruses. New York: Plenum Press, 1991: 323–345.CrossRefGoogle Scholar
  47. 47.
    Bass BL, Weintraub H, Cattaneo R, Billeter MA. Biased hyper-mutation of viral RNA genomes could be due to unwinding/modification of double-stranded RNA. Cell 1989; 56: 331.PubMedCrossRefGoogle Scholar
  48. 48.
    Gavish D, Kleinman Y, Morag A, Chajek-Shaul T. Hepatitis and jaundice associated with measles in young adults. Arch Int Med 1983; 143: 674–677.CrossRefGoogle Scholar
  49. 49.
    Triger DR, Kurtz JB, MacCallum FO, Wright R. Raised antibody titres to measles and rubella viruses in chronic active hepatitis. Lancet 1972; 1: 665–667.PubMedCrossRefGoogle Scholar
  50. 50.
    Randall RE, Russell WC. Paramyxovirus persistence. Consequences for host and virus. In: Kingsbury DW, ed. The Paramyxoviruses. New York: Plenum Press, 1991: 299–321.CrossRefGoogle Scholar
  51. 51.
    Robertson DAF, Zhang SL, Guy EC, Wright R. Persistent measles virus genome in autoimmune chronic active hepatitis. Lancet 1987; 2: 9–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Kalland K-H, Endresen C, Haukenes G, Schrumpt E. Measles-specific nucleotide sequences and autoimmune chronic active hepatitis. Lancet 1989; 1: 1390–1391.PubMedCrossRefGoogle Scholar
  53. 53.
    ter Meulen V, Stephenson JR. The possible role of virus infections in multiple sclerosis and other demyelinating diseases. In: Haupike JF, Adams CWM, Rourtellotte WW, eds. Multiple Sclerosis: Pathology, Diagnoses and Management. Baltimore: Williams and Wilkins, 1981: 379–399.Google Scholar
  54. 54.
    Adams JM, Imagawa DT. Measles antibodies in multiple sclerosis. Proc Soc Exp Biol Med 1962; 111: 562–566.PubMedGoogle Scholar
  55. 55.
    Haire M, Frazer KB, Miller JHD. Measles and other virus specific immunoglobulins in multiple sclerosis. Brit Med J 1973; 3: 612–615.PubMedCrossRefGoogle Scholar
  56. 56.
    Norrby E, Link H, Olsson JE et al. Comparison of antibodies against different viruses in cerebral fluid and serum samples from patients with multiple sclerosis. Inf Imm 1974; 10: 688–694.Google Scholar
  57. 57.
    Cook SD, Dowling PC, Russell WC. Multiple sclerosis and canine distemper. Lancet 1978; 1: 605–606.PubMedCrossRefGoogle Scholar
  58. 58.
    Hughes RAC, Russell WC, Froude JRL, Jarrett RJ. Pet ownership, distemper antibodies and multiple sclerosis. J Neurol Sci 1980; 47: 429–432.PubMedCrossRefGoogle Scholar
  59. 59.
    Goswami KKA, Randall RE, Lange LS, Russell WC. Antibodies against the paramyxovirus SV5 in the cerebral spinal fluids of some multiple sclerosis patients. Nature 1987; 327: 244–247.PubMedCrossRefGoogle Scholar
  60. 60.
    Stevens JG, Bastone VB, Ellison GW, Myers LW. No measles virus genetic information detected in multiple sclerosis derived brains. Ann Neurol 1980; 8: 625–627.PubMedCrossRefGoogle Scholar
  61. 61.
    Dowling PC, Blumberg BM, Kolakofsky D et al. Measles virus nucleic acid sequences in human brain. Vir Res 1986; 5: 97–107.CrossRefGoogle Scholar
  62. 62.
    Haase AT, Ventura P, Gibbs CJ, Tourtellotte WW. Measles virus nucleotide sequences: detection by hybridisation in situ. Science 1981; 212: 672–675.PubMedCrossRefGoogle Scholar
  63. 63.
    Haase AT, Stowring L, Ventura P et al. Detection by hybridisation of viral infection of the CNS. Ann New York Acad Sci 436: 103–108.Google Scholar
  64. 64.
    Cosby SL, McQuaid S, Taylor MJ et al. Examination of eight cases of multiple sclerosis and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus 5 and rubella virus. J Gen Virol 1989; 70: 2027–2036.PubMedCrossRefGoogle Scholar
  65. 65.
    Wakefield AJ, Sawyerr AM, Dhillon AP et al. Pathogenesis of Crohn’s disease: Multifocal gastrointestinal infarction. Lancet 1989; 2: 1057–1062.PubMedCrossRefGoogle Scholar
  66. 66.
    Wakefield AJ, Pittilo RM, Sim R et al. Evidence of persistent measles virus infection in Crohn’s disease. J Med Virol 1993; 39: 345–353.PubMedCrossRefGoogle Scholar
  67. 67.
    Rebel A, Malkani K, Basle M. Anomalies nucleaires des osteoclasts de la maladie osseuse de Paget. Nouv Pres Med 1974; 3: 1299–1301.Google Scholar
  68. 68.
    Mills BG, Singer FR. Nuclear inclusions in Paget’s disease of bone. Science 1976; 194: 201–202.PubMedCrossRefGoogle Scholar
  69. 69.
    Gheradi G, Lo Cascio V, Bonucci E. Fine structure of nuclei and cytoplasm of osteoclasts in Paget’s disease of bone. Histopath 1980; 4: 63–74.CrossRefGoogle Scholar
  70. 70.
    Howatson AF, Fornasier VL. Microfilaments associated with Paget’s disease of bone: Comparison with nucleocapsids of measles virus and respiratory syncytial virus. Intervirol 1982; 18: 150–159.CrossRefGoogle Scholar
  71. 71.
    Mii Y, Miyauchi Y, Honoki K et al. Electron microscopic evidence of a viral nature for osteoclast inclusions in Paget’s disease of bone. Virch Arch 1994; 424: 99–104.Google Scholar
  72. 72.
    Schajowicz F, Ubios AM, Santini Araujo E, Cabrini RL. Virus-like intranuclear inclusions in giant cell tumour of bone. Clin Orth Rel Res 1985; 201: 247–250.Google Scholar
  73. 73.
    Beneton MNC, Harris S, Kanis JA. Paramyxovirus-like inclusions in two cases of pycnodysostosis. Bone 1987; 8: 211–217.PubMedCrossRefGoogle Scholar
  74. 74.
    Mills BG, Yabe H, Singer FR. Osteoclasts in human osteopetrosis contain viral-nucleocapsid-like nuclear inclusions. J Bone Min Res 1988; 3: 101–106.CrossRefGoogle Scholar
  75. 75.
    Dickson GR, Shirodria PV, Kanis JA et al. Familial expansile osteolysis. A morphological, histomorphometric and serological study. Bone 1991; 12: 331–338.PubMedCrossRefGoogle Scholar
  76. 76.
    Bianco P, Silvestrini G, Ballanti P, Bonucci E. Paramyxovirus-like nuclear inclusions identical to those of Paget’s disease of bone detected in giant cells of primary oxalosis. Virch Arch 1992; 421A: 427–433.CrossRefGoogle Scholar
  77. 77.
    Rebel A, Basle M, Pouplard A et al. Viral antigens in osteoclasts from Paget’s disease of bone. Lancet 1980; 2: 344–346.PubMedCrossRefGoogle Scholar
  78. 78.
    Singer FR, Mills BG. Evidence for a viral aetiology of Paget’s disease of bone. ClinOrth Rel Res 1983; 178: 245–251.Google Scholar
  79. 79.
    Basle MF, Russell WC, Goswami KKA et al. Paramyxovirus antigens in osteoclasts from Paget’s bone tissue detected by mononuclear antibodies. J Gen Virol 1985; 66: 2103–2110.PubMedCrossRefGoogle Scholar
  80. 80.
    Mills BG, Singer FR, Weiner LP, Holst PA. Immunohistological demonstration of respiratory syncytial virus antigens in Paget’s disease of bone. Proc Nat Acad Sci USA 1981; 78: 1209–1213.PubMedCrossRefGoogle Scholar
  81. 81.
    Pringle CR, Wilkie ML, Elliott RM. A survey of respiratory syncytial virus and parainfluenza virus type 3 neutralising and immunoprecipitating antibodies in relation to Paget’s disease. J Med Virol 1985; 17: 377–386.PubMedCrossRefGoogle Scholar
  82. 82.
    Mills BG, Singer FR, Weiner LP et al. Evidence for both respiratory syncytial virus and measles virus antigens in the osteoclasts of patients with Paget’s disease of bone. Clin Orth Rel Res 1984; 183: 303–311.Google Scholar
  83. 83.
    Basle MF, Fournier JG, Rozenblatt S et al. Measles virus RNA detected in Paget’s disease bone tissue by in situ hybridisation. J Gen Virol 1986; 67: 907–913.PubMedCrossRefGoogle Scholar
  84. 84.
    Gordon MT, Anderson DC, Sharpe PT. Canine distemper virus localised in bone cells of patients with Paget’s disease. Bone 1991; 12: 195–201.PubMedCrossRefGoogle Scholar
  85. 85.
    Cartwright EJ, Gordon MT, Freemont AJ et al. Paramyxoviruses and Paget’s disease. J Med Virol 1993; 40: 133–141.PubMedCrossRefGoogle Scholar
  86. 86.
    Ralston SH, Digiovine FS, Gallacher SJ et al. Failure to detect paramyxovirus sequences in Paget’s disease of bone using the polymerase chain reaction. J Bone Min Res 1991; 6: 1243–1248.CrossRefGoogle Scholar
  87. 87.
    Birch MA, Taylor W, Fraser WD et al. Absence of paramyxovirus RNA in cultures of pagetic bone cells and in pagetic bone. J Bone Min Res 1994; 9: 11–16.CrossRefGoogle Scholar
  88. 88.
    Nuovo MA, Nuovo GJ, MacConnell P et al. In situ analysis of Paget’s disease of bone for measles-specific PCR amplified cDNA. Diagn Mol Path 1992; 1: 256–265.Google Scholar
  89. 89.
    Roodman GD. Biology of the osteoclast in Paget’s disease. Sem Arth Rheum 1994; 23: 235–236.CrossRefGoogle Scholar
  90. 90.
    Reddy SV, Singer FR, Roodman GD. Marrow mononuclear cells from patients with Paget’s disease contain measles virus nucleocapsid mRNA that have mutations in a specific region of the sequence. J Clin Endocrinol Met 1995; 80: 2108–2111.CrossRefGoogle Scholar
  91. 91.
    O’Driscoll JB, Anderson DC. Past pets and Paget’s disease. Lancet 1985; 2: 919–921.PubMedCrossRefGoogle Scholar
  92. 92.
    O’Driscoll JB, Buckler HM, Jeacock J, Anderson DC. Dogs, distemper and osteitis deformans: A further epidemiological study. Bone Min 1990; 11: 209–216.CrossRefGoogle Scholar
  93. 93.
    Holdaway IM, Ibbertson HK, Wattie D et al. Previous pet ownership and Paget’s disease. Bone Min 1990; 8: 53–58.CrossRefGoogle Scholar
  94. 94.
    Barker DJP, Detheridge FM. Dogs and Paget’s disease. Lancet 1985; 2: 1245.PubMedCrossRefGoogle Scholar
  95. 95.
    Siris ES, Kelsey JL, Flaster E, Parker S. Paget’s disease of bone and previous pet ownership in the United States: Dogs exonerated. Int J Epidemiol 1990; 19: 455–458.PubMedCrossRefGoogle Scholar
  96. 96.
    Gordon MT, Mee AP, Anderson DC, Sharpe PT. Canine distemper virus transcripts sequenced from pagetic bone. Bone Min 1992; 19: 159–174.CrossRefGoogle Scholar
  97. 97.
    Mee AP, Sharpe PT. Dogs, distemper and Paget’s disease. BioEssays 1993; 15: 783–789.Google Scholar
  98. 98.
    Mee AP, Sharpe PT. Letter to the editor. Bone Min 1994; 24: 75–76.CrossRefGoogle Scholar
  99. 99.
    Morgan-Capner P, Robinson P, Clewley G et al. Measles antibody in Paget’s disease. Lancet 1981; 2: 733.CrossRefGoogle Scholar
  100. 100.
    Winfield J, Sutherland S. Measles antibody in Paget’s disease. Lancet 1981; 1: 891.PubMedCrossRefGoogle Scholar
  101. 101.
    Basle MF, Kouyoumdjian S, Pouplard A et al. Paget’s bone disease. Preliminary serological study. Pathol Biol 1982; 31: 41–44.Google Scholar
  102. 102.
    Hamill RJ, Baughn RS, Mallette LE et al. Serological evidence against the role of canine distemper virus in the pathogenesis of Paget’s disease of bone. Lancet 1986; 2: 1399.PubMedCrossRefGoogle Scholar
  103. 103.
    Gordon MT, Bell SC, Mee AP et al. The prevalence of canine distemper antibodies in the pagetic population. J Med Virol 1993; 40: 313–317.PubMedCrossRefGoogle Scholar
  104. 104.
    Jenner E (cited by Kirk H). Canine Distemper, its Complications, Sequelae and Treatment, ist ed. London: Baillere, Tindall and Cox, 1922.Google Scholar
  105. 105.
    Carré H. Sur la maladie des jeunes chiens. Comp Rend Acad Sci 1905; 140: 689–690, 1489–1491.Google Scholar
  106. 106.
    Yoshikawa Y, Ochikubo F, Matsubara Y et al. Natural infection with canine distemper virus in a Japanese Monkey (Macaca fuscata). Vet Microbiol 1989; 20: 193–205.PubMedCrossRefGoogle Scholar
  107. 107.
    Visser IKG, Kumarev V, Orvell C et al. Comparison of two morbilliviruses isolated from seals during outbreaks of distemper in North West Europe and Siberia. Arch Virol 1990; 111: 149–164.PubMedCrossRefGoogle Scholar
  108. 108.
    Nicolle C. La maladie du jeune âge des chiens est transmissible expérimentalement à l’homme sous forme inapparente. Arch Inst Pasteur Tunis 1931; 20: 321–323.Google Scholar
  109. 109.
    Bürge T, Griot C, Vandevelde M, Peterhans E. Antiviral antibodies stimulate production of reactive oxygen species in cultured canine brain cells infected with canine distemper virus. J Virol 1989; 63: 2790–2797.PubMedGoogle Scholar
  110. 110.
    Vandevelde M, Kristensen B, Braund KG et al. Chronic canine distemper virus encephalitis in mature dogs. Vet Path 1980; 17: 17–29.CrossRefGoogle Scholar
  111. 111.
    Maclntyre AB, Trevan DJ, Montgomerie R. Observations on canine encephalitis. Vet Rec 1948; 60: 635–642.Google Scholar
  112. 112.
    Bodingbauer J. Retention of teeth in dogs as a sequel to distemper infection. Vet Rec 1960; 72: 636–637.Google Scholar
  113. 113.
    Cordy DR. Canine encephalomyelitis. Cornell Vet 1942; 32: 11–28.Google Scholar
  114. 114.
    Lincoln SD, Gorham JR, Ott RL, Hegreberg GA. Aetiolgic studies of old dog encephalitis. I. Demonstration of canine distemper viral antigen in the brain in two cases. Vet Path 1971; 8: 1–8.Google Scholar
  115. 115.
    Lincoln SD, Gorham JR, Davis WC, Ott RL. Studies of old dog encephalitis. II. Electron microscopic and immunohistologic findings. Vet Path 1973; 10: 124–129.CrossRefGoogle Scholar
  116. 116.
    Imagawa DT, Howard EB, Van Pelt LF et al. Isolation of canine distemper virus from dogs with chronic neurological diseases. Proc Soc Exp Biol Med 1980; 164: 355–362.PubMedGoogle Scholar
  117. 117.
    Bennett D. Immune based inflammatory joint disease of the dog. Canine rheumatoid arthritis 1. Clinical, radiological and laboratory investigations. J Small Anim Prac 1987a; 28: 779–798.CrossRefGoogle Scholar
  118. 118.
    Bennett D. Immune based inflammatory joint disease of the dog. Canine rheumatoid arthritis 2. Pathological investigations. J Small Anim Prac 19876; 28: 799–820.Google Scholar
  119. 119.
    Bell SC, Carter SD, Bennett D. Canine distemper viral antigens and antibodies in dogs with rheumatoid arthritis. Res Vet Sci 1991; 50: 64–68.PubMedCrossRefGoogle Scholar
  120. 120.
    May C, Carter SD, Bell SC, Bennett D. Immune responses to canine distemper virus in joint diseases of dogs. Brit J Rheum 1993; 33: 27–31.CrossRefGoogle Scholar
  121. 121.
    Schumacher HR, Newton C, Halliwell EW. Synovial pathologic changes in spontaneous canine rheumatoid-like arthritis. Arth Rheum 1980; 23: 412–423.CrossRefGoogle Scholar
  122. 122.
    Dryll A, Cazalais P, Ryckewaert A. Lymphocyte tubular structures in rheumatoid arthritis. J Clin Path 1977; 30: 822–826.PubMedCrossRefGoogle Scholar
  123. 123.
    Gottlieb NL, Ditchek N, Poiley J, Kiem IM. Pets and rheumatoid arthritis. An epidemiologic survey. Arth Rheum 1974; 17: 229–234.CrossRefGoogle Scholar
  124. 124.
    Mee AP, Webber DM, May C et al. Detection of canine distemper virus in bone cells in the metaphyses of distemper-infected dogs. J Bone Min Res 1992; 7: 829–834.CrossRefGoogle Scholar
  125. 125.
    Baumgartner W, Boyce RW, Weisbrode SE et al. Histological and immunocytochemical characterisation of canine distemper-associated metaphyseal bone lesions in young dogs following experimental infection. Vet Path 1995; 32: 702–709.CrossRefGoogle Scholar
  126. 126.
    Meier H, Clark ST, Schnelle GB, Will DH. Hypertrophic osteodystrophy associated with disturbance of vitamin C synthesis in dogs. J Am Vet Med Assoc 1957; 130: 483–49 1.Google Scholar
  127. 127.
    Grendalen J. Metaphyseal osteopathy (hypertrophic osteodystrophy) in growing dogs. A clinical study. J Small Anim Prac 1976; 17: 721–735.CrossRefGoogle Scholar
  128. 128.
    Woodard JC. Canine hypertrophic osteodystrophy, a study of the spontaneous disease in littermates. Vet Path 1982; 19: 337–354.CrossRefGoogle Scholar
  129. 129.
    Merillat LA. Barlow’s disease of the dog. Vet Med 1936; 31: 304–306.Google Scholar
  130. 130.
    Holmes JR. Suspected skeletal scurvy in the dog. Vet Rec 1962; 74: 801–813.Google Scholar
  131. 131.
    Watson ADJ, Blair RC, Farrow BRH et al. Hypertrophic osteodystrophy in the dog. Aust Vet J 1973; 49: 433–439.PubMedCrossRefGoogle Scholar
  132. 132.
    Rendano VT, Dueland R, Sifferman RL. Letter to the editor: Metaphyseal osteopathy: (hypertrophic osteodystrophy). J Small Anim Prac 1977; 18: 679–683.Google Scholar
  133. 133.
    Vaananen M, Wikman L. Scurvy as a cause of osteodystrophy. J Small Anim Prac 1979; 20: 491–500.CrossRefGoogle Scholar
  134. 134.
    Bennett D. Nutrition and bone disease in the dog and cat. Vet Rec 1976; 98: 313–320.PubMedCrossRefGoogle Scholar
  135. 135.
    Teare JA, Krook L, Kallfelz FA, Hintz HF. Ascorbic acid deficiency and hypertrophic osteodystrophy in the dog: a rebuttal. Cornell Vet 1979; 69: 384–401.PubMedGoogle Scholar
  136. 136.
    Hedhammar A, Wu FM, Krook L et al. Oversupplementation and skeletal disease: an experimental study in growing Great Dane dogs. Cornell Vet 1974; 64 (Suppl. 5): 11–160.PubMedGoogle Scholar
  137. 137.
    Hazewinkel HAW, Goedegebuure SA, Poulos PW, Wolvekamp WTC. Influences of chronic calcium excess on the skeletal development of growing Great Danes. J Am Anim Hosp Assoc 1985; 21: 377–391.Google Scholar
  138. 138.
    Goedegebuure SA, Hazewinkel HAW. Morphological findings in young dogs chronically fed a diet containing excess calcium. Vet Path 1986; 23: 594–605.Google Scholar
  139. 139.
    Mee AP, Gordon MT, May C et al. Canine distemper virus transcripts etected in the bone cells of dogs with metaphyseal osteopathy. Bone 1993; 14: 59–67.PubMedCrossRefGoogle Scholar
  140. 140.
    Mee AP, May C, Bennett D et al. Generation of multinucleated osteoclast-like cells from canine bone marrow: Effects of canine distemper virus. Bone 1995; 17: 47–55.PubMedCrossRefGoogle Scholar
  141. 141.
    Kukita A, Chenu C, McManus LM et al. Atypical multinucleated cells form in long-term marrow cultures from patients with Paget’s disease. J Clin Invest 1990; 85: 1280–1286.PubMedCrossRefGoogle Scholar
  142. 142.
    Demulder A, Takahashi S, Singer FR et al. Abnormalities in osteoclast precursors and marrow accessory cells in Paget’s disease. Endocrinol 1993; 1978–1982.Google Scholar
  143. 143.
    Mee AP, Hoyland JA Baird P et al. canine bone marrow cell cultures infected with canine distemper virus: An in vitro model of Paget’s disease. Bone 1995; 17: 461S - 466S.PubMedCrossRefGoogle Scholar
  144. 144.
    Hoyland JA, Freemont AJ, Sharpe PT. Interleukin-6 (IL-6), IL-6 receptor and IL-6 nuclear factor gene expression in Paget’s disease. J Bone Min Res 1994; 9: 75–80.CrossRefGoogle Scholar
  145. 145.
    Hoyland JA, Sharpe PT. Up-regulation of c-Fos protooncogene expression in pagetic osteoclasts. J Bone Min Res 1994; 9: 1191–1194.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Andrew P. Mee

There are no affiliations available

Personalised recommendations