Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Inflammation is a general term used to describe an extraordinarily complex set of bio-chemical events mounted by living tissues either in response to physical injury or as part of the host-defense mechanism. The pain, swelling, heat, and redness characteristic of inflammation involves an extensive network of cellular and molecular interactions. These cornplex interactions are characterized by the infiltration of inflammatory cells (e.g., neutrophils, mononuclear leukocytes and macrophages) to the site of injury and/or invasion and the generation of an almost unimaginable array of biologically active molecules by both infiltrating and resident cells, which function as the primary biochemical mediators of the inflammatory response; (please see the scheme depicting the interactions of a variety of different types of cells involved in inflammation). These inflammatory mediators include a wide variety of soluble molecules such as vaso- and neuroactive peptides, lipid mediators such as the eicosanoids, and growth factors and cytokines which are generated in response to specific inflammatory stimuli. Adding to the overall complexity of this soluble mediator signaling network is the fact that several of the proinflammatory cytokines may elicit differential biologic effects on different cell types, induce overlapping responses, have synergistic or antagonistic effects on one another, or affect the synthesis of other cytokines. Thus, in addition to their respective roles in the inflammatory process, many of these soluble mediators play important roles in the regulation of other physiologically important processes such as modulation of the immune response, cell-cell interaction and adhesion, apoptosis, cell growth and differentiation, to mention only a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dinarello CA. Inflammatory cytokines: interleukin-1 and tumor necrosis factor as effector molecules in autoimmune disease. Curr Opin Immunol 1994; 3: 941–948.

    Article  Google Scholar 

  2. Vane JR, Botting RM. Regulatory mechanisms of the vascular endothelium: an update. Pol J Pharmacol 1994; 46: 499–421.

    PubMed  CAS  Google Scholar 

  3. Vane JR, Botting RM. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res 1995; 44: 1–10.

    Article  PubMed  CAS  Google Scholar 

  4. Seibert K, Masferrer JL. Role of inducible cyclooxygenase (COX-2) in inflammation. Receptor 1994; 4: 17–23.

    PubMed  CAS  Google Scholar 

  5. Seibert K, Zhang Y, Leahy K et al. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA 1994; 91: 12013–12017.

    Article  PubMed  CAS  Google Scholar 

  6. Seibert K, Masferrer J, Zhang Y et al. Mediation of inflammation by cyclooxygenase-2. Agents Actions Suppl 1995; 46: 41–50.

    PubMed  CAS  Google Scholar 

  7. Goetzl EJ, An S, Smith WL. Specificity of expression and effects of eicosanoid mediators in normal physiology and human diseases. FASEB J 1995; 9: 1051–1058.

    PubMed  CAS  Google Scholar 

  8. Isakson P, Hauser S, Zhang Y et al. Cytokine regulation of eicosanoid generation. Ann NY Acad Sci 1994; 744: 181–183.

    Article  PubMed  CAS  Google Scholar 

  9. Smith WL, Meade EA, De Witt DL. Pharmacology of prostaglandin endoperoxide synthase isozymes-1 and -2. Ann NY Acad Sci 1994; 714: 136–142.

    Article  PubMed  CAS  Google Scholar 

  10. Barnett J, Chow J, Ives D et al. Purification, characterization and selective inhibition of human prostaglandin G/H synthase 1 and 2 expressed in the baculovirus system. Biochim Biophys Acta 1994; 1209: 130–139.

    Article  PubMed  CAS  Google Scholar 

  11. Ballou LR, Laulederkind SJF, Rosloneic EF et al. Ceramide signalling and the immune response. Biochimica et Biophysica Acta 1996; 1301: 273–287.

    Article  PubMed  Google Scholar 

  12. Bell RM, Hannun YA, Merril AH Jr. Advances in Lipid Research, Sphingolipids Part A: Functions and Breakdown Products. Advances in Lipid Research, vol 25. San Diego, Ca: Academic Press, 1993; 336.

    Google Scholar 

  13. Bell RM, Hannun YA, Merrill AH Jr. Advances in Lipid Research, Sphingolipids Part B: Regulation and Function of Metabolism. Advances in Lipid Research, vol 26. San Diego: Academic Press, 1993; 380.

    Google Scholar 

  14. Hannun YA, Linardic CM. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochem Biophys Acta 1993; 1154: 223–236.

    Article  PubMed  CAS  Google Scholar 

  15. Hannun YA, Obeid LM, Wolff RA. The novel second messenger ceramide: identification, mechanism of action, and cellular activity. Adv Lipid Res 1993; 25: 43–64.

    PubMed  CAS  Google Scholar 

  16. Hannun YA, Bell RM. The sphingomyelin cycle: a prototypic sphingolipid signaling pathway. Adv Lipid Res 1993; 25: 27–41.

    PubMed  CAS  Google Scholar 

  17. Hannun YA. The sphingomyelin cycle and the second messenger function of ceramide. J Biol Chem 1994; 269: 3125–3128.

    PubMed  CAS  Google Scholar 

  18. Hannun YA, Obeid LM. Ceramide: an intracellular signal for apoptosis. TIBS 1995; 20: 73–78.

    PubMed  CAS  Google Scholar 

  19. Heller RA, Krönke M. Tumor necrosis factor receptor-mediated signaling pathways. J Cell Biol 1994; 126: 5–9.

    Article  PubMed  CAS  Google Scholar 

  20. Kolesnick RN. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res 1991; 30: 1–38.

    Article  PubMed  CAS  Google Scholar 

  21. Kolesnick R. Signal transduction through the sphingomyelin pathway. Mol Chem Neuropathol 1994; 21: 287–297.

    Article  PubMed  CAS  Google Scholar 

  22. Kolesnick R, Golde DW. The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994; 77: 325–328.

    Article  PubMed  CAS  Google Scholar 

  23. Kolesnick R, Fuks Z. Ceramide: A signal for apoptosis or Mitogenesis? J Exp Med 1995; 181: 1949–1952.

    Article  PubMed  CAS  Google Scholar 

  24. Mathias S, Kolesnick R. Ceramide: a novel second messenger. Adv Lipid Res 1993; 25: 65–90.

    PubMed  CAS  Google Scholar 

  25. Merrill AH. Ceramide: a new lipid “second messenger”? Nutr Rev 1992; 50: 78–80.

    Article  PubMed  CAS  Google Scholar 

  26. Michell RH, Wakelam MJO. Sphingolipid signalling. Current Biol 1994; 4: 370–373.

    Article  CAS  Google Scholar 

  27. Schütze S, Machleidt T, Krönke M. The role of diacylglycerol and ceramide in tumor necrosis factor and interleukin-1 signal transduction. J Leukocyte Biol 1994; 56: 533–541.

    PubMed  Google Scholar 

  28. Dennis EA. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem 1994; 269: 13057–13060.

    PubMed  CAS  Google Scholar 

  29. Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 1983; 220: 568–575.

    Article  PubMed  CAS  Google Scholar 

  30. Samuelsson B, Goldyne M, Granstrom E et al. Prostaglandins and thromboxanes. Annu Rev Biochem 1978; 47: 997–1029.

    Article  PubMed  CAS  Google Scholar 

  31. Herschman H. Prostaglandin synthase 2. Biochim Biophys Acta 1996; 1299: 125–140.

    Article  PubMed  Google Scholar 

  32. Seibert K, Masferrer J, Zhang Y et al. Expression and selective inhibition of constitutive and inducible forms of cyclooxygenase. Adv Prostaglandin Thromboxane Leukot Res 1995; 23: 125–127.

    PubMed  CAS  Google Scholar 

  33. Langenbach R, Morham SG, Tiano HF et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 1995; 83: 483–492.

    Article  PubMed  CAS  Google Scholar 

  34. Morham SG, Langenbach R, Loftin CD et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 1995; 83: 473–482.

    Article  PubMed  CAS  Google Scholar 

  35. Hannun YA, Bell RM. Functions of sphingolipids and sphingolipid break- down products in cellular regulation. Science 1989; 243: 500–507.

    Article  PubMed  CAS  Google Scholar 

  36. Ballou LR, Barker SC, Postlethwaite AE et al. Sphingosine potentiates IL-1-mediated prostaglandin E2 production in human fibroblasts. J Immunol 1990; 145: 4245–4251.

    PubMed  CAS  Google Scholar 

  37. Candela M, Barker SC, Ballou LR. Sphingosine synergistically stimulates tumor necrosis factor a-induced prostaglandin E2 production in human fibroblasts. J Exptl Med 1991; 174: 1363–1369.

    Article  CAS  Google Scholar 

  38. Ballou LR, Chao CP, Holness MA et al. Interleukin-l-mediated PGE2 production and sphingomyelin metabolism. Evidence for the regulation of cyclooxygenase gene expression by sphingosine and ceramide. J Biol Chem 1992; 267: 20044–20050.

    PubMed  CAS  Google Scholar 

  39. Mathias S, Younes A, Iran CC et al. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-113. Science 1993; 259: 519–522.

    Article  PubMed  CAS  Google Scholar 

  40. Clark JD, Lin LL, Kriz RW et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 1991; 65: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  41. Lin LL, Lin AY, Knopf JL. Cytosolic phospholipase A2 is coupled to hormonally regulated release of arachidonic acid. Proc Natl Acad Sci USA 1992; 89: 6147–6151.

    Article  PubMed  CAS  Google Scholar 

  42. Lin LL, Lin AY, De Witt DL. Interleukinla induces the accumulation of cytosolic phospholipase A2 and the release of prostaglandin E2 in human fibroblasts. J Biol Chem 1992; 267: 23451–23454.

    PubMed  CAS  Google Scholar 

  43. Mitchell JA, Larkin S, Williams TJ. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol 1995; 50: 1535–1542.

    Article  PubMed  CAS  Google Scholar 

  44. Murakami M, Matsumoto R, Urade Y et al. c-kit ligand mediates increased expression of cytosolic phospholipase A2, prostaglandin endoperoxide synthase-1, and hematopoietic prostaglandin D2 synthase and increased IgE-dependent prostaglandin D2 generation in immature mouse mast cells. J Biol Chem 1995; 270: 3239–3246.

    Article  PubMed  CAS  Google Scholar 

  45. Diaz A, Reginato AM, Jimenez SA. Alternative splicing of human prostaglandin G/H synthase mRNA and evidence of differential regulation of the resulting transcripts by transforming growth factor ß, interleukin-1(3, and tumor-necrosis factor a. J Biol Chem 1992; 267: 10816–10822.

    PubMed  CAS  Google Scholar 

  46. Hayakawa M, Jayadev S, Tsujimoto M et al. Role of ceramide in stimulation of the transcription of cytosolic phospholipase A2 and cyclooxygenase 2. Biochem Biophys Res Commun 1996; 220: 681–686.

    Article  PubMed  CAS  Google Scholar 

  47. Jayadev S, Linardic CM, Hannun YA. Identification of arachidonic acid as a mediator of sphingomyelin hydrolysis in response to tumor necrosis factor a. J Biol Chem 1994; 269: 5757–5763.

    PubMed  CAS  Google Scholar 

  48. Ballif B, Mincek N, Barratt J et al. Interaction of cyclooxygenase with an apoptosis-and autoimmunity-associated protein. Proc Natl Acad Sci USA 1996; 93: 5544–5549.

    Article  PubMed  CAS  Google Scholar 

  49. Raines MA, Kolesnick RN, Golde DW. Sphingomyelinase and ceramide activate mitogen-activated protein kinase in myeloid HL-60 cells. J Biol Chem 1993; 268: 14572–14575.

    PubMed  CAS  Google Scholar 

  50. Huwiler A, Brunner J, Hummel R et al. Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci USA 1996; 93: 6959–6963.

    Article  PubMed  CAS  Google Scholar 

  51. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 1993; 268: 14553–14556.

    PubMed  CAS  Google Scholar 

  52. Lin LL, Wartmann M, Lin AY et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell 1993; 72: 269–278.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ballou, L.R. (1997). Ceramide and Inflammation. In: Sphingolipid-Mediated Signal Transduction. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22425-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22425-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22427-4

  • Online ISBN: 978-3-662-22425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics