Skip to main content

Antigen Presentation by Langerhans/Dendritic Cells

  • Chapter
Book cover The Immune Functions of Epidermal Langerhans Cells

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Langerhans cells (LC) intersperse the epidermis forming a thin meshwork of sentinel cells. LC are members of the heterogeneous family of dendritic cells which are recognized to perform an exquisite immunosurveillance function. Distributed throughout the body and localized in nonlymphoid and lymphoid tissues, cells of this category are uniquely equipped to trigger a primary immune response (for review see ref. 1). Notably, processes related to the sentinel function such as antigen uptake and its degradation, and those involving antigen presentation with subsequent T cell priming are separated spatially and by time. Dendritic cells in distinct developmental stages perform these totally different functions. Thus, sentinel dendritic cells such as LC which reside in peripheral nonlymphoid sites are developmentally immature. They carry phenotypic markers of juvenile dendritic cells, i.e., submaximal levels of major histocompatibility complex (MHC) class I, class II and other markers.1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271–96.

    Article  PubMed  CAS  Google Scholar 

  2. Inaba K, Inaba M, Naito M et al. Dendritic cell progenitors phagocytose particulates, including Bacillus Calmette-Guérin organisms, and sensitize mice to mycobacterial antigens in vivo. J Exp Med 1993; 178: 479–88.

    Article  PubMed  CAS  Google Scholar 

  3. Reis e Sousa C, Stahl PD, Austyn JM. Phagocytosis of antigens by Langerhans cells in vitro. J Exp Med 1993; 178: 509–19.

    Article  Google Scholar 

  4. Scheicher C, Mehlig M, Dienes HP et al. Uptake of bead-absorbed versus soluble antigen by bone marrow-derived dendritic cells triggers their activation and increases their antigen presentation capacity. In: Banchereau J, Schmitt D, eds. Dendritic Cells in Fundamental and Clinical Immunology. New York: Plenum Publishing Corporation, in press.

    Google Scholar 

  5. Silberberg-Sinakin I, Thorbecke GJ, Baer RL et al. Antigen-bearing Langerhans cells in skin, dermal lymphatics and in lymph nodes. Cell Immunol 1976; 25: 137–51.

    Article  PubMed  CAS  Google Scholar 

  6. Larsen CP, Steinman RM, Witmer-Pack M et al. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 1990; 172: 1483–93.

    Article  PubMed  CAS  Google Scholar 

  7. Kripke ML, Munn CG, Jeevan A et al. Evidence that cutaneous antigen-presenting cells migrate to regional lymph nodes during contact sensitization. J Immunol 1990; 145: 2833–8.

    PubMed  CAS  Google Scholar 

  8. Stössel H, Koch F, Kämpgen E et al. Disappearance of certain acidic organdies (endosomes and Langerhans cell granules) accompanies loss of antigen processing capacity upon culture of epidermal Langerhans cells. J Exp Med 1990; 172: 1471–82.

    Article  PubMed  Google Scholar 

  9. Schuler G, Steinman RM. Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. J Exp Med 1985; 161: 526–46.

    Article  PubMed  CAS  Google Scholar 

  10. Shimada S, Caughman SW, Sharrow SO et al. Enhanced antigen-presenting capacity of cultured Langerhans’ cells is associated with markedly increased expression of Ia antigen. J Immunol 1987; 139: 2551–5.

    PubMed  CAS  Google Scholar 

  11. Romani N, Lenz A, Glassel H et al. Cultured human Langerhans cells resemble lymphoid dendritic cells in phenotype and function. J Invest Dermatol 1989; 93: 600–9.

    Article  PubMed  CAS  Google Scholar 

  12. Streilein JW, Grammer SF. In vitro evidence that Langerhans cells can adopt two functionally distinct forms capable of antigen presentation to T lymphocytes. J Immunol 1989; 143: 3925–33.

    PubMed  CAS  Google Scholar 

  13. Girolomoni G, Simon JC, Bergstresser PR et al. Freshly isolated spleen dendritic cells and epidermal Langerhans cells undergo similar phenotypic and functional changes during short term culture. J Immunol 1990; 145: 2820–6.

    PubMed  CAS  Google Scholar 

  14. Paglia P, Girolomoni G, Robbiati F et al. Immortalized dendritic cell line fully competent in antigen presentation initiates primary T cell responses in vivo. J Exp Med 1993; 178: 1893–1901.

    Article  PubMed  CAS  Google Scholar 

  15. Becker D, Reske-Kunz AB, Knop J et al. Biochemical properties of MHC class II molecules endogenously synthesized and expressed by mouse Langerhans cells. Eur J Immunol 1991; 21: 1213–20.

    Article  PubMed  CAS  Google Scholar 

  16. Puré E, Inaba K, Crowley MT et al. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. J Exp Med 1990; 172: 1459–69.

    Article  PubMed  Google Scholar 

  17. Kämpgen E, Koch N, Koch F et al. Class II major histocompatibility complex molecules of murine dendritic cells: synthesis, sialylation of invariant chain, and antigen processing capacity are down-regulated upon culture. Proc Natl Acad Sci USA 1991; 88: 3014–8.

    Article  PubMed  Google Scholar 

  18. Neiß U, Reske K. Non-coordinate synthesis of MHC class II proteins and invariant chains by epidermal Langerhans cells derived from short-term in vitro culture. Intern Immunol 1994; 6: 61–71.

    Article  Google Scholar 

  19. Sant AJ, Cullen SE, Giacoletto KS et al. Invariant chain is the core protein of the Ia-associated chondroitin sulfate proteoglycan. J Exp Med 1985; 162: 1916–34.

    Article  PubMed  CAS  Google Scholar 

  20. Naujokas MF, Morin M, Anderson MS et al. The chondroitin sulfate form of invariant chain can enhance stimulation of T cell responses through interaction with CD44. Cell 1993; 74: 257–68.

    Article  PubMed  CAS  Google Scholar 

  21. Aruffo A, Stamenkovic I, Melnick M et al. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990; 61: 1303–13.

    Article  PubMed  CAS  Google Scholar 

  22. Fukomoto T, McMaster WR, Williams AF. Mouse monoclonal antibodies against rat major histocompatibility antigens. Two Ia antigens and expression of la and class I antigens in rat thymus. Eur J Immunol 1982; 12: 237–43.

    Article  Google Scholar 

  23. Fisch A, Reske K. Cell surface display of rat invariant y chain: detection by monoclonal antibodies directed against a C-terminal y chain segment. Eur J Immunol 1992; 22: 1413–9.

    Article  PubMed  CAS  Google Scholar 

  24. Henkes W, Syha J, Reske K. Nucleotide sequence of rat invariant gamma chain cDNA clone pLRgamma34.3. Nucleic Acids Res 1988; 16: 1 1822.

    Google Scholar 

  25. Bakke O, Dobberstein B. MHC class II associated invariant chain contains a sorting signal for endosomal compartments. Cell 1990; 63: 707–16.

    Article  PubMed  CAS  Google Scholar 

  26. Lotteau V, Teyton L, Peleraux A et al. Intracellular transport of class II MHC molecules directed by invariant chain. Nature 1990; 348: 600–5.

    Article  PubMed  CAS  Google Scholar 

  27. Harding CV, Roof RW, Unanue ER. Turnover of Ia-peptide complexes is facilitated in viable antigen-presenting cells: biosynthetic turnover of Ia vs. peptide exchange. Proc Natl Acad Sci USA 1989; 86: 4230–4.

    Article  PubMed  CAS  Google Scholar 

  28. Scheicher C, Mehlig M, Zecher R et al. Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J Immunol Meth 1992; 154: 253–64.

    Article  CAS  Google Scholar 

  29. Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  30. Mehlig M, Scheicher C, Dienes HP et al. Development of rat DC by in vitro culture of bone marrow cells. In: Banchereau J, Schmitt D, eds. Dendritic Cells in Fundamental and Clinical Immunology. New York: Plenum Publishing Corporation, in press.

    Google Scholar 

  31. Ozato K, Mayer N, Sachs D. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J Immunol 1980; 124: 533–40.

    PubMed  CAS  Google Scholar 

  32. Dornmair K, Rothenhäusler B, McConnel HM. Structural intermediates in the reactions of antigenic peptides with MHC molecules. Cold Spring Harbor Symp Quant Biol 1989; 54: 409–16.

    Article  PubMed  CAS  Google Scholar 

  33. Germain RN, Hendrix LR. MHC class II structure, occupancy and surface expression determined by post-endoplasmic reticulum antigen binding. Nature 1991; 353: 134–9.

    Article  PubMed  CAS  Google Scholar 

  34. Nelson CA, Petzold SJ, Unanue ER. Peptides determine the life span of MHC class II molecules in the antigen-presenting cell. Nature 1994; 371: 250–2.

    Article  PubMed  CAS  Google Scholar 

  35. Fling SP, Arp B, Pious D. HLA-DMA and -DMB genes are both required for MHC class II/peptide complex formation in antigen-presenting cells. Nature 1994; 368: 554–8.

    Article  PubMed  CAS  Google Scholar 

  36. Morris P, Shaman J, Attaya M et al. An essential role for HLADM in antigen presentation by class II major histocompatibility molecules. Nature 1994; 368: 551–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neiß, U., Demleitner, K., Marx, A., Mehlig, M., Scheicher, C., Reske, K. (1995). Antigen Presentation by Langerhans/Dendritic Cells. In: The Immune Functions of Epidermal Langerhans Cells. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22497-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22497-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22499-1

  • Online ISBN: 978-3-662-22497-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics