Skip to main content

Sphingosine-1-Phosphate: Member of a New Class of Lipid Second Messengers

  • Chapter
Sphingolipid-Mediated Signal Transduction

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Homeostasis of multicellular organisms as well as their normal development depends on the balance between cellular proliferation, differentiation, and cell death or apoptosis. Ceramide, sphingosine, and sphingosine-1-phosphate (SPP), metabolites of sphingolipids, and ubiquitous components of eukaryotic cell membranes, have recently emerged as members of a new class of signaling molecules regulating these diverse cellular processes.1–4 Sphingolipid metabolism involves removal of their polar headgroups; for example, phosphorylcholine from sphingomyelin by acidic or neutral sphingomyelinases to produce ceramide,5 which can then be cleaved by ceramidases to release fatty acid and the free long-chain base (sphingosine or sphinganine).6 Sphingosine can be phosphorylated to SPP by sphingòsine kinase,7 reacylated to ceramide, or methylated.8 SPP in turn can undergo dephosphorylation to sphingosine,9 or cleavage to ethanolamine phosphate and trans-2hexadecenal by a pyridoxal phosphate-dependent lyase.10,11 Although all of these sphingolipid metabolites may play important roles in cell regulation, this review is focused on current knowledge regarding the second messenger role of SPP in regulating the fate of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–3128.

    CAS  PubMed  Google Scholar 

  2. Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. Trends Biochem Sci 1995; 20: 73–77.

    Article  CAS  PubMed  Google Scholar 

  3. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77: 325–328.

    Article  CAS  PubMed  Google Scholar 

  4. Spiegel S, Milstien S. Sphingolipid metabolites: members of a new class of lipid second messengers. J Membr Biol 1995; 146: 225–237.

    CAS  PubMed  Google Scholar 

  5. Spence MW. Sphingomyelinases. Adv Lipid Res 1993; 26: 3–23.

    CAS  PubMed  Google Scholar 

  6. Hassler DG, Bell RM. Ceramidases: Enzymology and metabolic roles. Adv Lipid Res 1993; 26: 49–57.

    CAS  PubMed  Google Scholar 

  7. Stoffel W, Hellenbroich B, Heimann G. Properties and specificities of sphingosine kinase from blood platelets. HoppeSeyler’s Z Physiol Chem 1973; 354: 1311–1316.

    Article  CAS  Google Scholar 

  8. Igarashi Y, Kitamura K, Toyokuni T et al. A specific enhancing effect of N,N-dimethylsphingosine on epidermal growth factor receptor autophosphorylation. Demonstration of its endogenous occurrence (and the virtual absence of unsubstituted sphingosine) in human epidermoid carcinoma A431 cells. J Biol Chem 1990; 265: 5385–5389.

    CAS  PubMed  Google Scholar 

  9. Van Veldhoven PP, Mannaerts GP. Sphinganine 1-phosphate metabolism in cultured skin fibroblasts: evidence for the existence of a sphingosine phosphatase. Biochem J 1994; 299: 597–601.

    PubMed  Google Scholar 

  10. Stoffel W, Assmann G. Enzymatic degradation of 4t-sphingenine 1-phosphate (sphingosine- 1-phosphate) to 2t-hexadecen-1-al and ethanolamine phosphate. Hoppe-Seyler’s Z Physiol Chem 1970; 351: 1041–1049.

    Article  CAS  PubMed  Google Scholar 

  11. Veldhoven PP, Mannaerts GP. Sub-cellular localization and membrane topology of sphingosine-l-phosphate lyase in rat liver. J Biol Chem 1991; 266: 12502–12507.

    PubMed  Google Scholar 

  12. Heller RA, Kronke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 1994; 126: 5–9.

    Article  CAS  PubMed  Google Scholar 

  13. Cifone MG, De Maria R, Roncaioli P et al. Apoptotic signaling through CD95 (Fas/Apo-1) activates an acidic sphingomyelinase. J Exp Med 1993; 177: 1547–1552.

    Google Scholar 

  14. Haimovitz-Friedman A, Kan CC, Ehleiter D et al Ionizing radiation acts on cellular membranes to generate ceramide and initiate apoptosis. J Exp Med 1994; 180: 525–535.

    Article  CAS  PubMed  Google Scholar 

  15. Gulbins E, Bissonnette R, Mahboubi A et al. FAS-induced apoptosis is mediated via a ceramide-initiated RAS signaling pathway. Immunity 1995; 2: 341–351.

    Article  CAS  PubMed  Google Scholar 

  16. Obeid LM, Linardic CM, Karolak LA et al. Programmed cell death induced by ceramide. Science 1993; 259: 1769–1771.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang H, Buckley NE, Gibson K et al. Sphingosine stimulates cellular proliferation via a protein kinase C-independent pathway. J Biol Chem 1990; 265: 76–81.

    CAS  PubMed  Google Scholar 

  18. Zhang H, Desai NN, Olivera A et al. Sphingosine-1-phosphate, a novel lipid, involved in cellular proliferation. J Cell Biol 1991; 114: 155–167.

    Article  CAS  PubMed  Google Scholar 

  19. Su Y, Rosenthal D, Smulson M et al. Sphingosine 1-phosphate, a novel signaling molecule, stimulates DNA binding activity of AP-1 in quiescent 3T3 fibroblasts. J Biol Chem 1994; 269: 1651216517.

    Google Scholar 

  20. Gomez MA, Martin A, O’Brien L et al. Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J Biol Chem 1994; 269: 8937–8943.

    Google Scholar 

  21. Olivera A, Zhang H, Carlson RO et al. Stereospecificity of sphingosine-induced intracellular calcium mobilization and cellular proliferation. J Biol Chem 1994; 289: 17924–17930.

    Google Scholar 

  22. Schroeder JJ, Crane HM, Xia J et al. Disruption of sphingolipid metabolism and stimulation of DNA synthesis by fumonisin B1. A molecular mechanism for carcinogenesis associated with Fusarium moniliforme. J Biol Chem 1994; 269: 3475–3481.

    CAS  PubMed  Google Scholar 

  23. Miyake Y, Kozutsumi Y, Nakamura S et al. Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem Biophys Res Commun 1995; 211: 396–403.

    Article  CAS  PubMed  Google Scholar 

  24. Pyne S, Pyne NJ. The differential regulation of cyclic AMP by sphingomyelinderived lipids and the modulation of sphingolipid-stimulated extracellular signal regulated kinase-2 in airway smooth muscle. Biochem J 1996; 315: 917–923.

    CAS  PubMed  Google Scholar 

  25. Merrill AH, Sereni AM, Stevens VL et al. Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 1986; 261: 12610–12615.

    CAS  PubMed  Google Scholar 

  26. Merrill AH, Stevens VL. Modulation of protein kinase C and diverse cell functions by sphingosine-a pharmacologically interesting compound linking sphingolipids and signal transduction. Biochim Biophys Acta 1989; 1010: 131–139.

    Article  CAS  PubMed  Google Scholar 

  27. Iwata M, Herrington J, Zanger RA. Sphingosine: a mediator of acute renal tubular injury and subsequent cytoresistance. Proc Natl Acad Sci USA 1995; 92: 8970–8974.

    Article  CAS  PubMed  Google Scholar 

  28. Chao R, Khan W, Hannun YA. Retino-blastoma protein dephosphorylation induced by D-erythro-sphingosine. J Biol Chem 1992; 267: 23459–23462.

    CAS  PubMed  Google Scholar 

  29. Stoffel W, Bister K. Stereospecificities in the metabolic reactions of the four isomeric sphinganines (dihydrosphingosines) in rat liver. Hoppe-Seyler’s Z Physiol Chem 1973; 354: 169–181.

    Article  CAS  PubMed  Google Scholar 

  30. Pushkareva M, Chao R, Bielawska A et al. Stereoselectivity of induction of the retinoblastoma gene product (pRb) dephosphorylation by D-erythro-sphingosine supports a role for pRb in growth suppression by sphingosine. Biochemistry 1995; 34: 1885–1892.

    Article  CAS  PubMed  Google Scholar 

  31. Ohta H, Sweeney EA, Masamune A et al. Induction of apoptosis by sphingosine in human leukemic HL-60 cells: a possible endogenous modulator of apoptoticphorbol ester-induced differentiation. Cancer Res 1995; 55: 691–697.

    CAS  PubMed  Google Scholar 

  32. Ohta H, Yatomi Y, Sweeney EA et al. A possible role of sphingosine in induction of apoptosis by tumor necrosis factor-alpha in human neutrophils. FEES Lett 1994; 355: 267–270.

    Article  CAS  Google Scholar 

  33. Olivera A, Spiegel S. Sphingomyelinase and cell-permeable ceramide analogs stimulate cellular proliferation in quiescent Swiss 3T3 fibroblasts. J Biol Chem 1992; 267: 26121–26127.

    CAS  PubMed  Google Scholar 

  34. Hauser JM, Buehrer BM, Bell RM. Role of ceramide in mitogenesis induced by exogenous sphingoid bases. J Biol Chem 1994; 269: 6803–6809.

    CAS  PubMed  Google Scholar 

  35. Sasaki T, Hazeki K, Hazeki O et al. Permissive effect of ceramide on growth factor-induced cell proliferation. Biochem J 1995; 311: 829–834.

    CAS  PubMed  Google Scholar 

  36. Boucher LM, Wiegmann K, Futterer A et al. CD28 signals through acidic sphingomyelinase. J Exp Med 1995; 181: 2059–2068.

    Article  CAS  PubMed  Google Scholar 

  37. Kolesnick R, Fuks Z. Ceramide: a signal for apoptosis or mitogenesis? J Exp Med 1995; 181: 1949–1952.

    Article  CAS  PubMed  Google Scholar 

  38. Jarvis WD, Kolesnick RN, Fornari FA et al. Induction of apoptotic DNA damage and cell death by activation of the sphingomyelin pathway. Proc Natl Acad Sci USA 1994; 91: 73–77.

    Article  CAS  PubMed  Google Scholar 

  39. Jayadev S, Liu B, Bielawska AE et al. Role for ceramide in cell cycle arrest. J Biol Chem 1995; 270: 2047–2052.

    Article  CAS  PubMed  Google Scholar 

  40. Olivera A, Spiegel S. Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature 1993; 365: 557–560.

    Article  CAS  PubMed  Google Scholar 

  41. Gomez-Munoz A, Waggoner DW, O’Brien L et al. Interaction of ceramides, sphingosine, and sphingosine 1-phosphate in regulating DNA synthesis and phospholipase D activity. J Biol Chem 1995; 270: 26318–26325.

    Article  CAS  PubMed  Google Scholar 

  42. Pyne S, Chapman J, Steele L et al. Sphingomyelin-derived lipids differentially regulate the extracellular signal-regulated kinase 2 (ERK-2) and c-Jun N-terminal kinase (JNK) signal cascades in airway smooth muscle. Eur J Biochem 1996; 237: 819–826.

    Article  CAS  PubMed  Google Scholar 

  43. Bornfeldt KE, Graves LM, Raines EW et al. Sphingosine-1-phosphate inhibits PDGF-induced chemotaxis of human arterial smooth muscle cells: spatial and temporal modulation of PDGF chemotactic signal transduction. J Cell Biol 1995; 130: 193–206.

    Article  CAS  PubMed  Google Scholar 

  44. Jacobs LS, Kester M. Sphingolipids as mediators of effects of platelet-derived growth factor in vascular smooth muscle cells. Am J Physiol 1993; 265: c740-c747.

    CAS  PubMed  Google Scholar 

  45. Coroneos E, Martinez M, McKenna S et al. Differential regulation of sphingomyelinase and ceramidase activity by growth factor and cytokines: implication for cellular proliferation and differentiation. J Biol Chem 1995; 270: 23305–23309.

    Article  CAS  PubMed  Google Scholar 

  46. Mazurek N, Megidish T, Hakomori S-I et al. Regulatory effect of phorbol esters on sphingosine kinase in BALB/C 3T3 fibroblasts (variant A31): demonstration of cell type-specific response. Biochem Biophys Res Commun 1994; 198: 1–9.

    Article  CAS  PubMed  Google Scholar 

  47. Cuvillier O, Pirianov G, Kleuser B et al. Suppression of ceramide-mediated programmed cell death by sphingosine-1phosphate. Nature 1996; 381: 800–803.

    Article  CAS  PubMed  Google Scholar 

  48. Stoffel W, Sticht G, LeKim D. Synthesis and degradation of sphingosine bases in Hansenula ciferrii. Hoppe-Seyler’s Z Physiol Chem 1968; 349: 1149–1156.

    Article  CAS  PubMed  Google Scholar 

  49. Keenan RW. Sphingolipid base phosphorylation by cell-free preparations from Tetrahymena pyriformis. Biochim Biophys Acta 1972; 270: 383–396.

    Article  CAS  PubMed  Google Scholar 

  50. Buehrer BM, Bell RM. Inhibition of sphingosine kinase in vitro and in platelets. Implications for signal transduction pathways. J Biol Chem 1992; 267: 3154–3159.

    CAS  PubMed  Google Scholar 

  51. Louie DD, Kisic A, Schroepfer GJ. Sphingolipid base metabolism. Partial purification and properties of sphinganine kinase of brain. J Biol Chem 1976; 52: 4557–4564.

    Google Scholar 

  52. Shi L, Nishioka WK, Th’ng J et al. Premature p34cdc2 activation required for apoptosis. Science 1994; 263: 1143–1145.

    Article  CAS  PubMed  Google Scholar 

  53. Harrington EA, Fanadi A, Evan GI. Oncogenes and cell death. Curr Biol 1994; 4: 120–129.

    CAS  Google Scholar 

  54. Jarvis WD, Fornari FA, Browning JL et al. Attenuation of ceramide-apoptosis by diglyceride in human myeloid leukemia cells. J Biol Chem 1994; 269: 31685–31692.

    CAS  PubMed  Google Scholar 

  55. Jarvis WD, Fornari FA, Traylor RS et al. Induction of apoptosis and potentiation of ceramide-mediated cytotoxicity by sphingoid bases in human myeloid leukemia cells. J Biol Chem 1996; 271: 8275–8284.

    Article  CAS  PubMed  Google Scholar 

  56. Tepper CG, Jayadev S, Liu B et al. Role for ceramide as an endogenous mediator of Fas-induced cytotoxicity. Proc Natl Acad Sci USA 1995; 92: 8443–8447.

    Article  CAS  PubMed  Google Scholar 

  57. Venable ME, Blobe GC, Obeid LM. Identification of a defect in the phospholipase D/diacylglycerol pathway in cellular senescence. J Biol Chem 1994; 269: 26040–26044.

    CAS  PubMed  Google Scholar 

  58. Spiegel S, Milstien S. Sphingoid bases and phospholipase D activation. Chem Physics Lipids 1996; 80: 27–36.

    Article  CAS  Google Scholar 

  59. Oltvai ZN, Korsmeyer SJ. Checkpoints of dueling dimers foil death wishes. Cell 1994; 79: 189–192.

    Article  CAS  PubMed  Google Scholar 

  60. Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell 1995; 82: 349–352.

    Article  CAS  PubMed  Google Scholar 

  61. Patel T, Gores GJ, Kaufmann SH. The role of proteases during apoptosis. FASEB J 1996; 10: 587–597.

    CAS  PubMed  Google Scholar 

  62. Miura M, Zhu H, Rotello R et al. Induction of apoptosis in fibroblasts by IL-1(3converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 1993; 75: 653–660.

    Article  CAS  PubMed  Google Scholar 

  63. Pronk GJ, Ramer K, Amiri P et al. Requirement of an ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science 1996; 271: 808–810.

    Article  CAS  PubMed  Google Scholar 

  64. Tewari M, Quan LT, O’Rourke K et al. Yama/CPP3213, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly (ADP-ribose) polymerase. Cell 1995; 81: 801–809.

    Article  CAS  PubMed  Google Scholar 

  65. Nicholson DW, An A, Thornberry NA et al. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 1995; 376: 37–43.

    Article  CAS  PubMed  Google Scholar 

  66. Smyth MJ, Perry DK, Zhang J et al. prICE: a downstream target for ceramide-induced apoptosis and for the inhibitory action of Bd-2. Biochem J 1996; 316: 25–28.

    CAS  PubMed  Google Scholar 

  67. Zhang J, Alter N, Reed JC et al. Bd-2 interrupts the ceramide-mediated pathway of cell death. Proc Natl Acad Sci USA 1996; 93: 5325–5328.

    Article  CAS  PubMed  Google Scholar 

  68. Reed JC. Bd-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1–6.

    Article  CAS  PubMed  Google Scholar 

  69. Lam M, Dubyak G, Chen L et al. Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Cat+ fluxes. Proc Natl Acad Sci USA 1994; 91: 6569–6573.

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh TK, Bian J, Gill DL. Sphingosine1-phosphate generated in the endoplasmic reticulum membrane activates release of stored calcium. J Biol Chem 1994; 269: 22628–22635.

    CAS  PubMed  Google Scholar 

  71. Mattie ME, Brooker G, Spiegel S. Sphingosine-l-phosphate, a putative second messenger, mobilizes calcium from internal stores via an inositol trisphosphateindependent pathway. J Biol Chem 1994; 269: 3181–3188.

    CAS  PubMed  Google Scholar 

  72. Ghosh TK, Bian J, Gill DL. Intracellular calcium release mediated by sphingosine derivatives generated in cells. Science 1990; 248: 1653–1656.

    Article  CAS  PubMed  Google Scholar 

  73. Chao CP, Laulederkind SJF, Ballou LR. Sphingosine-mediated phosphatidylinositol metabolism and calcium mobilization. J Biol Chem 1994; 269: 5849–5856.

    CAS  PubMed  Google Scholar 

  74. Kindman LA, Kim S, McDonald TV et al. Characterization of a novel intracellular sphingolipid-gated Caz+-permeable channel from rat basophilic leukemia cells. J Biol Chem 1994; 269: 13088–13091.

    CAS  PubMed  Google Scholar 

  75. Mao C, Kim SH, Almenoff JS et al. Molecular cloning and characterization of SCaMPER, a sphingolipid Caz+ release-mediating protein from endoplasmic reticulum. Proc Natl Acad Sci USA 1996; 93: 1993–1996.

    Article  CAS  PubMed  Google Scholar 

  76. Sabbadini RA, Betto R, Teresi A et al. The effects of sphingosine on sarcoplasmic reticulum membrane calcium release. J Biol Chem 1992; 267: 15475–15484.

    CAS  PubMed  Google Scholar 

  77. Fatatis A, Miller RJ. Sphingosine and sphingosine-1-phosphate differentially modulate platelet-derived growth factor-BB-induced Caz+ signaling in transformed oligodendrocytes. J Biol Chem 1996; 271: 295–301.

    Article  CAS  PubMed  Google Scholar 

  78. Choi OH, Kim JH, Kinet JP. Calcium mobilization via sphingosine kinase in signalling by the Fc epsilon RI antigen receptor. Nature 1996; 380: 634–636.

    Article  CAS  PubMed  Google Scholar 

  79. Goodemote KA, Mattie ME, Berger A et al. Involvement of a pertussis toxin-sensitive G protein in the mitogenic signaling pathways of sphingosine 1-phosphate. J Biol Chem 1995; 270: 10272–10277.

    Article  CAS  PubMed  Google Scholar 

  80. Sakano S, Takemura H, Yamada K et al. Caz+ mobilizing action of sphingosine in Jurkat human leukemia T cells. Evidence that sphingosine releases Caz+ from inositol trisphosphate-and phosphatidic acid-sensitive intracellular stores through a mechanism independent of inositol tris-phosphate. J Biol Chem 1996; 271: 11148–11155.

    Article  CAS  PubMed  Google Scholar 

  81. van Koppen CJ, Meyer-zu Heringdorf D, Zhang C et al. A distinct G(i) protein-coupled receptor for sphingosylphosphorylcholine in human leukemia HL-60 cells and human neutrophils. Mol Pharmacol 1996; 49: 956–961.

    PubMed  Google Scholar 

  82. Okajima F, Tomura H, Sho K et al. Involvement of pertussis toxin-sensitive GTP-binding proteins in sphingosine 1-phosphate-induced activation of phospholipase C-Caz+ system in HL60 leukemia cells. FEBS Lett 1996; 379: 260–264.

    Article  CAS  PubMed  Google Scholar 

  83. Postma FR, Jalink K, Hengeveld T et al. Sphingosine-l-phosphate rapidly induces Rho-dependent neurite retraction: action through a specific cell surface receptor. Embo J 1996; 15: 2388–2392.

    CAS  PubMed  Google Scholar 

  84. van Koppen C, Meyer-zu Heringdorf M, Laser KT et al. Activation of a high affinity Gi protein-coupled plasma membrane receptor by sphingosine-1-phosphate. J Biol Chem 1996; 271: 2082–2087.

    Article  CAS  PubMed  Google Scholar 

  85. Liu R, Farach-Carson MC, Karin NJ. Effects of sphingosine derivatives on MC3T3–E1 pre-osteoblasts: psychosine elicits release of calcium from intracellular stores. Biochem Biophys Res Commun 1995; 214: 676–684.

    Article  CAS  PubMed  Google Scholar 

  86. Yamamura S, Sadahira Y, Ruan F et al. Sphingosine-1 -phosphate inhibits actin nucleation and pseudopodium formation to control cell motility of mouse melanoma cells. FEBS Lett 1996; 382: 193–197.

    Article  CAS  PubMed  Google Scholar 

  87. Wang F, Nobes CD, Hall A et al. Sphingosine-l-phosphate stimulates Rho-mediated stress fiber formation and tyrosine phosphorylation of focal adhesion kinase and paxillin. Biochem J 1996; (submitted).

    Google Scholar 

  88. Spiegel S, Olivera A, Zhang H et al. Sphingosine-l-phosphate, a novel second messenger involved in cell growth regulation and signal transduction, affects growth and invasiveness of human breast cancer cells. Breast Cancer Res Treat 1994; 31: 195–206.

    Article  Google Scholar 

  89. Seufferlein T, Rozengurt E. Sphingosine induces p125FAK and paxillin tyrosine phosphorylation, actin stress fiber formation, and focal contact assembly in Swiss 3T3 cells. J Biol Chem 1994; 269: 27610–27617.

    CAS  PubMed  Google Scholar 

  90. Lavie Y, Piterman O, Liscovitch M. Inhibition of phosphatidic acid phosphohydrolase activity by sphingosine: Dual action of sphingosine in diacylglycerol signal termination. FEBS Lett 1990; 277: 7–10.

    CAS  Google Scholar 

  91. Desai NN, Zhang H, Olivera A et al. Sphingosine-1 -phosphate, a metabolite of sphingosine, increases phosphatidic acid levels by phospholipase D activation. J Biol Chem 1992; 267: 23122–23128.

    CAS  PubMed  Google Scholar 

  92. Natarajan V, Jayaram HN, Scribner WM et al. Activation of endothelial cell phospholipase D by sphingosine and sphingosine-1-phosphate. Am J Respir Cell Mol Biol 1994; 11: 221–229.

    Article  CAS  PubMed  Google Scholar 

  93. Yamada K, Sakane F. The different effects of sphingosine on diacylglycerol kinase isozymes in Jurkat cells, a human T-cell line. Biochim Biophysica Acta 1993; 1169: 211–216.

    Article  CAS  Google Scholar 

  94. Bhat BG, Wang P, Coleman RA. Sphingosine inhibits rat hepatic monoacylglycerol acyltransferase in Triton X-100 mixed micelles and isolated hepatocytes. Biochemistry 1995; 34: 11237–11244.

    Article  CAS  PubMed  Google Scholar 

  95. Gomez-Munoz A, Martin A, O’Brien L et al. Cell-permeable ceramides inhibit the stimulation of DNA synthesis and phospholipase D activity by phosphatidate and lysophosphatidate in rat fibroblasts. J Biol Chem 1994; 269: 8937–8943.

    CAS  PubMed  Google Scholar 

  96. Zhang H, Desai NN, Murphey JM et al. Increases in phosphatidic acid levels accompany sphingosine-stimulated proliferation of quiescent Swiss 3T3 cells. J Biol Chem 1990; 265: 21309–21316.

    CAS  PubMed  Google Scholar 

  97. Marshall CJ. Specificity of receptor tyrosine kinase signaling transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–185.

    Article  CAS  PubMed  Google Scholar 

  98. Kyriakis JM, Banerjee P, Nikolakaki E et al. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 1994; 369: 156–160.

    Article  CAS  PubMed  Google Scholar 

  99. Derijard B, Raingeaud J, Barrett T et al. JNK1: a protein kinase stimulated by 13V light and Ha-Ras that binds and phos phorylates the c-Jun activation domain. Cell 1995; 76: 1025–1037.

    Article  Google Scholar 

  100. Xia A, Dickens M, Raingeaud J et al. Opposing effects of ERK and INK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  101. Westwick JK, Bielawska AE, Dbaibo G et al. Ceramide activates the stress-activated protein kinases. J Biol Chem 1995; 270: 22689–22692.

    Article  CAS  PubMed  Google Scholar 

  102. Wu J, Spiegel S, Sturgill TW. Sphingosine- 1-phosphate rapidly activates the MAP kinase pathway by a G-protein dependent mechanism. J Biol Chem 1995; 270: 11484–11488.

    Article  CAS  PubMed  Google Scholar 

  103. Ghosh S, Strum JC, Sciorra VA et al. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetatestimulated Madin-Darby canine kidney cells. J Biol Chem 1996; 271: 8472–8480.

    Article  CAS  PubMed  Google Scholar 

  104. Verheij M, Bose R, Lin X et al. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 1996; 380: 75–79.

    Article  CAS  PubMed  Google Scholar 

  105. Coroneos E, Wang Y, Panuska JR et al. Sphingolipid metabolites differentially regulate extracellular signal-regulated kinase and stress-activated protein kinase cascades. Biochem J 1996; 316: 13–7.

    CAS  PubMed  Google Scholar 

  106. Veldhoven PP, Matthews TJ, Bolognesi DP et al. Changes in bioactive lipids, alkylglycerol and ceramide, occur in HIV-infected cells. Biochem Biophys Res Commun 1992; 187: 209–216.

    Article  PubMed  Google Scholar 

  107. Rivas CI, Golde DW, Vera JC et al. In22689–22692. volvement of the sphingomyelin pathway in TNF signaling for HIV production in chronically infected HL-60 cells. Blood 1993; 83: 2191–2197.

    Google Scholar 

  108. Simone C, Cifone MG, Roncaioli P et al. Ceramide, AIDS and long-term survivors. Immunol Today 1996; 17: 48.

    Article  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spiegel, S., Cuvillier, O., Fuior, E., Milstien, S. (1997). Sphingosine-1-Phosphate: Member of a New Class of Lipid Second Messengers. In: Sphingolipid-Mediated Signal Transduction. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22425-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22425-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22427-4

  • Online ISBN: 978-3-662-22425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics