The Vagaries of Diffusion

  • Paul S. Agutter
  • Philip L. Taylor
Part of the Molecular Biology Intelligence Unit book series (MBIU)


In the first chapter we noted that molecule movements within a compartment are considered irrelevant to transport just as far as they can be attributed to diffusion; and conversely, so far as a molecule’s movements are not due to diffusion, they must be considered part of transport. We offered prima facie reasons for doubting whether cytoplasmic or nucleoplasmic proteins and RNAs could be held to ‘diffuse’ over distances many times greater than molecular dimensions, but our contention rested on an intuitive understanding of that term. The issue is central to the question of how we should properly conceive of nucleocytoplasmic transport, and is highly relevant to other aspects of cell physiology. It bears directly on the interpretation of experimental work and on the direction of some theorizing. Therefore we need to address the notion of ‘diffusion’ in detail.


Brownian Motion Nuclear Envelope Cytoplasmic Streaming Nucleocytoplasmic Transport Amphibian Oocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fick AE. Über diffusion. Ann Phys Leipzig 1855; 94: 59–86.CrossRefGoogle Scholar
  2. 2.
    Einstein A. Von der molekulärkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Phys 1905; 17: 549–554.CrossRefGoogle Scholar
  3. 3.
    Smoluchowski M von. Zür Kinetischen Theorie der Brownschen Molekulärbewegung und der Suspensionen. Ann Phys 1906; 21: 756–780.CrossRefGoogle Scholar
  4. 4.
    Fourier JB. Théorie Analytique de la Chaleur. Paris: Oevres 1822. In: Translated Freeman A. The Analytical Theory of Heat. London: Cambridge University Press, 1878.Google Scholar
  5. 5.
    Carslaw HS, Jaeger JC. Conduction of Heat in Solids. Oxford: Clarendon, 1959.Google Scholar
  6. 6.
    Agutter PS, Malone PC, Wheatley DN. Intracellular transport mechanisms; a critique of diffusion theory. J Theoret Biol 1995; 176: 261–272.CrossRefGoogle Scholar
  7. 7.
    Hille B. Ionic Channels of Excitable Membranes. Sunderland, Massachusetts: Sinauer, 1984.Google Scholar
  8. 8.
    Donnan FG. Concerning the applicability of thermodynamics to the phenomena of life. J Gen Physiol 1927; 8: 885–694.CrossRefGoogle Scholar
  9. 9.
    Kellermeyer M, Rouse D, Gyorkey F et al. Potassium retention in membraneless thymus nuclei. Physiol Chem Phys Med NMR 1984; 16: 503–511.Google Scholar
  10. 10.
    Wheatley DN. On the possible importance of an intracellular circulation. Life Sci 1985; 36: 299–307.PubMedCrossRefGoogle Scholar
  11. 11.
    Wheatley DN, Malone PC. Heat conductance, diffusion theory and intracellular metabolic regulation. Biol Cell 1993; 79: 1–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Halling PJ. Do the laws of chemistry apply to living cells? Trends Biochem Sci 1989; 14: 317–318.PubMedCrossRefGoogle Scholar
  13. 13.
    Saxton MJ. Lateral diffusion in an archipelago. Biophys J 1982; 39: 165–173.PubMedCrossRefGoogle Scholar
  14. 14.
    Bers DM, Peskoff A. Diffusion around a cardiac calcium channel and the role of surface bound calcium. Biophys J 1991; 59: 703–721.PubMedCrossRefGoogle Scholar
  15. 15.
    Eckstein EC, Belgacem F. Model of platelet transport in flowing blood with drift and diffusion terms. Biophys J 1991; 60: 53–69.PubMedCrossRefGoogle Scholar
  16. 16.
    Zwanzig R, Szabo A, Bagchi B. Levinthal’s paradox. Biophys J 1991; 60: 671–678.PubMedCrossRefGoogle Scholar
  17. 17.
    Fulton AB. How crowded is the cytoplasm? Cell 1982; 30: 345–347.PubMedCrossRefGoogle Scholar
  18. 18.
    Wolosewick JJ, Porter KR. Microtrabecular lattice of the cytoplasmic ground substance. J Cell Biol 1976; 82: 114–139.CrossRefGoogle Scholar
  19. 19.
    Srere P. The Metabolon. Trends Biochem Sci 1985; 10: 109–111.CrossRefGoogle Scholar
  20. 20.
    Srivastava DK, Bernhard S. Metabolite transfer via enzyme-enzyme complexes. Science 1986; 234: 1081–1083.PubMedCrossRefGoogle Scholar
  21. 21.
