Skip to main content

Presentation of Tumor Antigens by Langerhans Cells and Other Dendritic Cells

  • Chapter
The Immune Functions of Epidermal Langerhans Cells

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 30 Accesses

Abstract

It has long been disputed whether human or animal tumors carry immunogenic epitopes on their surface that allow for recognition and destruction of tumor cells by the host’s immune system. Whereas earlier studies concluded that experimentally induced tumors are often immunogenic, while spontaneously arising neoplasms lack antigenic epitopes, it is now generally accepted that many spontaneously arising malignancies also carry immunogenic epitopes on their cell surfaces. In the clinical situation, the immunogenicity of some tumors—especially in the case of melanoma—is evident by their infiltration with leukocytes as well as by the phenomenon of spontaneous partial or complete tumor regression. In vitro, tumor-specific cytotoxic T lymphocyte (CTL) activity and cytokine secretion of T cells after coculture with tumor targets has been shown for human primary and metastatic melanoma, and both CD4+ and CD8+ tumor-infiltrating lymphocytes have been cloned.1,2 Furthermore, the exact peptide sequences of some of these melanoma antigens are known (Table 9.1).3,4 Thus, at least with regard to some cutaneous neoplasms, there is formal proof that they can be immunostimulatory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mukherji B, Chakraborty NG, Sivanandham M. T-cell clones that react against autologous human tumors. Immunol Rev 1990; 116: 33 - 62.

    Article  PubMed  CAS  Google Scholar 

  2. Becker JC, Schwinn A, Dummer R et al. Lesion-specific activation of cloned human tumor-infiltrating lymphocytes by autologous tumor cells: induction of proliferation and cytokine production. J Invest Dermatol 1993; 101: 15 - 21.

    Article  PubMed  CAS  Google Scholar 

  3. Pardoll DM. Tumour antigens. A new look for the 1990s. Nature 1994; 369: 6479.

    Article  Google Scholar 

  4. Slingluff CL, Hunt DF, Engelhard VH. Direct analysis of tumor-associated peptide antigens. Curr Opin Immunol 1994; 6: 733 - 40.

    Article  PubMed  CAS  Google Scholar 

  5. Nagarkatti M, Clary SR, Nagarkatti PS. Characterization of tumor-infiltrating CD4+ T cells as Thl cells based on lymphokine secretion and functional properties. J Immunol 1990; 144: 4898 - 905.

    PubMed  CAS  Google Scholar 

  6. Sprent J, Schaefer M. Capacity of purified Lyt-2’ T cells to mount primary proliferative and cytotoxic responses to Ia-tumour cells. Nature 1986; 322: 541 - 4.

    Article  PubMed  CAS  Google Scholar 

  7. Kraig E, Kannapell C, Fischbach K et al. Two ultraviolet tumor-specific suppressor cell clones. J Immunol 1990; 145: 2050 - 6.

    PubMed  CAS  Google Scholar 

  8. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271 - 96.

    Article  PubMed  CAS  Google Scholar 

  9. Streilein JW, Grammer SF, Yoshikawa T et al. Functional dichotomy between Langerhans cells that present antigen to naive and to memory/effector T lymphocytes. Immunol Rev 1990; 117: 159 - 83.

    Article  PubMed  CAS  Google Scholar 

  10. Grabbe S, Granstein RD. Mechanisms of ultraviolet radiation carcinogenesis. In: Granstein RD, ed. Mechanisms of Immune Regulation. Basel: Karger, 1994: 291-313. (Adorini L, Ken-ichi A, Fitch FW et al, eds. Chemical Immunology; Vol 58 ).

    Google Scholar 

  11. Streilein JW. Immunogenetic factors in skin cancer. N Engl J Med 1992; 325: 884 - 6.

    Article  Google Scholar 

  12. Kripke ML. Immunologic mechanisms in UV-radiation carcinogenesis. Adv Cancer Res 1981; 34: 69 - 106.

    Article  PubMed  CAS  Google Scholar 

  13. Ebbesen P, Kripke ML. Influences of age and anatomical site on ultraviolet carcinogenesis in BALB/c mice. J Natl Cancer Inst 1982; 68: 691 - 4.

    PubMed  CAS  Google Scholar 

  14. Grabbe S, Beissert S, Schwarz T et al. Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995; 16: 117 - 21.

    Article  PubMed  CAS  Google Scholar 

  15. Becker Y. Anticancer activity of dendritic cells. Symposium Proceedings of the Fourth International Conference of Anticancer Research. Crete. In Vivo 1993; 7: 185 - 313.

    Google Scholar 

  16. Romerdahl CA, Okamoto H, Kripke ML. Immune surveillance against cutaneous malignancies in experimental animals. Immunol Ser 1989; 46: 749 - 67.

    PubMed  CAS  Google Scholar 

  17. Ruby JC, Halliday GM, Muller HK. Differential effects of benzo[a]pyrene and dimethylbenz[a]-anthracene on Langerhans cell distribution and contact sensitization in murine epidermis. J Invest Dermatol 1989; 92: 150 - 5.

    Article  PubMed  CAS  Google Scholar 

  18. Chaux P, Hamann A, Martin F et al. Surface phenotype and functions of tumor-infiltrating dendritic cells: CD8 expression by a cell subpopulation. Eur J Immunol 1993; 23: 2517 - 25.

    Article  PubMed  CAS  Google Scholar 

  19. Halliday GM, Lucas AD, Barnetson RSC. Control of Langerhans’ cell density by a skin tumour-derived cytokine. Immunology 1992; 77: 13 - 8.

    PubMed  CAS  Google Scholar 

  20. Halliday GM, Reeve VE, Barnetson RSC. Langerhans cell migration into ultraviolet light-induced squamous skin tumors is unrelated to anti-tumor immunity. J Invest Dermatol 1991; 97: 830 - 4.

    Article  PubMed  CAS  Google Scholar 

  21. Donawho CK, Kripke ML. Lack of correlation between UV-induced enhancement of melanoma development and local suppression of contact hypersensitivity. Exp Dermatol 1992; 1: 20 - 6.

    Article  PubMed  CAS  Google Scholar 

  22. Alcalay J, Kripke ML. Antigen-presenting activity of draining lymph node cells from mice painted with a contact allergen during ultraviolet carcinogenesis. J Immunol 1991; 146: 1717 - 21.

    PubMed  CAS  Google Scholar 

  23. Shimizu J, Zou J-P, Ikegame K et al. Evidence for the functional binding in vivo of tumor rejection antigens to antigen-presenting cells in tumor-bearing hosts. J Immunol 1991; 146: 1708 - 14.

    PubMed  CAS  Google Scholar 

  24. Knight SC, Hunt R, Dore C et al. Influence of dendritic cells on tumor growth. Proc Natl Acad Sci USA 1985; 82: 4495 - 7.

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu J, Suda T, Yoshioka T et al. Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J Immunol 1989; 142: 1053 - 9.

    PubMed  CAS  Google Scholar 

  26. Zou J, Shimizu J, Ikegame K et al. Tumor-bearing mice exhibit a progressive increase in tumor antigen-presenting cell function and a reciprocal decrease in tumor antigen-responsive CD4+ T cell activity. J Immunol 1992; 148: 648 - 55.

    PubMed  CAS  Google Scholar 

  27. Yamashita U. Dysfunction of Ia-positive antigen-presenting cells in tumor-bearing mice. Jpn J Cancer Res 1987; 78: 261 - 9.

    PubMed  CAS  Google Scholar 

  28. Grabbe S, Bruvers S, Gallo RL et al. Tumor antigen presentation by murine epidermal cells. J Immunol 1991; 146: 3656 - 61.

    PubMed  CAS  Google Scholar 

  29. Tan KC, Hosoi J, Grabbe S et al. Epidermal cell presentation of tumor-associated antigens for induction of tolerance. J Immunol 1994; 153: 760 - 7.

    PubMed  CAS  Google Scholar 

  30. Grabbe S, Bruvers S, Lindgren AM et al. Tumor antigen presentation by epidermal antigen-presenting cells in the mouse: modulation by granulocyte-macrophage colony stimulating factor, tumor necrosis factor a, and ultraviolet radiation. J Leukoc Biol 1992; 52: 209 - 17.

    PubMed  CAS  Google Scholar 

  31. Grabbe S, Bruvers S, Granstein RD. Effects of immunomodulatory cytokines on the presentation of tumor-associated antigens by epidermal Langerhans cells. J Invest Dermatol 1992; 99: 66S - 68S.

    Article  PubMed  CAS  Google Scholar 

  32. Grabbe S, Bruvers S, Granstein RD. Interleukin 1 alpha but not transforming growth factor beta inhibits tumor antigen presentation by epidermal antigen-presenting cells. J Invest Dermatol 1994; 102: 67 - 73.

    Article  PubMed  CAS  Google Scholar 

  33. Flamand V, Sornasse T, Thielemans K et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 1994; 24: 605 - 10.

    Article  PubMed  CAS  Google Scholar 

  34. Cohen PJ, Cohen PA, Rosenberg SA et al. Murine epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 1994; 24: 315 - 9.

    Article  PubMed  CAS  Google Scholar 

  35. Beissert S, Hosoi J, Grabbe S et al. IL-10 inhibits tumor antigen presentation by epidermal antigen-presenting cells. J Immunol 1994; in press.

    Google Scholar 

  36. Larsen CP, Ritchie SC, Hendrix R et al. Regulation of immunostimulatory function and costimulatory molecule (B7-1 and B7-2) expression on murine dendritic cells. J Immunol 1994; 152: 5208 - 19.

    PubMed  CAS  Google Scholar 

  37. Bosco M, Giovarelli M, Forni M et al. Low doses of IL-4 injected perilymphatically in tumor-bearing mice inhibit the growth of poorly and apparently nonimmunogenic tumors and induce a tumor-specific immune memory. J Immunol 1990; 145: 3136 - 43.

    PubMed  CAS  Google Scholar 

  38. Bannerji R, Arroyo CD, Cordon-Cardo C et al. The role of IL-2 secreted from genetically modified tumor cells in the establishment of antitumor immunity. J Immunol 1994; 152: 2324 - 32.

    PubMed  CAS  Google Scholar 

  39. Dranoff G, Jaffee E, Lazenby A et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3529 - 43.

    Article  Google Scholar 

  40. Golumbek PT, Azhari R, Jaffee EM et al. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res 1993; 53: 5841 - 4.

    PubMed  CAS  Google Scholar 

  41. Huang AY, Golumbek P, Ahmadzadeh M et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961 - 5.

    Article  PubMed  CAS  Google Scholar 

  42. Pardoll DM. New strategies for enhancing the immunogenicity of tumors. Curr Opin Immunol 1993; 5: 719 - 25.

    Article  PubMed  CAS  Google Scholar 

  43. Topalain SL. MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol 1994; 6: 741 - 5.

    Article  Google Scholar 

  44. Sprent J. T and B memory cells. Cell 1994; 76: 315 - 22.

    Article  PubMed  CAS  Google Scholar 

  45. Fearon ER, Pardoll DM, Itaya T et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 1990; 60: 397 - 403.

    Article  PubMed  CAS  Google Scholar 

  46. DiGiacomo A, North RJ. T cell suppressors of antitumor immunity. The production of Ly-1-,2’ suppressors of delayed sensitivity precedes the production of suppressors of protective immunity. J Exp Med 1986; 164: 1179 - 92.

    Article  Google Scholar 

  47. Bloom BR, Salgame P, Diamond B. Revisiting and revising suppressor T cells. Immunol Today 1992; 13: 131 - 6.

    Article  PubMed  CAS  Google Scholar 

  48. Mutis T, Cornelissen YE, Datema G et al. Definition of a human suppressor T-cell epitope. Proc Natl Acad Sci USA 1994; 91: 9456 - 60.

    Article  PubMed  CAS  Google Scholar 

  49. Roberts LK, Spellman CW, Warner NL. Establishment of a continuous T cell line capable of suppressing anti-tumor immune responses in vivo. J Immunol 1983; 131: 514 - 9.

    PubMed  CAS  Google Scholar 

  50. Chen L, Linsley PS, Hellstrom KE. Costimulation of T cells for tumor immunity. Immunol Today 1993; 14: 483 - 6.

    Article  PubMed  CAS  Google Scholar 

  51. Simon JC, Tigelaar RE, Bergstresser PR et al. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. J Immunol 1991; 146: 485 - 91.

    PubMed  CAS  Google Scholar 

  52. Zou JP, Shimizu J, Ikegame K et al. Tumor immunotherapy with the use of tumor antigen-pulsed antigen-presenting cells. Cancer Immunol Immunother 1992; 35: 1 - 6.

    Article  PubMed  CAS  Google Scholar 

  53. Hu J, Kindsvogel W, Busby S et al. An evaluation of the potential to use tumor-associated antigens as targets for antitumor T cell therapy using transgenic mice expressing a retroviral tumor antigen in normal lymphoid tissues. J Exp Med 1993; 177: 1681 - 90.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabbe, S., Granstein, R.D. (1995). Presentation of Tumor Antigens by Langerhans Cells and Other Dendritic Cells. In: The Immune Functions of Epidermal Langerhans Cells. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22497-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22497-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22499-1

  • Online ISBN: 978-3-662-22497-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics