Signal Transduction and Virulence Gene Regulation in Shigella spp.: Temperature and (maybe) a Whole Lot More

  • Catherine M. C. O’Connell
  • Robin C. Sandlin
  • Anthony T. Maurelli
Part of the Medical Intelligence Unit book series (MIU.LANDES)


Many bacterial pathogens of man pass through several different environments before coming into contact with and colonizing the host. These may include another mammal (zoonotic infection), insects (arthropod-borne infections), or specific niches in the terrestrial or aquatic ecosystems, e.g. contaminated food or water. Even after gaining access to a host, a pathogen often passes through several different environments before reaching the site it will ultimately colonize. Thus, for most bacterial pathogens one can imagine a life cycle which consists of a segment outside the host and a segment within the host, the latter which can be subdivided into the various anatomical sites through which the organism passes on its way to the site of colonization.


Virulence Gene Virulence Gene Expression Bacterial Virulence Shigella Flexneri Nuclease Protection Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sansonetti PJ. Molecular and cellular biology of Shigella invasiveness: From cell assay systems to shigellosis. In: Sansonetti PJ, ed. Pathogenesis of Shigellosis. Berlin: Springer-Verlag, 1992: 1–19.CrossRefGoogle Scholar
  2. 2.
    Hale TL. Genetic basis of virulence in Shigella species. Microbiol Rev 1991; 55: 206–224.PubMedGoogle Scholar
  3. 3.
    Sasakawa C, Buysse JM, Watanabe H. The large virulence plasmid of Shigella. In: Sansonetti PJ, ed. Pathogenesis of Shigellosis. Berlin: Springer-Verlag, 1992: 21–44.CrossRefGoogle Scholar
  4. 4.
    Maurelli AT, Blackmon B, Curtiss III R. Temperature-dependent expression of virulence genes in Shigella species. Infect Immun 1984; 43: 195–201.PubMedGoogle Scholar
  5. 5.
    Maurelli AT. Temperature regulation of virulence genes in pathogenic bacteria: a global strategy for human pathogens. Microbial Pathogen 1989; 7: 1–10.CrossRefGoogle Scholar
  6. 6.
    Silhavy TJ, Beckwith JR. Use of lac fusions for the study of biological problems. Microbiol Rev 1985; 45: 398–418.Google Scholar
  7. 7.
    Maurelli AT, Curtiss R III. Bacteriophage Mu dl (Apr lac) generates vir-lac operon fusions in Shigella flexneri 2a. Infect Immun 1984; 45: 642–648.PubMedGoogle Scholar
  8. 8.
    Hromockyj AE, Maurelli AT. Identification of Shigella invasion genes by isolation of temperature-regulated inv::lacZ operon fusions. Infect Immun 1989; 57: 2963–70.PubMedGoogle Scholar
  9. 9.
    Andrews GP, Hromockyj AE, Coker C et al. Two novel virulence loci in Shigella flexneri 2a, mxiA and mxiB, facilitate excretion of invasion plasmid antigens. Infect Immun 1991; 59: 1997–2005.PubMedGoogle Scholar
  10. 10.
    Tobe T, Nagai S, Okada N et al. Temperature-regulated expression of invasion genes in Shigella flexneri is controlled through the transcriptional activation of the virB gene on the large plasmid. Mol Microbiol 1991; 5: 887–893.PubMedCrossRefGoogle Scholar
  11. 11.
    Deretic V, Dikshit R, Konyecsni WM et al. The algR gene, which regulates mucoidy in Pseudomonas aeruginosa, belongs to a class of environmentally responsive genes. J Bacteriol 1989; 171: 1278–1283.PubMedGoogle Scholar
  12. 12.
    Berry A, DeVault JD, Chakrabarty AM. High osmolarity is a signal for enhanced algD transcription in mucoid and nonmucoid Pseudomonas aeruginosa strains. J Bacteriol 1989; 171: 2312–2317.PubMedGoogle Scholar
  13. 13.
    Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988; 170: 2575–2583.PubMedGoogle Scholar
  14. 14.
    Tartera C, Metcalf ES. Osmolarity and growth phase overlap in regulation of Salmonella typhi adherence to and invasion of human intestinal cells. Infect Immun 1993; 61: 3084–3089.PubMedGoogle Scholar
  15. 15.
    Galan JE, Curtiss III R. Expression of Salmonella typhimurium genes required for invasion is regulated by changes in DNA supercoiling. Infect Immun 1990; 58: 1879–1885.PubMedGoogle Scholar
  16. 16.
    Ronson CW, Nixon BT, Ausubel FM. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 1987; 49: 579–581.PubMedCrossRefGoogle Scholar
  17. 17.
    Bernardini ML, Fontaine A, Sansonetti PJ. The two-component regulatory system OmpR-EnvZ controls the virulence of Shigella flexneri. J Bacteriol 1990; 172: 6274–6281.PubMedGoogle Scholar
  18. 18.
    Bernardini ML, Sanna MG, Fontaine A et al. OmpC is involved in invasion of epithelial cells by Shigella flexneri. Infect Immun 1993; 61: 3625–3635.PubMedGoogle Scholar
  19. 19.
    Porter ME, Dorman CJ. A role for H-NS in the thermo-osmotic regulation of virulence gene expression in Shigella flexneri. J Bacteriol 1994; 176: 4187–4191.PubMedGoogle Scholar
  20. 20.
    Allaoui A, Mounier J, Prevost M-C et al. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol Microbiol 1992; 6: 1605–1616.PubMedCrossRefGoogle Scholar
  21. 21.
    Aliabadi Z, Park YK, Slonczewski JL et al. Novel regulatory loci controlling oxygen-and pH-regulated gene expression in Salmonella typhimurium. J Bacteriol 1988; 170: 842–851.PubMedGoogle Scholar
  22. 22.
    Parsot C, Mekalanos JJ. Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J Bacteriol 1991; 173: 2842–2851.PubMedGoogle Scholar
  23. 23.
    Watson N, Dunyak DS, Rosey EL et al. Identfication of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 1992; 174: 530–540.PubMedGoogle Scholar
  24. 24.
    Garcia-Del Portillo F, Foster JW, Finlay BB. Role of acid tolerance response genes in Salmonella typhimurium virulence. Infect Immun 1993; 61: 4489–4492.Google Scholar
  25. 25.
    DuPont HL, Levine MM, Hornick RB et al. Inoculum size in shigellosis and implications for expected mode of transmission. J Infect Dis 1989; 159: 1126–1128.PubMedCrossRefGoogle Scholar
  26. 26.
    Gorden J, Small P. Acid resistance in enteric bacteria. Infect Immun 1993; 61: 364–367.PubMedGoogle Scholar
  27. 27.
    Small P, Blakenhorn D, Welty D et al. Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol 1994; 176: 1729–1737.PubMedGoogle Scholar
  28. 28.
    Headley VL, Payne SM. Differential protein expression by Shigella flexneri in intracellular and extracellular environments. Proc Natl Acad Sci USA 1990; 87: 4179–4183.PubMedCrossRefGoogle Scholar
  29. 29.
    Fierer J, Eskmann L, Fang F et al. Expression of the Salmonella virulence plasmid gene spvB in cultured macrophages and nonphagocytic cells. Infect Immun 1993; 61: 5231–5236.PubMedGoogle Scholar
  30. 30.
    Miller SI. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol Microbiol 1990; 5: 2073–2078.CrossRefGoogle Scholar
  31. 31.
    Mahan MJ, Slauch JM, Mekalanos JJ. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 1993; 259: 686–688.PubMedCrossRefGoogle Scholar
  32. 32.
    Maurelli AT, Sansonetti PJ. Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. Proc Natl Acad Sci USA 1988; 85: 2820–2824.PubMedCrossRefGoogle Scholar
  33. 33.
    Hromockyj AE, Tucker SC, Maurelli AT. Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns and partial complementation by tyrosyl transfer RNA (tRNAITY`). Mol Microbiol 1992; 6: 2113–2124.PubMedCrossRefGoogle Scholar
  34. 34.
    Pon CL, Calogero RA, Gualerzi CO. Identification, cloning, nucleotide sequence and chromosomal map location of hns, the structural gene for Eshcerichia coli DNA-binding protein H-NS. Mol Gen Genet 1988; 212: 199–202.PubMedCrossRefGoogle Scholar
  35. 35.
    Durrenberger M, La Teana A, Citro G et al. Escherichia coli DNA-binding protein H-NS is localized in the nucleoid. Res Microbiol 1991; 142: 373–380.PubMedCrossRefGoogle Scholar
  36. 36.
    Spassky A, Rimsky S, Garreau H et al. H 1 a, an E. coli DNA-binding protein which accumulates in stationary phase. Nucleic Acids Res 1984; 12: 5321–5340.PubMedCrossRefGoogle Scholar
  37. 37.
    Hulton CSJ, Seirafi A, Hinton JCD et al. Histone-like protein H1 (H-NS) DNA supercoiling and gene expression in bacteria. Cell 1990; 63: 631–642.PubMedCrossRefGoogle Scholar
  38. 38.
    La Teana A, Falconi M, Scarlato V et al. Characterization of the structural genes for the DNA-binding protein H-NS in Enterobacteriaceae. FEBS Lett 1989; 244: 34–38.PubMedCrossRefGoogle Scholar
  39. 39.
    Lejeune P, Danchin A. Mutations in bglY increase the frequency of spontaneous deletions in Escherichia coli K-12. Proc Natl Acad Sci USA 1990; 87: 360–363.PubMedCrossRefGoogle Scholar
  40. 40.
    Goransson M, Sonden B, Nilson P et al. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 1990; 344: 682–685.PubMedCrossRefGoogle Scholar
  41. 41.
    Higgins CF, Hinton JCD, Dorman CJ et al. A physical role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52: 569–584.PubMedCrossRefGoogle Scholar
  42. 42.
    Shi X, Waasdorp BC, Bennett GN. Modulation of acid-induced amino acid decarboxylase gene expression by has in Escherichia coli. J Bacteriol 1993; 175: 1182–1186.PubMedGoogle Scholar
  43. 43.
    Yamada H, Yoshida T, Tanaka K et al. Molecular analysis of the Eshcerichia coli hns gene encoding a DNA-binding protein, which preferentially recognizes curved DNA sequences. Mol Gen Genet 1991; 230: 332–336.PubMedCrossRefGoogle Scholar
  44. 44.
    Yoshida T, Ueguchi C, Yamada H et al. Function of the Escherichia coli nucleoid protein, H-NS: molecular analysis of a subset of proteins whose expression is enhanced in a has deletion mutant. Mol Gen Genet 1993; 237: 113–122.PubMedCrossRefGoogle Scholar
  45. 45.
    Hinton JCD, Santos DS, Seirafi A et al. Expression and mutational analysis of the nucleoid-associated protein H-NS of Salmonella typhimurium. Mol Microbiol 1992; 6: 2327–2337.PubMedCrossRefGoogle Scholar
  46. 46.
    Kawula TH, Orndorff PE. Rapid site-specific DNA inversion in Eschericia coli mutants lacking the histone-like protein H-NS. J Bacteriol 1991; 173: 4116–4123.PubMedGoogle Scholar
  47. 47.
    Kano Y, Yasuzawa K, Tanaka H et al. Propagation of phage Mu in IHF-deficient Escherichia coli in the absence of the H-NS histone-like protein. Gene 1993; 126: 93–97.PubMedCrossRefGoogle Scholar
  48. 48.
    Levinthal M, Lejeune P, Danchin A. The H-NS protein modulates the activation of the ilvIH operon of Escherichia coli K12 by Lrp, the leucine regulatory protein. Mol Gen Genet 1994; 242: 736–743.PubMedCrossRefGoogle Scholar
  49. 49.
    Jordi BJAM, Dagberg B, de Haan LAM et al. The positive regulator CfaD overcomes the repression mediated by histone-like protein H-NS (H1) in the CFA/I fimbrial operon of Escherichia coli. EMBO J 1992; 11: 2627–2632.PubMedGoogle Scholar
  50. 50.
    Harrison JA, Pickard D, Higgins CF et al. Role of hns in the virulence phenotype of pathogenic salmonellae. Mol Microbiol 1994; 13: 133–140.PubMedCrossRefGoogle Scholar
  51. 51.
    Spurio R, Durrenberger M, Falconi M et al. Lethal overproduction of the Escherichia coli nucleoid protein: ultramicroscopic and molecular autopsy. Mol Gen Genet 1992; 231: 201–211.PubMedGoogle Scholar
  52. 52.
    Higgins CF, Hinton JCD, Hulton CSJ et al. Protein H1: a role for chromatin structure in the regulation of bacterial gene expression and virulence? Mol Microbiol 1990; 4: 2007–2012.PubMedCrossRefGoogle Scholar
  53. 53.
    Ueguchi C, Mizuno T. The Escherichia coli nucleoid protein H-NS functions directly as a transcriptional repressor. EMBO J 1993; 12: 1039–1036.PubMedGoogle Scholar
  54. 54.
    Pruss GJ, Drlica K. DNA supercoiling and prokaryotic transcription. Cell 1989; 56: 521–523.PubMedCrossRefGoogle Scholar
  55. 55.
    Dorman CJ, Ni Bhrian N, Higgins CF. DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri. Nature 1990; 344: 789–792.PubMedCrossRefGoogle Scholar
  56. 56.
    Hromockyj AE, Maurelli AT. Identification of an Escherichia coli gene homologous to virR, a regulator of Shigella virulence. J Bacteriol 1989; 171: 2879–2881.PubMedGoogle Scholar
  57. 57.
    Rimsky S, Spassky A. Sequence determinants for HI binding on Escherichia coli lac and gal promoters. Biochemistry 1990; 29: 3765–3771.PubMedCrossRefGoogle Scholar
  58. 58.
    Bracco L, Kotlarz D, Kolb A et al. Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. EMBO J 1989; 8: 4289–4296.PubMedGoogle Scholar
  59. 59.
    Tanaka K, Muramatsu S, Yamada H et al. Systematic characterization of curved DNA segments randomly cloned from Escherichia coli and their functional significance. Mol Gen Genet 1991; 226: 367–376.PubMedCrossRefGoogle Scholar
  60. 60.
    Lucht JM, Dersch P, Kempf B et al. Interactions of the nucleoid-associated DNA-binding protein H-NS with the regulatory region of the osmotically controlled proU operon of Escherichia coli. J Biol Chem 1994; 269: 6578–6586.PubMedGoogle Scholar
  61. 61.
    Falconi M, Higgins P, Spurio R et al. Expression of the gene encoding the major bacterial nucleoid protein H-NS is subject to transcriptional auto-repression. Mol Microbiol 1993; 10: 273–282.PubMedCrossRefGoogle Scholar
  62. 62.
    Dersch P, Schmidt K, Bremer E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation. Mol Microbiol 1993; 8: 875–889.PubMedCrossRefGoogle Scholar
  63. 63.
    Tobe T, Yoshikawa M, Mizuno T et al. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by VirF and repression by H-NS. J Bacteriol 1993; 175: 6142–6149.PubMedGoogle Scholar
  64. 64.
    La Teana A, Brandi A, Falconi M et al. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc Natl Acad Sci USA 1991; 88: 10907–10911.PubMedCrossRefGoogle Scholar
  65. 65.
    Rhode JR, Fox JM, Minnich SA. Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA super-coiling. Mol Microbiol 1994; 12: 187–199.CrossRefGoogle Scholar
  66. 66.
    Falconi M, Gualtieri MT, La Teana A et al. Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15- kD Escherichia coli DNA binding protein H-NS. Mol Microbiol 1988; 2: 323–329.PubMedCrossRefGoogle Scholar
  67. 67.
    Kawula TH, Lelivelt KJ. Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in has-1 mutant Escherichia coli. J Bacteriol 1994; 176: 610–619.PubMedGoogle Scholar
  68. 68.
    Liu Q, Richardson CC. Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. Proc Natl Acad Sci USA 1993; 90: 1761–1765.PubMedCrossRefGoogle Scholar
  69. 69.
    Sakai T, Sasakawa C, Makino S et al. DNA sequence and product analysis of the virF locus responsible for congo red binding and cell invasion in Shigella flexneri 2a. Infect Immun 1986; 54: 395–402.PubMedGoogle Scholar
  70. 70.
    Sakai T, Sasakawa C, Yoshikawa M. Expression of four virulence antigens of Shigella flexneri is positively regulated at the transcriptional level by the 30 kilodalton virF protein. Mol Microbiol 1988; 2: 589–597.PubMedCrossRefGoogle Scholar
  71. 71.
    Adler B, Sasakawa C, Tobe T et al. A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol Microbiol 1989; 3: 627–635.PubMedCrossRefGoogle Scholar
  72. 72.
    Hoe NP, Minion FC, Goguen JD. Temperature sensing in Yersinia pestis: regulation of yopE transcription by lcrF. J Bacteriol 1992; 174: 4275–4286.PubMedGoogle Scholar
  73. 73.
    Gallegos MT, Michan C, Ramos JL. The Xy1S/AraC family of regulators. Nucleic Acids Res 1993; 21: 807–810.PubMedCrossRefGoogle Scholar
  74. 74.
    Higgins DG, Sharp PM. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 1988; 73: 237–244.PubMedCrossRefGoogle Scholar
  75. 75.
    Savelkoul PHM, Willshaw GA, McConnell MM et al. Expression of CFA/I fimbriae is positively regulated. Microbial Pathogen 1990; 8: 91–99.CrossRefGoogle Scholar
  76. 76.
    Caron J, Coffield L, Scott J. A plasmidencoded regulatory gene, rns, required for expression of the CS 1 and CS2 adhesins of enterotoxigenic Escherichia coli. Proc Natl Acad Sci USA 1989; 86: 963–967.PubMedCrossRefGoogle Scholar
  77. 77.
    Tobe T, Yoshikawa M, Mizuno T et al. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by VirR and repression by H-NS. J Bacteriol 1993; 175: 6142–6149.PubMedGoogle Scholar
  78. 78.
    Dagberg B, Uhlin BE. Regulation of virulence-associated plasmid genes in enteroinvasive Escherichia coli. J Bacteriol 1992; 174: 7606–7612.PubMedGoogle Scholar
  79. 79.
    Buysse JM, Venkatesan M, Mills JA et al. Molecular characterization of a transacting, positive effector (ipaR) of invasion plasmid antigen synthesis in Shigella flexneri serotype 5. Microbial Pathogen 1990; 8: 197–211.CrossRefGoogle Scholar
  80. 80.
    Watanabe H, Arakawa E, Ito K et al. Genetic analysis of an invasion region by use of a Tn3-lac transposon and identification of second positive regulator gene, invE, for cell invasion of Shigella sonnei: significant homology of InvE with ParB of plasmid P 1. J Bacteriol 1990; 172: 619–629.PubMedGoogle Scholar
  81. 81.
    Jost BH, Adler B. Site of transcriptional activation of virB on the large plasmid of Shigella flexneri 2a by VirF, a member of the AraC family of transcriptional activators. Microbial Pathogen 1993; 14: 481–488.CrossRefGoogle Scholar
  82. 82.
    Martin KA, Friedman SA, Austin SJ. Partition site of the P1 plasmid. Proc Natl Acad Sci USA 1987; 84: 8544–8547.PubMedCrossRefGoogle Scholar
  83. 83.
    Allaoui A, Sansonetti PJ, Parsot C. MxiD, an outer membrane protein necessary for the secretion of the Shigella flexneri Ipa invasins. Mol Microbiol 1993; 7: 59–68.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Catherine M. C. O’Connell
  • Robin C. Sandlin
  • Anthony T. Maurelli

There are no affiliations available

Personalised recommendations