    Weiner N. Cybernetics. New York: Wiley, 1948.Google Scholar
  22. 22.
    Wheatley DN, Redfern A, Johnson RPC. Heat induced disturbances of intracellular movement and the consistency of the aqueous cytoplasm in HeLa S3 cells; a laser-Doppler and proton NMR study. Physiol Chem Phys NMR 1991; 23: 199–266.Google Scholar
  23. 23.
    Wheatley DN, Clegg JS. What determines the basal metabolic rate of vertebrate cells in vivo? Biosystems 1994; 32: 83–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerard RW. Unresting Cells. New York: Harper, 1940.Google Scholar
  25. 25.
    Tyrrell HJV. Diffusion and Heat Flow in Liquids. London: Butterworth, 1961.Google Scholar
  26. 26.
    Crank J. The Mathematics of Diffusion. 2nd ed. Oxford: Clarendon Press, 1975.Google Scholar
  27. 27.
    Anderson DK, Hall JR, Babb AL. Mutual diffusion in non-ideal binary liquid matrices. J Phys Chem 1958; 62: 404–409.CrossRefGoogle Scholar
  28. 28.
    Irani RR, Adamson AW. Transport processes in liquid systems 3. Thermodynamic complications in the testing of existing diffusional theories. J Phys Chem 1960; 64: 199–204.CrossRefGoogle Scholar
  29. 29.
    Robinson RA, Stokes RH. Electrolyte Solutions. London: Butterworth, 1965.Google Scholar
  30. 30.
    Rice SA, Fisch HL. Statistical theory of transport. Ann Rev Phys Chem 1962; 11: 187–272.CrossRefGoogle Scholar
  31. 31.
    Polanyi M. Life’s irreducible structure. Science 1968; 160: 1308–1312.PubMedCrossRefGoogle Scholar
  32. 32.
    Paine PL, Horowitz SB. The movement of material between nucleus and cytoplasm. In: Goldstein L, Prescott DM, eds. Cell Biology: A Comprehensive Treatise. New York Academic Press, 1980: 299–338.Google Scholar
  33. 33.
    Wang Y-L, Lanni F, McNeil PL et al. Mobility of cytoplasmic and membrane-associated actin in living cells. Proc Natl Acad Sci USA 1982; 79: 4660–4664.PubMedCrossRefGoogle Scholar
  34. 34.
    Jacobson K. Wojcieszyn J. The translational mobility of substances within the cytoplasmic matrix. Proc Natl Acad Sci USA 1984; 81: 6747–6751.PubMedCrossRefGoogle Scholar
  35. 35.
    Clegg JS. Properties and metabolism of the aqueous cytoplasm and its boundaries. Amer J Physiol 1984; 246: R133–151.PubMedGoogle Scholar
  36. 36.
    Peters R. Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility. Biochim Biophys Acta 1986; 864: 305–359.PubMedCrossRefGoogle Scholar
  37. 37.
    Lang I, Scholz M, Peters R Molecular mobility and nucleocytoplasmic flux in hepatoma cells. J Cell Biol 1986; 102: 1183–1190.PubMedCrossRefGoogle Scholar
  38. 38.
    Horowitz SB, Fenichel IR, Hoffman B et al. The intracellular transport and distribution of cysteamine phosphate derivatives. Biophys J 1970; 10: 944–1010.CrossRefGoogle Scholar
  39. 39.
    Horowitz SB. The permeability of the amphibian oocyte nucleus in situ. J Cell Biol 1972; 54: 609.PubMedCrossRefGoogle Scholar
  40. 40.
    Horowitz SB, Miller DS. The intracellular distribution of adenosine-triphosphate. In: Welch GR, Clegg JS, eds. The Organization of Cell Metabolism. NATO ARI Series A B127. New York: Plenum Press, 1987: 79–85.Google Scholar
  41. 41.
    Paine PL. Diffusive and nondiffusive proteins in vivo. J Cell Biol 1984; 99: 188s - 195s.PubMedCrossRefGoogle Scholar
  42. 42.
    Chambers R. The micromanipulation of living cells. In: Moulton FR, ed. The Cell and Protoplasm. AAAS Publication 14. Washing-ton DC: 1940: 49–67.Google Scholar
  43. 43.
    Feldherr CM, Ogburn JA. Mechanisms for the selection of nuclear polypeptides in Xenopus oocytes. II: Two-dimensional gel analysis. J Cell Biol 1980; 87: 589–593.PubMedCrossRefGoogle Scholar
  44. 44.
    Dreyer C, Wang Y-H, Wedlich D et al. Oocyte nuclear proteins in the development of Xenopus. In: Hausen P, McLaren A, eds. British Society for Developmental Biology Symposium. London: Cambridge University Press, 1983: 285–331.Google Scholar
  45. 45.
    Findlay DR, Newmeyer DD, Price TM et al. Inhibition of in vitro nuclear transport by a lectin that binds to nuclear pores. J Cell Biol 1987; 104: 189–200.CrossRefGoogle Scholar
  46. 46.
    Adam SA, Lobl TJ, Mitchell MA et al. Identification of specific binding proteins for a nuclear location sequence. Nature 1989; 337: 176–179.CrossRefGoogle Scholar
  47. 47.
    Zasloff MA. tRNA transport from the nucleus in a eucaryotic cell: carrier-mediated process. Proc Natl Acad Sci USA 1983; 80: 6436–6440.PubMedCrossRefGoogle Scholar
  48. 48.
    McDonald JR, Agutter PS. The relationship between polyribonucleotide binding and the phosphorylation and dephosphorylation of nuclear envelope protein. FEBS Lett 1980; 116: 145–148.PubMedCrossRefGoogle Scholar
  49. 49.
    Bernd A, Schröder H-C, Zahn RK et al. Modulation of the nuclear envelope NTPase by poly(A) rich mRNA and by microtubule proteins. Eur J Biochem 1982; 129: 43–49.PubMedCrossRefGoogle Scholar
  50. 50.
    Maul GG. The nuclear and cytoplasmic pore complex: structure, dynamics, distribution and evolution. Int Rev Cytol Suppl 1977; 6: 75–186.PubMedGoogle Scholar
  51. 51.
    Wojcieszyn JW, Schlegel RA, Wu ES et al. Diffusion of injected macromolecules within the cytoplasm of living cells. Proc Natl Acad Sci USA 1981; 78: 4407–4410.PubMedCrossRefGoogle Scholar
  52. 52.
    Wojcieszyn JW, Schlegel RA, Jacobson KA. Measurements of the diffusion of macromolecules injected into the cytoplasm of living cells. Cold Spring Harbour Symposium on Quantitative Biology 1981; 46: 39–44.CrossRefGoogle Scholar
  53. 53.
    Luby-Phelps K. Physical properties of cytoplasm. Curr Opin Cell Biol 1994; 6: 3–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Gershon N, Porter K. Trus B. The microtrabecular lattice and the cytoskeleton: their volume, surface area and the diffusion of molecules through it. In: Oplatka A, Balaban M, eds. Biological Structures and Coupled Flows. New York: Academic Press, 1983: 377–380.Google Scholar
  55. 55.
    Sheetz MP, Spudich JA. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature 1983; 303: 31–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Remenyik CJ, Kellermeyer M. A fluid mechanical hypothesis for macromolecule transport in living cells. Physiol Chem Phys 1978; 10: 107–113.PubMedGoogle Scholar
  57. 57.
    Coulson RA. Metabolic rate and the flow theory: a study in chemi-cal engineering. Comp Biochem Physiol 1986; 84A: 217–229.CrossRefGoogle Scholar
  58. 58.
    Welch GR, Clegg JS, eds. The Organization of Cell Metabolism. NATO ARI Series A B127. New York: Plenum Press, 1987.Google Scholar
  59. 59.
    Maul GG, ed. The Nuclear Envelope and the Nuclear Matrix. New York: Alan R Liss, 1982.Google Scholar
  60. 60.
    Agutter PS. Models for solid-state transport: messenger RNA movement from nucleus to cytoplasm. Cell Biol Internat 1994; 18: 849–858.CrossRefGoogle Scholar
  61. 61.
    Zachar Z, Kramer J, Mims IP et al. Evidence for channeled diffusion of pre-mRNAs during nuclear RNA transport in metazoans. J Cell Biol 1993; 121: 729–742.PubMedCrossRefGoogle Scholar
  62. 62.
    Jackson DA, Hassan AB, Errington RJ et al. Replication and transcription sites are colocalized in human cells. EMBO J 1993; 12: 1059–1065.PubMedGoogle Scholar
  63. 63.
    d’Angelo EG. Micrurgical studies on Chironomous salivary gland chromosomes. Bull Biol 1946; 90: 71–87.CrossRefGoogle Scholar
  64. 64.
    Agutter PS. Nucleocytoplasmic mRNA transport: a plea for methodological dualism. Trends Cell Biol 1994; 4: 278–279.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Paul S. Agutter
    • 1
  • Philip L. Taylor
    • 2
  1. 1.Napier UniversityEdinburghScotland
  2. 2.EdinburghScotland

Personalised recommendations