Skip to main content

Human Langerhans Cells Derived from CD34+ Blood Precursors: Mode of Generation, Phenotypic and Functional Analysis, and Experimental and Clinical Applicability

  • Chapter
The Immune Functions of Epidermal Langerhans Cells

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 31 Accesses

Abstract

Epidermal Langerhans cells (LC) were originally described in 1868 as nerve cells within human skin.1 After more than a century of speculations about their origin,2,3 they were finally recognized to be hematopoietic cells as evidenced by their uniform expression of the panhematopoietic marker CD45 and by the presence of donor-derived phenotypic features on LC of H-2–disparate murine4,5 and sex-mismatched human6 bone marrow chimeras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Langerhans P. Über die Nerven der menschlichen Haut. Virchows Arch (Pathol Anat) 1868; 44: 325–37.

    Article  Google Scholar 

  2. Stingl G, Tamaki K, Katz S. Origin and function of epidermal Langerhans cells. Immunol Rev 1980; 53: 151–74.

    Article  Google Scholar 

  3. Stingl G, Hauser C, Wolff K. The epidermis: An immunologic microenvironment. In: Fitzpatrick TB, Eisen AZ, Wolff K, Freedberg IM, Austen KF, eds. Dermatology in General Medicine. New York: McGraw-Hill, 1993: 172–97.

    Google Scholar 

  4. Katz SI, Tamaki K, Sachs DH. Epidermal Langerhans cells are derived from cells originating in bone marrow. Nature 1979; 282: 324–6.

    Article  PubMed  CAS  Google Scholar 

  5. Frelinger JG, Hood L, Hill S et al. Mouse Ia molecules have a bone marrow origin. Nature 1979; 282: 321–3.

    Article  PubMed  CAS  Google Scholar 

  6. Volc-Platzer B, Stingl G, Wolff K et al. Cytogenetic identification of allogeneic epidermal Langerhans cells in a bone-marrow-graft recipient. N Engl J Med 1984; 310: 1123–4.

    PubMed  CAS  Google Scholar 

  7. Stingl G, Shevach E. Langerhans cells as antigen-presenting cells. In: Schuler G, ed. Epidermal Langerhans Cells. Boca Raton: CRC Press, 1991: 159–90.

    Google Scholar 

  8. Bos JD, Kapsenberg ML. The skin immune system: progress in cutaneous biology. Immunol Today 1993; 14: 75–8.

    Article  PubMed  CAS  Google Scholar 

  9. Steinman RM, Witmer-Pack M, Inaba K. Dendritic cells: Antigen presentation, accessory function and clinical relevance. In: Kamperdijk EWA, Nieuwenhuis P, Hoefsmit ECM, eds. Dendritic Cells in Fundamental and Clinical Immunology. New York: Plenum Press, 1994: 1–9.

    Google Scholar 

  10. Klinkert WEF. Rat bone marrow precursors develop into dendritic accessory cells under the influence of conditioned medium. Immunobiol 1984; 168: 414–24.

    CAS  Google Scholar 

  11. Bowers WE, Berkowitz MR. Differentiation of dendritic cells in cultures of rat bone marrow cells. J Exp Med 1986; 163: 872–83.

    Article  PubMed  CAS  Google Scholar 

  12. Reid CDL, Fryer PR, Clifford C et al. Identification of hematopoietic progenitors of macrophages and dendritic Langerhans cells (DL-CFU) in human bone marrow and peripheral blood. Blood 1990; 76: 1139–49.

    PubMed  CAS  Google Scholar 

  13. Inaba K, Inaba M, Romani N et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  PubMed  CAS  Google Scholar 

  14. Inaba K, Inaba M, Deguchi M et al. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc Natl Acad Sci USA 1993; 90: 3038–42.

    Article  PubMed  CAS  Google Scholar 

  15. Scheicher C, Mehlig M, Zecher R et al. Dendritic cells from mouse bone marrow: in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor. J Immunol Meth 1992; 154: 253–64.

    Article  CAS  Google Scholar 

  16. Reid CDL, Stackpole A, Meager A et al. Interactions of tumor necrosis factor with granulocyte-macrophage colony-stimulating factor and other cytokines in the regulation of dendritic cell growth in vitro from early bipotent CD34* progenitors in human bone marrow. J Immunol 1992; 149: 2681–8.

    PubMed  CAS  Google Scholar 

  17. Santiago-Schwarz F, Belilos E, Diamond B et al. TNF in combination with GM-CSF enhances the differentiation of neonatal cord blood stem cells into dendritic cells and macrophages. J Leukoc Biol 1992; 52: 274–81.

    PubMed  CAS  Google Scholar 

  18. Caux C, Dezutter-Dambuyant C, Schmitt D et al. GM-CSF and TNF-a cooperate in the generation of dendritic Langerhans cells. Nature 1992; 360: 258–61.

    Article  PubMed  CAS  Google Scholar 

  19. Inaba K, Steinman RM, Witmer-Pack MD et al. Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 1992; 175: 1157–67.

    Article  PubMed  CAS  Google Scholar 

  20. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor a. J Exp Med 1994; 179: 1109–18.

    Article  PubMed  CAS  Google Scholar 

  21. Romani N, Gruner S, Brang D et al. Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180: 83–93.

    Article  PubMed  CAS  Google Scholar 

  22. Gabbianelli M, Sargiacomo M, Pelosi E et al. “Pure” human hematopoietic progenitors: Permissive action of basic fibroblast growth factor. Science 1990; 249: 1561–4.

    Article  PubMed  CAS  Google Scholar 

  23. Bender JG, Unverzagt KL, Walker DE et al. Identification and comparison of CD34–positive cells and their subpopulations from normal peripheral blood and bone marrow using multicolor flow cytometry. Blood 1991; 77: 2591–6.

    PubMed  CAS  Google Scholar 

  24. Kato K, Radbruch A. Isolation and characterization of CD34* hematopoietic stem cells from human peripheral blood by high-gradient magnetic cell sorting. Cytometry 1993; 14: 384–92.

    Article  PubMed  CAS  Google Scholar 

  25. Picker LJ, Michie SA, Rott LS et al. A unique phenotype of skin-associated lymphocytes in humans. Am J Pathol 1990; 136: 1053–68.

    PubMed  CAS  Google Scholar 

  26. Koszik F, Strunk D, Simonitsch I et al. Expression of monoclonal antibody HECA-452–defined E-selectin ligands on Langerhans cells in normal and diseased skin. J Invest Dermatol 1994; 102: 773–80.

    Article  PubMed  CAS  Google Scholar 

  27. Jansen JH, Wientjens G-JHM, Fibbe WE et al. Inhibition of human macrophage colony formation by interleukin 4. J Exp Med 1989; 170: 577–82.

    Article  PubMed  CAS  Google Scholar 

  28. Rossi G, Heveker N, Thiele B et al. Development of a Langerhans cell phenotype from peripheral blood monocytes. Immunol Letters 1992; 31: 189–98.

    Article  CAS  Google Scholar 

  29. Porcelli S, Morita CT, Brenner MB. CD1b restricts the response of human CD4–8– T lymphocytes to a microbial antigen. Nature 1992; 360: 593–7.

    Article  PubMed  CAS  Google Scholar 

  30. Kasinrerk W, Baumruker T, Majdic O et al. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor. J Immunol 1993; 150: 579–84.

    PubMed  CAS  Google Scholar 

  31. Murray AG, Petzelbauer P, Hughes CCW et al. Human T-cellmediated destruction of allogeneic dermal microvessels in a severe combined immunodeficient mouse. Proc Natl Acad Sci USA 1994; 91: 9146–50.

    Article  PubMed  CAS  Google Scholar 

  32. Coulomb B, Lebreton C, Dubertret L. The skin equivalent: A model for skin and general pharmacology. In: Maibach HI, Lowe NJ, eds. Models in Dermatol. Basel: Karger, 1989: 20–9.

    Google Scholar 

  33. Rosenberg SA. Gene therapy of cancer. In: De Vita, Hellman S, Rosenberg SA, eds. Important Advances in Oncology. Philadelphia: J.B. Lippincott, 1992: 17–38.

    Google Scholar 

  34. Pardoll D. Cancer vaccines. Immunol Today 1993; 14: 310–6.

    Article  PubMed  CAS  Google Scholar 

  35. Grabbe S, Bruvers S, Gallo RS et al. Tumor antigen presentation by murine epidermal cells. J Immunol 1991; 146: 3656–61.

    PubMed  CAS  Google Scholar 

  36. Flamand V, Sornasse T, Thielemans K et al. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 1994; 24: 605–10.

    Article  PubMed  CAS  Google Scholar 

  37. Cohen PJ, Cohen PA, Rosenberg SA et al. Murine epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 1994; 24: 315–9.

    Article  PubMed  CAS  Google Scholar 

  38. Germain RN, Margulies DH. The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 1993; 11: 403–50.

    Article  PubMed  CAS  Google Scholar 

  39. Huang AYC, Golumbek P, Ahmadzadeh M et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 1994; 264: 961–5.

    Article  PubMed  CAS  Google Scholar 

  40. Slingluff CL, Hunt DF, Engelhard VH. Direct analysis of tumor-associated peptide antigens. Curr Opin Immunol 1994; 6: 733–40.

    Article  PubMed  CAS  Google Scholar 

  41. Boon T, Cerottini J-C, Van den Eynde B et al. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994; 12: 337–65.

    Article  PubMed  CAS  Google Scholar 

  42. Guo Y, Wu M, Chen H et al. Effective tumor vaccine generated by fusion of hepatoma cells with activated B cells. Science 1994; 263: 518–20.

    Article  PubMed  CAS  Google Scholar 

  43. Schlimok G, Pantel K, Lindemann F et al. Model for measurement of micrometastasis in epithelial tumors. In: van Furth R, ed. Hemopoietic growth factors and mononuclear phagocytes. Basel: Karger, 1993: 168–76.

    Google Scholar 

  44. Paul WE. Infectious diseases and the immune system. Scientific American, The Immune System 1993; 57: 57–63.

    Google Scholar 

  45. Lambert PH. New vaccines for the world-needs and prospects. The Immunologist 1993; 1: 50–5.

    Google Scholar 

  46. Inaba K, Steinman R. Protein-specific helper T-lymphocyte formation initiated by dendritic cells. Science 1985; 229: 475–9.

    Article  PubMed  CAS  Google Scholar 

  47. Inaba K, Young JW, Steinman RM. Direct activation of CD8+ cytotoxic T lymphocytes by dendritic cells. J Exp Med 1987; 166: 182–90.

    Article  PubMed  CAS  Google Scholar 

  48. Elbe A, Schleischitz S, Strunk D et al. Fetal skin-derived MHC class I’, MHC class II- dendritic cells stimulate MHC class I-restricted responses of unprimed CD8* T cells. J Immunol 1994; 153: 2878–89.

    PubMed  CAS  Google Scholar 

  49. Harding CV, Collins DS, Kanagawa O et al. Liposome-encapsuled antigens engender lysosomal processing for class II MHC presentation and cytosolic processing for class I presentation. J Immunol 1991; 147: 2860–3.

    PubMed  CAS  Google Scholar 

  50. Noguchi Y, Noguchi T, Sato T et al. Priming for in vitro and in vivo anti-human T lymphotropic virus type 1 cellular immunity by virus-related protein reconstituted into liposome. J Immunol 1991; 146: 3599–3603.

    PubMed  CAS  Google Scholar 

  51. Alving CR, Wassef NM. Novel vaccines and adjuvants: Mechanisms of action. AIDS Res Hum Retroviruses 1994; 10: S91–6.

    Article  PubMed  CAS  Google Scholar 

  52. Zatloukal K, Wagner E, Cotten M et al. Transferinfection: A highly efficient way to express gene constructs in eucaryotic cells. Ann NY Acad Sci 1992; 660: 136–53.

    Article  PubMed  CAS  Google Scholar 

  53. Kerr WG, Mulé JJ. Gene therapy: Current status and future prospects. J Leukoc Biol 1994; 56: 210–4.

    PubMed  CAS  Google Scholar 

  54. Wang B, Merva M, Dang K et al. Vectors and novel vaccines. AIDS Res Hum Retroviruses 1994; 10: 535–44.

    Article  Google Scholar 

  55. Chopra R, Goldstone AH. Recent advances in Hodgkin’s disease. Curr Opin Hematol 1994; 1: 285–94.

    PubMed  CAS  Google Scholar 

  56. Wu T. Immunology of the human papilloma virus in relation to cancer. Curr Opin Immunol 1994; 6: 746–54.

    Article  PubMed  CAS  Google Scholar 

  57. Chang Y, Cesarman E, Pessin MS et al. Identification of herpes virus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994; 266: 1865–9.

    Article  PubMed  CAS  Google Scholar 

  58. Cruz Jr PD, Nixon-Fulton J, Tigelaar RE et al. Disparate effects of in vitro low-dose UVB irradiation on intravenous immunization with purified epidermal cell subpopulations for the induction of contact hypersensitivity. J Invest Dermatol 1989; 92: 160–5.

    Article  PubMed  Google Scholar 

  59. Simon JC, Tigelaar RE, Bergstresser PR et al. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. Induction of specific clonal anergy in CD4+ T helper 1 cells. J Immunol 1991; 146: 486–91.

    Google Scholar 

  60. Matzinger P, Guerder S. Does T-cell tolerance require a dedicated antigen-presenting cell? Nature 1989; 338: 74–6.

    Article  PubMed  CAS  Google Scholar 

  61. Inaba M, Inaba K, Hosono M et al. Distinct mechanisms of neonatal tolerance induced by dendritic cells and thymic B cells. J Exp Med 1991; 173: 549–56.

    Article  PubMed  CAS  Google Scholar 

  62. Gruner S, Diezel W, Strunk D et al. Inhibition of Langerhans cell ATPase and contact sensitization by lanthanide’s-Role of T-suppressor cells. J Invest Dermatol 1991; 97: 478–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strunk, D., Stingl, G. (1995). Human Langerhans Cells Derived from CD34+ Blood Precursors: Mode of Generation, Phenotypic and Functional Analysis, and Experimental and Clinical Applicability. In: The Immune Functions of Epidermal Langerhans Cells. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22497-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22497-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22499-1

  • Online ISBN: 978-3-662-22497-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics