General Introduction

  • Peter J. van den Elsen
Part of the Molecular Biology Intelligence Unit book series (MBIU)


This book presents a number of studies concerning the human T-cell receptor (TCR) repertoire and transplantation. In transplantation, the major complication is acute cellular rejection. The immunological mechanisms that mediate allograft rejection are not yet fully understood but it is well established that T-lymphocytes play an important role through recognition of peptide antigens presented in the context of major histocompatibility complex (MHC) molecules expressed by the allograft. These complexes of MHC and peptide are seen as foreign by the immune repertoire of the host. The function of MHC class I molecules is to present peptides which originate from endogenous sources whereas MHC class II molecules present mainly peptides that originate from the exogenous antigen processing pathway. These complexes of MHC and peptide serve as ligands for the αβ T-cell receptor of cytotoxic T cells (MHC class I) or helper T cells (MHC class II). Both MHC class I and class II molecules are extremely polymorphic, and each allelic form can present a specific subset of peptides. T-cell recognition of antigens requires that they are processed into peptides and that these peptide antigens subsequently are presented by MHC class I or class II molecules at the surface of an antigen presenting cell (APC). Formation of a trimolecular complex of MHC, peptide and TCR is a prerequisite for T-cell activation prior to exertion of T-cell function, explaining the phenomenon of MHC restriction of antigen recognition.


Major Histocompatibility Complex Major Histocompatibility Complex Molecule Invariant Chain Classical Major Histocompatibility Complex Class Human Major Histocompatibility Complex Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Klein J. Natural History of the major histocompatibility complex. In: J. Wiley and Sons (eds). New York, 1989.Google Scholar
  2. 2.
    Geraghty DE. Structure of’ the HLA class I region and expression of its resident genes. Curr Opin Immunol 1993; 5: 3–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Wei X and Orr HT. Differential expression of HLA-E, HLA-F and HLAG transcripts in human tissue. Hum Immunol 1990; 29: 131–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Bodmer JG, Marsh SG, Albert ED et al. Nomenclature for factors of the HLA system. Tissue Antigens 1994; 43: 1–18.CrossRefGoogle Scholar
  5. 5.
    Bjorkman PJ, Saper MA, Samraoui B et al. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987; 329: 506–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6A resolution. J Mol Biol 1991; 219: 277–319.PubMedCrossRefGoogle Scholar
  7. 7.
    Garrett TPJ, Saper MA, Bjorkman PJ et al. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature 1989; 342: 692–96.PubMedCrossRefGoogle Scholar
  8. 8.
    Madden DR, Gorga JC, Strominger JL et al. The three-dimensional structure of HLA-B27 at 2.1A resolution suggests a general mechanism for tight peptide binding to MHC. Cell 1992; 70: 1035–48.PubMedCrossRefGoogle Scholar
  9. 9.
    Madden DR, Corga JC, Strominger JL et al. The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 1991; 35: 321–25.CrossRefGoogle Scholar
  10. 10.
    Guo H-C, Jardetzky TS, Garrett TPJ et al. Different length peptides bind to HLA-Aw68 similarly at their ends but bulge out in the middle. Nature 1992; 360: 364–67.PubMedCrossRefGoogle Scholar
  11. 11.
    Buxton SA, Benjamin RJ, Clayberger C et al. Anchoring pockets in human histocompatibility complex leukocyte antigen (HLA) class I molecules: analysis of the conserved B (“45”) pocket of HLA-B27. J Exp Med 1992; 175: 809–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Brown JH, Jardetzky TS, Gorga JC et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 1993; 364: 33–39.PubMedCrossRefGoogle Scholar
  13. 13.
    Stern LJ, Brown JH, Jardetzky TS et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994; 368: 215–21.PubMedCrossRefGoogle Scholar
  14. 14.
    Engelhard VH. Structure of peptides associated with MHC class I molecules. Curr opinion in Immunol 1994; 6: 13–23.CrossRefGoogle Scholar
  15. 15.
    Huckzo EL Bodnar WM, Benjamin D et al. Characteristics of endogenous peptides eluted from the class I MHC molecule HLA-B7 determined by mass spectrometry and computer modeling. J Immunol 1993; 151: 2572–87.Google Scholar
  16. 16.
    Engelhard VH, Appella E, Benjamin DC et al. Mass spectrometric analysis of peptides associated with the human class I MHC molecules HLAA2.1 and HLA-B7 and Identification of structural features that determine binding. Chem Immunol 1993; 57: 39–62.PubMedCrossRefGoogle Scholar
  17. 17.
    Hunt DF, Henderson RA, Shabanowitz J et al. Characterization of Peptides Bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. Science 1992; 255: 1261–63.PubMedCrossRefGoogle Scholar
  18. 18.
    DiBrino M, Parker KC, Shiloach J et al. Endogenous peptides bound to HLA-A3 possess a specific combination of anchor residues that permit identification of potential antigenic peptides. Proc Natl Acad Sci USA 1993; 90: 1508–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Jardetzky TS, Lane WS, Robinson RA et al. Identification of self peptides bound to purified HLA-B27. Nature 1991; 353: 326–29.PubMedCrossRefGoogle Scholar
  20. 20.
    Rammensee HG, Friede T and Stevanovi S. MHC ligands and peptide motifs: first listing. Immunogenetics 1995; 41: 178–28.PubMedCrossRefGoogle Scholar
  21. 21.
    Den Haan JMM, Sherman NE, Blokland E et al. Identification of a guH disease-associated human minor histocompatibility antigen. Science 1995; in press.Google Scholar
  22. 22.
    Ruppert J, Grey HM, Sette A et al. Prominent role of secondary anchor residues in peptide binding to A2.1 molecules. Cell 1993; 74: 929–37.PubMedCrossRefGoogle Scholar
  23. 23.
    Falk K, Rötzschke O, Grahovac B et al. Peptide motifs of HLA-B35 and B37 molecules. Immunogenetics 1993; 38: 161–62.PubMedCrossRefGoogle Scholar
  24. 24.
    Falk K, Rötzschke O, Stevanovi S et al. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991; 351: 290–96.PubMedCrossRefGoogle Scholar
  25. 25.
    Hill AVS, Elvin J, Willis AC et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 1992; 360: 434–39.PubMedCrossRefGoogle Scholar
  26. 26.
    Rötzschke O, Falk K, Stevanovic S et al. Peptide motifs of closely related HLA class I molecules encompass substantial differences. Eur J Immunol 1992; 22: 2453–56.PubMedCrossRefGoogle Scholar
  27. 27.
    Sutton J, Rowland-Jones S, Rosenberg W et al. A sequence pattern for peptides presented to cytotoxic T lymphocytes by HLA-B8 revealed by the analysis of epitopes and eluted peptides. Eur J Immunol 1993; 23: 447–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Matsui M, Hioe CE and Frelinger JA. Roles of the six peptide binding pockets of the HLA-A2 molecule in allorecognition by human cytotoxic T-cell clones. Proc Natl Acad Sci USA 1993; 90: 674–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Matsui M, Moots RJ, McMichael AJ et al. Significance of the six peptide-binding pockets of HLA-A2.1 in influenza A matrix peptide-specific cytotoxic T-lymphocyte reactivity. Hum Immunol 1994; 41: 160–66.PubMedCrossRefGoogle Scholar
  30. 30.
    Rötzschke O and Falk K. Origin, structure and motifs of naturally processed MHC class II ligands. Current opinion in ImmunoI. 1994; 6: 45–51.CrossRefGoogle Scholar
  31. 31.
    Henderson RA, Michel H, Sakaguchi K et al. HLA-A2.1 associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 1992; 255: 1264–66.PubMedCrossRefGoogle Scholar
  32. 32.
    Wei ML and Cresswell P. HLA-A2 molecules in an antigen-processing mutant contain signal sequence-derived peptides. Nature 1992; 356: 443–46.PubMedCrossRefGoogle Scholar
  33. 33.
    Wölfel T, Van Pel A, Brichard V et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994; 24: 759–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Chicz RM, Urban RG, Gorga JC et al. Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles. J Exp Med 1993; 178: 27–47.PubMedCrossRefGoogle Scholar
  35. 35.
    Chicz RM, Urban RG, Lane WS et al. Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size. Nature 1992; 358: 764–68.PubMedCrossRefGoogle Scholar
  36. 36.
    Riberdy JM, Newcomb JR, Surman MJ et al. HLA-DR molecules from an antigen-processing mutant cell line are associated with invariant chain peptides. Nature 1992; 360: 474–77.PubMedCrossRefGoogle Scholar
  37. 37.
    Sette A, Ceman S, Kubo RT et al. Invariant Chain peptides in most HLA-DR molecules of an antigen-processing mutant. Science 1992; 258: 1801–04.PubMedCrossRefGoogle Scholar
  38. 38.
    Geluk A, Van Meijgaarden KE, Janson AMA et al. Functional analysis of DR17(DR3)-restricted mycobacterial T-cell epitopes reveals DR17-binding motif and enables the design of allele-specific competitor peptides. J Immunol 1992; 149: 2864–71.PubMedGoogle Scholar
  39. 39.
    Hammer J, Takacs B and Sinigaglia F. Identification of a motif for HLA DR1 binding peptides using M13 display libraries. J Exp Med 1992; 176: 1007–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Hammer J. Valsasnini P, Tolba K et al. Promiscuous and allele-specific anchors in HLA-DR-binding peptides. Cell 1993; 74: 197–203.PubMedCrossRefGoogle Scholar
  41. 41.
    Falk K, Rötzschke O, Stevanovi S et al. Pool sequencing of natural HLADR, DQ and DP ligands reveals detailed peptide motifs, constraints of processing and general rules. Immunogenetics 1994; 39: 230–42.PubMedCrossRefGoogle Scholar
  42. 42.
    Malcharek G, Falk K, Rötzschke O et al. Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. Int Immunol 1993; 5: 1229–37.CrossRefGoogle Scholar
  43. 43.
    O’Sullivan D, Sidney J, Del Guerico M-F et al. Truncation analysis of several DR binding epitopes. J Immunol 1990; 146: 1240–46.Google Scholar
  44. 44.
    O’Sullivan D, Arrhenius T, Sidney J et al. On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 1991; 147: 2663–69.PubMedGoogle Scholar
  45. 45.
    Panina-Bordignon P, Tan A, Termijtelen A et al. Universally immunogenic T-cell epitopes: promiscuous binding to human MHC class II and promiscuous recognition by T cells. Eur J Immunol 1989; 19: 2237–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Ho PC, Mutch DA, Winkel KD et al. Identification of two promiscuous T-cell epitopes from tetanus toxin. Eur J Immunol 1990; 20: 477–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Momburg F, Ortiz-Navarrete V, Neefjes JJ et al. The proteasome subunits encoded by the major histocompatibility complex are not essential for antigen presentation. Nature 1991; 353: 664–67.CrossRefGoogle Scholar
  48. 48.
    Arnold D, Driscoll J, Androlewicz M et al. Proteasome subunits encoded in the MHC are not generally required for the processing of peptides bound by MHC class I molecules. Nature 1992; 360: 171–77.PubMedCrossRefGoogle Scholar
  49. 49.
    Spies T, Cerundolo V, Colonna M et al. Presentation of viral antigen by MHC class I molecules is dependent on a putative peptide transporter heterodimer. Nature 1992; 355: 644–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Powis SJ, Townsend ARM, Deverson EV et al. Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 1991; 354: 528–31.PubMedCrossRefGoogle Scholar
  51. 51.
    Kelly A, Powis SH, Kerr L-A et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 1992; 355: 641–44.PubMedCrossRefGoogle Scholar
  52. 52.
    Kleymeer MJ, Kelly A, Geuze HJ et al. Location of MHC-encoded transporters in the endoplasmic reticulum and cis-Golgi. Nature 1992; 357: 342–44.CrossRefGoogle Scholar
  53. 53.
    Degen E and Williams DB. Participation of a novel 88-kD protein in the biogenesis of murine class I histocompatibility molecules. J Cell Biol 1991; 112: 1099–1115.PubMedCrossRefGoogle Scholar
  54. 54.
    Degen E, Cohen-Doyle MF and Williams DB. Dissociation of the p88 chaperone from major histocompatibility complex class I molecules requires both 12-microglobulin and peptide. J Exp Med 1992; 175: 1653–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Anderson KS and Cresswell P. A role for calnexin (IP90) in the assembly of class II MHC molecules. EMBO J 1994; 13: 675–82.PubMedGoogle Scholar
  56. 56.
    Schreiber KL, Bell MP, Huntoon CJ et al. Class II histocompatibility molecules associate with calnexin during assembly in the endoplasmic reticulum. Int Immunol 1994; 6: 101–11.PubMedCrossRefGoogle Scholar
  57. 57.
    Roche PA and Cresswell P. Invariant chain association with HLA-DR molecules inhibits immunogenic peptide binding. Nature 1990; 345: 615–18.PubMedCrossRefGoogle Scholar
  58. 58.
    Teyton L, O’Sullivan D, Dickson PW et al. Invariant chain distinguishes between the exogenous and endogenous antigen presentation pathways. Nature 1990; 348: 39–44.PubMedCrossRefGoogle Scholar
  59. 59.
    Newcomb JR and Cresswell P. Characterization of endogenous peptides bound to parified HLA-DR molecules and their absence from invariant chain associated aß dimers. J Immunol 1993; 150: 499–507.PubMedGoogle Scholar
  60. 60.
    Anderson MS and Miller J. Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules. Proc Natl Acad Sci USA 1992; 89: 2282–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Layet C and Germain RN. Invariant chain promotes egress of poorly expressed, haplotype mismatched class II major histocompatibility complex AaAß dimers from the endoplasmic reticulum/cis-Golgi compartment. Proc Natl Acad Sci USA 1991; 88: 2346–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Neefjes JJ, Stollorz V, Peters PJ et al. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell 1990; 61: 171–183.PubMedCrossRefGoogle Scholar
  63. 63.
    Bakke O and Dobberstein B. MHC class II-associated invariant chain contains a sorting signal for endosomal compartments. Cell 1990; 63: 707–16.PubMedCrossRefGoogle Scholar
  64. 64.
    Lotteau V, Teyton L, Peleraux A et al. Intracellular transport of class II MHC molecules directed by invariant chain. Nature 1990; 348: 600–05.PubMedCrossRefGoogle Scholar
  65. 65.
    Lamb CA, Yewdell JW, Bennink JR et al. Invariant chain targets HLA class III molecules to acidic endosomes containing internalized influenza virus. Proc Natl Acad Sci USA 1991; 88: 5889–6002.CrossRefGoogle Scholar
  66. 66.
    Pieters J, Horstmann H, Bakke O et al. Intracellular transport and localization of major histocompatibility complex class II molecules and associated invariant chain. J Cell Biol 1991; 115: 1213–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Peters PJ, Neefjes JJ, Oorschot V et al. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature 1991; 349: 669–76.PubMedCrossRefGoogle Scholar
  68. 68.
    Harding CV, Collins DS, Slot JW et al. Liposome-encapsulated antigens are processed in lysosomes, recycled and presented to T cells. Cell 1991; 64: 393–401.PubMedCrossRefGoogle Scholar
  69. 69.
    Neefjes JJ and Ploegh HL. Inhibition of endosomal proteolytic activity by leupeptin blocks surface expression of MHC class II molecules and their conversion to SDS resistant aß heterodimers in endosomes. EMBO J 1992; 11: 411–16.PubMedGoogle Scholar
  70. 70.
    Blum JS and Cresswell P. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc Natl Acad Sci USA 1988; 85: 3975–79.PubMedCrossRefGoogle Scholar
  71. 71.
    Davis MM and Bjorkman PJ. T-cell antigen receptor genes and T-cell recognition. Nature 1988; 334: 395–402.PubMedCrossRefGoogle Scholar
  72. 72.
    Chothia C, Boswell DR and Lesk AM. The outline structure of the T cell aßreceptor. EMBO J 1988; 7: 3745–55.PubMedGoogle Scholar
  73. 73.
    Claverie J-M, Prochnicka-Chalufour A and Bougueleret L. Implications of a Fab-like structure for the T-cell receptor. Immunol Today 1989; 10: 10–14.PubMedCrossRefGoogle Scholar
  74. 74.
    Benoist C and Mathis D. Positive selection of the T cell repertoire: where and when does it occur? Cell 1989; 58: 1027–33.PubMedCrossRefGoogle Scholar
  75. 75.
    Bill J and Palmer E. Positive selection of CD4+ T cells mediated by MHC class II bearing stromal cell in thymic cortex. Nature 1989; 341: 649–51.PubMedCrossRefGoogle Scholar
  76. 76.
    Gulwani-Akolkar B, Posnett DM, Janson CH et al. T-cell receptor V segment frequencies in peripheral blood T cells correlate with human leukocyte antigen type. J Exp Med 1991; 174: 1139–46.PubMedCrossRefGoogle Scholar
  77. 77.
    Reed EF, Tugulea SL and Suciu-Forca N. Influence of HLA class I and class II antigens on the peripheral T-cell repertoire. Hum Immunol 1994; 40: 111–22.PubMedCrossRefGoogle Scholar
  78. 78.
    Genevée C, Farace F, Chung V et al. Influence of human leukocyte antigen genes on TCR V gene segment frequencies. Int Immunol 1994; 6: 1497–04.PubMedCrossRefGoogle Scholar
  79. 79.
    Akolkar PN, Gulwani-Alkokar B, Pergolizzi R et al. Influence of HLA genes on T-cell receptor V segment frequencies and expression levels in peripheral blood lymphocytes. J Immunol 1993; 150: 2761–73.PubMedGoogle Scholar
  80. 80.
    Loveridge JA, Rosenburg WMC, Kirkwood TBL et al. The genetic contribution to human T-cell receptor repertoire. Immunol 1991; 74: 246–50.Google Scholar
  81. 81.
    Moss PAH, Rosenberg WMC, Zintzaras E et al. Characterization of the human T-cell receptor a-chain repertoire and demonstration of a genetic influence on Va usage. Eur J Immunol 1993; 23: 1153–59.PubMedCrossRefGoogle Scholar
  82. 82.
    Hawes GE, Struyk L and Van den Elsen PJ. Differential usage of T-cell receptor V gene segments in CD4+ and CD8+ subsets of T lymphocytes in monozygotic twins. J Immunol 1993; 150: 2033–45.PubMedGoogle Scholar
  83. 83.
    Grunewald J, Janson CH and Wigzell H. Biased expression of individual T-cell receptor V gene segments in CD4+ and CD8+ human peripheral blood T lymphocytes. Eur J Immunol 1991; 21: 819–22.PubMedCrossRefGoogle Scholar
  84. 84.
    Gulwani-Akolkar B, Posnett D.N, Janson C.H et al. T-cell receptor V segment frequencies in peripheral blood T cells correlate with human leukocyte antigen type. J Exp Med 1991; 174: 1139–46.PubMedCrossRefGoogle Scholar
  85. 85.
    Liao N-S, Maltzman J and Raulet D. Expression of the V05.1 gene by murine peripheral T cells is controlled by MHC genes and skewed to the CD8+ subset. J Immunol 1990; 144: 844–48.PubMedGoogle Scholar
  86. 86.
    Davey MP, Meyer MM, Munkirs M et al. T-cell receptor variable p genes show differential expression in CD4+ and CD8+ cells. Hum Immunol 1991; 32: 194–207.PubMedCrossRefGoogle Scholar
  87. 87.
    Singer PA, Balderas RS and Theofilopoulos AN. Thymic selection defines multiple T cell receptor Vß “repertoire phenotypes” at the CD4/CD8 subset level. EMBO J 1990; 9: 3641–36.PubMedGoogle Scholar
  88. 88.
    Candeias S, Waltzinger C, Benoist C et al. The V017+ T-cell repertoire: skewed Jp usage after thymic selection; dissimilar CDR3s in CD4+ versus CD8+ cells. J Exp Med 1991; 174: 989–1000.PubMedCrossRefGoogle Scholar
  89. 89.
    Jeddi-Tehrani M, Grunewald J, Hodara V et al. Nonrandom T-cell receptor Jp usage pattern in human CD4+ and CD8+ peripheral T cells. Hum Immunol 1994; 40: 93–100.PubMedCrossRefGoogle Scholar
  90. 90.
    Grunewald J, Jeddi-Tehrani M, Pisa E et al. Analysis of Jp gene segment usage by CD4+ and CD8+ human peripheral blood T lymphocytes. Int Immunol 1992; 4: 643–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Raaphorst FM, Kaijzel EL, Van Tol MJD et al. Non-random employment of Vß6 and Jp gene elements and conserved amino acid usage profiles in CDR3 regions of human fetal and adult TCR p chain rearrangements. Int Immunol. 1994; 6: 1–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Robinson MA. Usage of human T-cell receptor Vp, Jp, Cp and Va gene segments is not proportional to gene number. Hum Immunol 1992; 35: 60–67.CrossRefGoogle Scholar
  93. 93.
    George JF and Schroeder HW. Developmental regulation of Dp reading frame and junctional diversity in T-cell receptor-p transcripts from human thymus. J Immunol 1992; 148: 1230–39.PubMedGoogle Scholar
  94. 94.
    Feeney AJ. Junctional sequences of fetal T cell receptor p chains have few N regions. J Exp Med 1991; 174: 115–24.CrossRefGoogle Scholar
  95. 95.
    Prochnicka-Chalufour A, Casanova JL, Avrameas S et al. Biased amino acid distributions in regions of the T cell receptors and MHC molecules potentially involved in their association. Int Immunol 1991; 3: 853–64.PubMedCrossRefGoogle Scholar
  96. 96.
    Fink PJ and Bevan MJ. H2 antigens of the thymus determine lymphocyte specificity. J Exp Med 1978; 148: 766–75.PubMedCrossRefGoogle Scholar
  97. 97.
    Zinkernagel RM, Callahan GN, Althaga A et al. On the thymus in differentiation of “H-2 self recognition” by T cells: evidence for dual recognition? J Exp Med 1978; 147: 882–96.PubMedCrossRefGoogle Scholar
  98. 98.
    Sprent J, Lo D, Gao EK et al. T-cell selection in the thymus. Immunol Rev 1988; 101: 173–90.PubMedCrossRefGoogle Scholar
  99. 99.
    Schwartz RH. Acquisition of immunologic self-tolerance. Cell 1989; 57: 1073–81.PubMedCrossRefGoogle Scholar
  100. 100.
    Nikolic-Zugic J and Bevan MJ. Role of self-peptides in positively selecting the T-cell repertoire. Nature 1990; 344: 65–67.PubMedCrossRefGoogle Scholar
  101. 101.
    Mombaerts P, Clarke AR, Rudnicki MA et al. Mutations in T-cell antigen receptor genes a and p block thymocyte development at different stages. Nature 1992; 360: 225–31.PubMedCrossRefGoogle Scholar
  102. 102.
    Kishi H, Borgulya P, Scott B et al. Surface expression of the p T-cell receptor (TCR) chain in the absence of other TCR or CD3 proteins on immature T cells. EMBO J 1991; 10: 93–100.PubMedGoogle Scholar
  103. 103.
    Goettrup M, Baron A, Griffiths G et al. T-cell receptor (TCR) ß chain homodimers on the surface of immature but not mature a, y, 8 chain deficient T-cell lines. EMBO J 1992; 11: 2735–46.Google Scholar
  104. 104.
    Groettrup M, Ungewiss K, Azogui O et al. A novel disulfide-linked heterodimer on pre-T cells consists of the T-cell receptor ß chain and a 33 kd glycoprotein. Cell 1993; 75: 283–94.PubMedCrossRefGoogle Scholar
  105. 105.
    Kisielow P, Teh HS, Bluthmann H et al. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 1988; 335: 730–33.PubMedCrossRefGoogle Scholar
  106. 106.
    Sha WC, Nelson CA, Newberry RD et al. Positive and negative selection of an antigen receptor on T cells in transgenic mice. Nature 1988; 336: 73–76.PubMedCrossRefGoogle Scholar
  107. 107.
    Borgulya P, Kisyi H, Muller U et al. Development of the CD4 and CD8 lineage of T cells: instruction versus selection. EMBO J 1991; 10: 913–18.PubMedGoogle Scholar
  108. 108.
    Kaye J, Hsu ML, Sauron ME et al. Selective development of CD4’ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 1989; 341: 746–49.PubMedCrossRefGoogle Scholar
  109. 109.
    Marrack P, Lo D, Brinster R et al. The effect of thymus environment on T-cell development and tolerance. Cell 1988; 53: 627–34.PubMedCrossRefGoogle Scholar
  110. 110.
    Von Boehmer H. Thymic selection: a matter of life and death. Immunol Today 1992; 12: 454–58.CrossRefGoogle Scholar
  111. 111.
    Robey E, Ramsdell F, Elliott J et al. Expression of CD4 in transgenic mice alters the specificity of CD8 cells for allogenic major histocompatibility complex. Proc Natl Acad Sci USA 1991; 88: 608–12.PubMedCrossRefGoogle Scholar
  112. 112.
    Teh HS, Garvin AM, Forbush KA et al. Participation of CD4 coreceptor molecules in T-cell repertoire selection. Nature 1991; 349: 241–43.PubMedCrossRefGoogle Scholar
  113. 113.
    Kruisbeek AM, Mond JJ, Fowlkes BJ et al. Absence of the lyt-2-,L3T4+ lineage of T cells in mice treated neonatally with anti-I-A correlates with absence of intrathymic I-A-bearing antigen-presenting cell function. J Exp Med 1985; 161: 1029–47.PubMedCrossRefGoogle Scholar
  114. 114.
    Kruisbeek AM, Fultz MK, Sharrow SO et al. Early development of the T-cell repertoire. In vivo treatment of neonatal mice with anti-Ia antibodies interferes with differentiation of I-restricted T cells but not K/Drestricted T cells. J Exp Med 1983; 157: 1932–46.PubMedCrossRefGoogle Scholar
  115. 115.
    Zufiiga-Pflucker JC, Longo DL and Kruisbeek AM. Positive selection of CD4’ CD8’ T cell in the thymus of normal mice. Nature 1989; 338: 76–78.CrossRefGoogle Scholar
  116. 116.
    Cosgrove D, Gray D, Dierich A et al. Mice lacking MHC class II molecules. Cell 1991; 66: 1051–66.PubMedCrossRefGoogle Scholar
  117. 117.
    Grusby MJ, Johnson RS, Papaioannou VE et al. Depletion of CD4’ T cells in major histocompatibility complex class II-deficient mice. Science 1991; 253: 1417–20.PubMedCrossRefGoogle Scholar
  118. 118.
    Zijlstra M, Bix M, Simister NE et al. p2-Microglobulin deficient mice lack CD4–8’ cytolytic T cells. Nature 1990; 344: 742–46.PubMedCrossRefGoogle Scholar
  119. 119.
    Koller BH, Marrack P, Kappler JW et al. Normal development of mice deficient in 02-m, MHC class I proteins and CD8` T cells. Science 1990; 248: 1227–30.PubMedCrossRefGoogle Scholar
  120. 120.
    Chan SH, Cosgrove D, Waltzinger C et al. Another view of the selective model of thymocyte selection. Cell 1993; 73: 225–36.PubMedCrossRefGoogle Scholar
  121. 121.
    Surh C and Sprent J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 1994; 372: 100–03.PubMedCrossRefGoogle Scholar
  122. 122.
    Elliot TJ and Eisen HN. Cytotoxic T lymphocytes recognize a reconstituted class I histocompatibility antigen (HLA-A2) as an allogenic target molecule. Proc Natl Acad Sci USA 1990; 87: 5213–17.CrossRefGoogle Scholar
  123. 123.
    Bevan MJ. High determinant density may explain the phenomenon of alloreactivity. Immunol. Today 1984; 5: 128–30.CrossRefGoogle Scholar
  124. 124.
    Müllbacher A, Hill AB, Blanden RV et al. Alloreactive cytotoxic T cells recognize MHC class I antigen without peptide specificity. J Immunol 1991; 147: 1765–72.PubMedGoogle Scholar
  125. 125.
    Lechler RI, Lombardi G, Batchelor JR et al. The molecular basis of alloreactivity. Immunol. Today 1990; 11: 83–88.PubMedCrossRefGoogle Scholar
  126. 126.
    Benichou G, Takizawa PA, Olson CA et al. Donor major histocompatibility complex (MHC) peptides are presented by recipients MHC molecules during graft rejection. J Exp Med 1992; 175: 305–08.PubMedCrossRefGoogle Scholar
  127. 127.
    Parker KE, Dalchau R, Fowler VJ et al. Stimulation of CD4+ T lymphocytes by allogeneic MHC peptides presented an autologous antigen-presenting cells. Transplantation 1992; 53: 918–24.PubMedCrossRefGoogle Scholar
  128. 128.
    Chen BP, Madrigal JA and Parham P. Cytotoxic T-cell recognition of an endogenous class I HLA peptide by a class II HLA molecule. J Exp Med 1990; 172: 779–88.PubMedCrossRefGoogle Scholar
  129. 129.
    Sherwood RA, Brent L and Rayfield LS. Presentation of alloantigens by host cells. Eur J Immunol 1986; 16: 569–74.PubMedCrossRefGoogle Scholar
  130. 130.
    Liu Z, Braunstein NS and Suciu-Foca N. T-cell recognition of allopeptides in context of syngeneic MHC. J Immunol 1992; 148: 35–40.PubMedGoogle Scholar
  131. 131.
    Davies HS, Pollard SG and Calne RY. Soluble HLA antigens in the circulation of liver graft recipients. Transplantation 1989; 47: 524–27.PubMedCrossRefGoogle Scholar
  132. 132.
    Zavazava N, Böttcher H, Müller Ruchholtz W. Soluble MHC class I antigens (sHLA) and anti-HLA antibodies in heart and kidney allograft recipients. Tissue Antigens 1993; 42: 20–26.PubMedCrossRefGoogle Scholar
  133. 133.
    Benichou G, Fedoseyeva E, Lehmann PV et al. Limited T-cell response to donor MHC peptides during allograft rejection. J Immunol 1994; 153: 938–45.PubMedGoogle Scholar
  134. 134.
    Fangmann J, Dalchau R and Fabre JW. Rejection of skin allografts by indirect allorecognition of donor class I major histocompatibility complex peptides. J Exp Med 1992; 175: 1521–29.PubMedCrossRefGoogle Scholar
  135. 135.
    Fangmann J, Dalchau R, Sawyer GJ et al. T-cell recognition of donor major histocompatibility complex class I peptides during allograft rejection. Eur J Immunol 1992; 22: 1525–30.PubMedCrossRefGoogle Scholar
  136. 136.
    Sayegh MH, Khoury SK, Hancock WW et al. Induction of immunity and oral tolerance with polymorphic class II MHC allopeptides. Proc Natl Acad Sci USA 1992; 89: 7762–66.PubMedCrossRefGoogle Scholar
  137. 137.
    De Koster HS, Anderson DE and Termijtelen A. T cells sensitized to synthetic HLA-DR3 peptide give evidence of continuous presentation of denatured HLA-DR3 molecules. J Exp Med 1989; 169: 1191–96.PubMedCrossRefGoogle Scholar
  138. 138.
    Sharrock C, Man S, Wanachiwanawin W et al. Analysis of the alloreactive T-cell repertoire in man. I. Differences in precursor frequency for cytotoxic T-cell responses against allogeneic MHC molecules in unrelated individuals. Transplantation 1987; 43: 699–703.PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang L, Li S, Vandekerckhove BAE et al. Analysis of cytotoxic T-cell precursor frequencies directed against individual HLA-A and HLA-B alloantigens. J Immunol Meth 1989; 121: 39–45.CrossRefGoogle Scholar
  140. 140.
    Man S, Lechler RI, Batchelor JR et al. Individual variation in the frequency of HLA class II-specific cytotoxic T-lymphocyte precursors. Eur J Immunol 1990; 20: 847–54.PubMedCrossRefGoogle Scholar
  141. 141.
    Liu Z, Sun Y, Xi Y et al. Contribution of direct and indirect recognition pathways to T-cell alloreactivity. J Exp Med 1993; 177: 1643–50.PubMedCrossRefGoogle Scholar
  142. 142.
    Stamenkovic I, Stegagno M, Wright KA et al. Clonal dominance among T lymphocyte infiltrates in arthritis. Proc Natl Acad Sci USA 1988; 85: 1179–83.PubMedCrossRefGoogle Scholar
  143. 143.
    Miceli MC and Finn OJ. T-cell receptor p-chain selection in human allograft rejection. J Immunol 1989; 142: 81–86.PubMedGoogle Scholar
  144. 144.
    Frisman DM, Hurwitz AA, Bennett WT et al. Clonal analysis of graft-infiltrating lymphocytes from renal and cardiac biopsies. Dominant rearrangements of TCRp genes and persistence of dominant rearrangements in serial biopsies. Hum Immunol 1990; 28: 208–15.PubMedCrossRefGoogle Scholar
  145. 145.
    Hand SL, Hall BL and Finn OJ. T-cell receptor gene usage and expression in enal allograft-derived T-cell lines. Hum Immunol 1990; 28: 82–95.PubMedCrossRefGoogle Scholar
  146. 146.
    Finn OJ and Miceli MC. Effector T-cell repertoire selection in human allograft rejection. Transplant Proc 1989; 21: 346–48.PubMedGoogle Scholar
  147. 147.
    Duby AD, Sinclair AK, Osborne-Lawrence SL et al. Clonal heterogeneity of synovial fluid T lymphocytes from patients with rheumatoid arthritis. Proc Natl Acad Sci USA 1989; 86: 6206–10.PubMedCrossRefGoogle Scholar
  148. 148.
    Kronenberg M, Siu G, Hood L et al. The molecular genetics of the T-cell antigen receptor and T-cell antigen recognition. Ann Rev Immunol 1986; 4: 529–91.CrossRefGoogle Scholar
  149. 149.
    Moss PAH, Rosenberg WMC and Bell JI. The human T-cell receptor in health and disease. Annu Rev Immunol 1992; 10: 71–96.PubMedCrossRefGoogle Scholar
  150. 150.
    Rosenberg WMC, Moss PAH and Bell JI. Variation in human T-cell receptor Vp and jp repertoire-analysis using anchor polymerase chain reaction. Eur J Immunol 1992; 22: 541–49.PubMedCrossRefGoogle Scholar
  151. 151.
    Struyk L, Hawes GE, Chatilla MK et al. T-cell receptors in rheumatoid arthritis. Arthr and Rheum 1995, 5: 557–589.Google Scholar
  152. 152.
    Loh EY, Elliott JF, Cwirla S et al. Polymerase chain reaction with single-sided specificity: analysis of T-cell receptor 8 chain. Science 1989; 243: 217–20.PubMedCrossRefGoogle Scholar
  153. 153.
    Ohara O, Dorit RL and Gilbert W. One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci USA 1989; 86: 5673–77.PubMedCrossRefGoogle Scholar
  154. 154.
    Uematsu Y, Wege H, Straus A et al. The T-cell receptor repertoire in the synovial fluid of a patient with rheumatoid arthritis is polyclonal. Proc Natl Acad Sci USA 1991; 88: 8534–38.PubMedCrossRefGoogle Scholar
  155. 155.
    Struyk L, Kurnick JT, Hawes GE et al. T-cell receptor V gene usage in synovial fluid lymphocytes of patients with chronic arthritis. Hum Immunol 1993; 37: 237–51.PubMedCrossRefGoogle Scholar
  156. 156.
    Oksenberg JR, Stuart S, Begovich AB et al. Limited heterogeneity of rearranged T-cell receptor Va transcripts in brains of multiple sclerosis patients. Nature 1990; 345: 344–46.PubMedCrossRefGoogle Scholar
  157. 157.
    Choi Y, Kotzin B, Herron L et al. Interaction of Staphylococcus aureus toxin “superantigens” with human T cells. Proc Natl Acad Sci USA 1989; 86: 8941–8945.PubMedCrossRefGoogle Scholar
  158. 158.
    Wucherpfennig KW, Ota K, Endo N et al. Shared human T-cell receptor Vß usage to immunodominant regions of myelin basic protein. Science 1990; 248: 1016–19.PubMedCrossRefGoogle Scholar
  159. 159.
    Sottini A, Imberti L, Bettinardi A et al. Selection of T lymphocytes in two rheumatoid arthritis patients defines different T-cell receptor Vß repertoires in CD4’ and CD8’ T-cell subsets. J Autoimmunity 1993; 6: 621–37.CrossRefGoogle Scholar
  160. 160.
    Broeren CPM, Verjans GMGM, Van Eden W et al. Conserved nucleotide sequences at the 5’ end of T-cell receptor variable genes facilitate polymerase chain reaction amplification. Eur J Immunol 1991; 21: 569–75.PubMedCrossRefGoogle Scholar
  161. 161.
    Orita M, Suzuki Y, Sekiya T et al. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 1989; 5: 874–79.PubMedCrossRefGoogle Scholar
  162. 162.
    Pannetier C, Cochet M, Darche S et al. The sizes of the CDR3 hypervariable regions of the muringe T-cell receptor ß chains vary as a function of the recombined germ-line segments. Proc Natl Acad Sci USA 1993; 90: 4319–23.PubMedCrossRefGoogle Scholar
  163. 163.
    Gorski J, Yassai M, Zhu X et al. Circulating T-cell repertoire complexity in normal individuals and bone marrow recipients analyzed by CDR3 size spectratyping. Correlation with immune status. J Immunol 1994; 152: 5109–19.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Peter J. van den Elsen

There are no affiliations available

Personalised recommendations