Skip to main content

The Triphasic Sequence of Neo-Intima Formation in Cuffed Rabbit Carotid Arteries

  • Chapter
Spontaneous and Induced Intima Formation in Blood Vessels

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 16 Accesses

Abstract

Diffuse intimai thickening occurs commonly in arteries of man and increases progressively throughout life.1 Eccentric intimai thickenings (intimai cushions), associated with branches and orifices, have been observed in human arteries from the first week. Both the diffuse intimal thickening and the intimal cushions are considered as predilection sites for atherosclerosis.2–5 While the factors responsible for the intima development in man are largely unknown, numerous methods of injury have been applied to produce intimai lesions in animals. These methods can be divided into two broad categories: those that use intraluminal (e.g. balloon denudation) and those that use perivascular manipulation. Examples of the latter are external electrical stimulation,6 external compression,7 stripping the adventitia from arteries8 and positioning of a cuff around an artery.9,10 The perivascular cuff placement is used to avoid direct injury to the vessel wall, particularly to the endothelium. In certain experimental protocols rigid polyethylene tubes are used which still results in endothelial cell loss.9,11 We applied a perivascular method by placing a nonocclusive, biologically inert, soft and flexible silicone cuff around an artery as first described by Booth.10

Adapted with permissiom from Kockx et al. Arterioscler Thromb 1992; 12;1447–1457.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilens SL. The nature of diffuse intimai thickening of arteries. Am J Pathol 1951; 27: 825–839.

    PubMed  CAS  Google Scholar 

  2. Schwartz SM, Heimark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev 1990; 70: 1177–1209

    PubMed  CAS  Google Scholar 

  3. Velican C, Velican D. The precursors of coronary atherosclerotic plaques in subjects up to 40 years old. Atherosclerosis 1980; 37: 33–46.

    Article  PubMed  CAS  Google Scholar 

  4. Hardin NJ, Minich CR, Murphy GE. Experimental induction of atheroarteriosclerosis by the synergy of allergic injury to arteries and lipid rich diet. Am J Pathol 1973; 73: 301–327.

    PubMed  CAS  Google Scholar 

  5. Stary HC, Blankenhorn DH, Chandler AB, Glagov S, Insull W, Richardson M, Rosenfeld ME, Senaffer SA, Schwartz CJ, Wagner WD, Wissler RW. A definition of the intima of human arteries and of its atherosclerosis prone regions. Arterioscler Thromb 1992; 12: 120–134.

    Article  PubMed  CAS  Google Scholar 

  6. Betz E, Schlote W. Responses of vessel walls to chronically applied electrical stimuli. Basic Res Cardiol 1979; 74: 10–20.

    Article  PubMed  CAS  Google Scholar 

  7. Banai S, Shou M, Correa R, Jaklitsch MT, Douek PC, Bonner RF, Epstein SE, Unger EF. Rabbit ear model of injury-induced arterial smooth muscle cell proliferation. Circ Res 1991; 69: 748–756.

    Article  PubMed  CAS  Google Scholar 

  8. Williams AW. Relation of atheroma to local trauma. J Path Bact 1961; 81: 419–422.

    Article  PubMed  CAS  Google Scholar 

  9. Gebrane J, Roland J, Orcel L. Experimental diffuse intimai thickening of the femoral arteries in the rabbit. Virchows Arch (A) Path Anat 1982; 396: 41–59.

    CAS  Google Scholar 

  10. Booth RFG, Martin JF, Honey AC, Hassall DG, Beesley JE, Moncada S. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulation. Atherosclerosis 1989; 76: 257–268.

    Article  PubMed  CAS  Google Scholar 

  11. Hirosumi J, Nomoto A, Ohkubo Y, Sekiguchi C, Mutoh S, Yamaguchi I, Aoki H. Inflammatory responses in cuff-induced atherosclerosis in rabbits. Atherosclerosis 1987; 64: 243–254.

    Article  PubMed  CAS  Google Scholar 

  12. Lee RMKW. Rapid development of atherosclerotic lesions in the rabbit carotid artery induced by perivascular manipulations; letter to the editors. Atherosclerosis 1990; 83: 263–264.

    Article  PubMed  CAS  Google Scholar 

  13. Bravo R, Frank R, Blundell PA, Macdonald-Bravo H. Cyclin/PCNA is the auxiliary protein of DNA polymerase S. Nature 1987; 326: 515–517.

    Article  PubMed  CAS  Google Scholar 

  14. Prelich G, Tan CK, Kostura M, Matthews MB, So AG, Downey KM, Stillman B. Functional identity of proliferating cell nuclear antigen and a DNA polymerase S auxiliary protein. Nature 1987; 326: 517.

    Article  PubMed  CAS  Google Scholar 

  15. Celis JE, Celis A. Cell cycle dependent variations in the distribution of the nuclear protein cyclin proliferating cell nuclear antigen in cultured cells. Subdivision of S phase. Proc Natl Acad Sci USA 1985; 82: 3262–3266.

    Article  PubMed  CAS  Google Scholar 

  16. Van Dierendonck JH, Wijsman Keijzer R, Van de Velde CJH, Cornelisse CJ. Cell-cycle-related staining patterns of anti-proliferating cell nuclear antigen monoclonal antibodies. Comparison with BrdUrd labelling and Ki-67 staining. Am J Pathol 1991; 138: 1165–1172.

    PubMed  Google Scholar 

  17. Clowes AW, Schwartz SM. Significance of quiescent smooth muscle migration in the injured rat carotid artery. Circ. Res 1985; 56: 139–145.

    Article  PubMed  CAS  Google Scholar 

  18. Jamal A. Bendeck M, Langille BL. Structural changes and recovery of function after arterial injury. Arterioscler Thromb 1992; 12: 307–317.

    Article  PubMed  CAS  Google Scholar 

  19. Kocher O, Gabbiani F, Gabbiani G, Reidy MA, Cokay MS, Peters H, Hüttner I. Phenotypic features of smooth muscle cells during the evolution of experimental carotid artery intimal tickening. Lab Invest 1991; 65: 459–470.

    PubMed  CAS  Google Scholar 

  20. Chamley-Campbell JH, Campbell GR. What controls smooth muscle phenotype? Atherosclerosis 1981; 40: 347–357.

    Article  PubMed  CAS  Google Scholar 

  21. Thyberg J, Nilsson J, Palmberg L et al. Adult human arterial smooth muscle cells in primary culture. Modulation from contractile to synthetic phenotype. Cell Tissue Res 1985; 239: 69–74.

    Article  PubMed  CAS  Google Scholar 

  22. Mosse PRL, Campbell GR, Campbell JH. Smooth muscle phenotypic expression in human carotid arteries. II. Atherosclerosis-free diffuse intimal thickenings compared with media. Arteriosclerosis 1986; 6: 664–669.

    Article  PubMed  CAS  Google Scholar 

  23. Majack RA, Bornstein. Biosynthesis and modulation of extracellular matrix components by cultured vascular smooth muscle cells. CRC Press, Boca Raton, Florida 1986.

    Google Scholar 

  24. Vaheri A, Salonen EM, Vartio T, Hedman K, Stenman S. Fibronectin and tissue injury. In: Biology and Pathology of the Vessel Wall. Woolf N, ed. Praeger Publishers East Sussex, UK and New York, USA 1985; 161.

    Google Scholar 

  25. Orekhov AN, Andreeva ER, Shekhonin BV, Tertov VV, Smirnov VN. Content and localization of fibronectin in normal intima, atherosclerotic plaque and underlying media of human aorta. Atherosclerosis 1984; 53: 213–219.

    Article  PubMed  CAS  Google Scholar 

  26. Stenman S, vSmitten K, Vaheri A. Fibronectin and atherosclerosis. Acta Med Scand 1980; 642: 165–179.

    CAS  Google Scholar 

  27. Wight TN. Extracellular matrix and atherosclerosis. In: Diseases of the Vascular Wall. Camilleri J, Berry CL, Fiessinger J, Bariety J, eds. Springer Verlag 1989; 185–195.

    Google Scholar 

  28. Burke JM, Ross R. Collagen synthesis by monkey arterial smooth muscle cells during proliferation and quiescence in culture. Exp Cell Res 1977; 107: 387–395.

    Article  PubMed  CAS  Google Scholar 

  29. Prescott MF, Mc Bride KC, Court M. Development of intimai lesions after leukocyte migration into the vascular wall. Am J Pathol 1989; 135: 835–846.

    PubMed  CAS  Google Scholar 

  30. Martin JF, Booth RFG, Moncada S. Arterial wall hypoxia following hyperfusion through the vasa vasorum is an initial lesion in atherosclerosis. Eur J Clin Invest 1990; 20: 588–592.

    Article  PubMed  CAS  Google Scholar 

  31. Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res 1967; 20: 99–101.

    Article  PubMed  CAS  Google Scholar 

  32. Kling D, Holzschuh T, Strohschneider T, Betz E. Enhanced endothelial permeability and invasion of leukocytes into the artery wall as initial events in experimental arteriosclerosis. Inter Angio 1987; 6: 21–28.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kockx, M.M. (1995). The Triphasic Sequence of Neo-Intima Formation in Cuffed Rabbit Carotid Arteries. In: Spontaneous and Induced Intima Formation in Blood Vessels. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22430-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22430-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22432-8

  • Online ISBN: 978-3-662-22430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics