Skip to main content

Environmental Control of Virulence Functions and Signal Transduction in Yersinia Enterocolitica

  • Chapter
Signal Transduction and Bacterial Virulence

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Among the many species of the Yersinia genus, only Y. pestis, Y. pseudotuberculosis and Y. enterocolitica adapted to multiply at the expenses of a host that is still alive. Y. pestis and Y. pseudotuberculosis are essentially rodent pathogens causing systemic diseases. Y. enterocolitica is a common human pathogen which causes gastrointestinal syndromes of various severities, ranging from mild self-limited diarrhea to mesenteric adenitis evoking an appendicitis. Although all three yersiniae invade their host via different routes, they share a common tropism for lymphoid tissue and a remarkable ability to resist the nonspecific immune response. Their main strategy seems to consist in avoiding lysis by complement and phagocytosis by polymorphonuclear leukocytes and macrophages and to form extracellular microcolonies in the infected tissue. Yersiniae succeed in infecting their host owing to the opportune production of a series of invasion and antihost proteins. The production of these proteins is tightly controlled by sophisticated regulatory networks: this rapidly ensures the survival of bacteria in hostile and changing environments. In Yersinia, genes encoding these proteins are either on the chromosome or distributed on a 70-kb plasmid called pYV, which is remarkably well conserved among the three species. In Y. enterocolitica, the chromosomal genes are mainly involved in the first steps of the infection while the pYV plasmid seems to be essentially devoted to resistance against the nonspecific immune response. We shall first describe the virulence functions and then focus on the regulation of their expression in response to environmental changes. For the sake of clarity, we will essentially deal with Y. enterocolitica and the differences with the other species will be mentioned throughout. For other reviews on yersiniae, see refs. 1–5.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brubaker RR. Factors promoting acute and chronic diseases by Yersiniae. Clin Microbiol Rev 1991; 4: 309–324.

    PubMed  CAS  Google Scholar 

  2. Cornelis GR. Yersiniae, finely tuned pathogens. In: Hormaeche C, Penn CW, Smyth CJ, eds. Molecular biology of bacterial infection: current status and future perspectives. Cambridge University Press, 1992; 49: 231–265.

    Google Scholar 

  3. Cornelis GR. Yersinia pathogenicity factors. Curr Topics Microbiol Immunol 1994; 192:243–263.

    Google Scholar 

  4. Straley SC, Plano GV, Skrzypek E et al. Regulation by Cat+ in the Yersinia low -Ca2+ response. Mol Microbiol 1993; 8: 1005–1010.

    Article  PubMed  CAS  Google Scholar 

  5. Forsberg A, Rosqvist R, Wolf-Watz H. Regulation and polarized transfer of the Yersinia outer proteins (Yops) involved in antiphagocytosis. Trends Microbiol 1994; 2: 14–19.

    Article  PubMed  CAS  Google Scholar 

  6. Delor I, Kaeckenbeek A, Wauters G et al. Nucleotide sequence of yst, the Yersinia enterocolitica gene encoding the heat-stable enterotoxin, and prevalence of the gene among the pathogenic and nonpathogenic yersiniae. Infect Immun 1990; 58: 2983–2988.

    PubMed  CAS  Google Scholar 

  7. Currie MG, Fok KF, Kato J et al. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci USA 1992; 89: 947–951.

    Article  PubMed  CAS  Google Scholar 

  8. Delor I, Cornelis GR. Role of Yersinia enterocolitica Yst toxin in experimental infection of young rabbits. Infect Immun 1992; 60: 4269–4277.

    PubMed  CAS  Google Scholar 

  9. Iriarte M, Vanooteghem JC, Delor I et al. The Myf fibrillae of Yersinia enterocolitica. Mol Microbiol 1993; 9: 507–520.

    Article  PubMed  CAS  Google Scholar 

  10. Lindler LE, Tall BD. Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 1993; 8: 311–324.

    Article  PubMed  CAS  Google Scholar 

  11. Isberg RR, Falkow S. A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 1985; 317: 262–264.

    Article  PubMed  CAS  Google Scholar 

  12. Miller VL, Falkow S. Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun 1988; 56: 1242–1248.

    PubMed  CAS  Google Scholar 

  13. Bliska JB, Galan JE, Falkow S. Signal transduction in the mammalian cell during bacterial attachment and entry. Cell 1993; 73: 903–920.

    Article  PubMed  CAS  Google Scholar 

  14. Pepe JC, Miller VL. Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sci USA 1993; 90: 6473–7477.

    Article  PubMed  CAS  Google Scholar 

  15. Kapperud G, Namork E, Skurnik M et al. Plasmid-mediated surface fibrillae of Yersinia pseudotuberculosis and Yersinia enterocolitica: relationship to the outer membrane protein YOP1 and possible importance for pathogenesis. Infect Immun 1987; 55: 2247–2254.

    PubMed  CAS  Google Scholar 

  16. Skurnik M,Wolf-Watz H. Analysis of the yopA gene encoding the Yop 1 virulence determinants of Yersinia spp. Mol Microbiol 1989; 3: 517–529.

    Article  Google Scholar 

  17. China B, Sory MP, N’Guyen BT et al. Role of the YadA protein in prevention of opsonization of Yersinia enterocolitia by Cab molecules. Infect Immun 1993; 61: 3129–3136.

    PubMed  CAS  Google Scholar 

  18. China B, N’Guyen BT, De Bruyere M et al. Role of YadA in resistance of Yersinia enterocolitica to phagocytosis by human polymorphonuclear leukocytes. Infect Immun 1994; 62: 1275–1281.

    PubMed  CAS  Google Scholar 

  19. Rosqvist R, Skurnik M, Wolf-Watz H. Increased virulence of Yersinia pseudo-tuberculosis by two independent mutations. Nature 1988; 334: 522–525.

    Article  PubMed  CAS  Google Scholar 

  20. China B, Michiels T, Cornelis GR. The pYV plasmid of Yersinia encodes a lipoprotein YIpA, related to TraT. Mol Microbiol 1990; 9: 1585–1593.

    Article  Google Scholar 

  21. Heesemann J, Gross U, Schmidt N et al. Immunochemical analysis of plasmidencoded proteins released by enteropathogenic Yersinia sp. grown in calcium-deficient media. Infect Immun 1986; 54: 561–567.

    PubMed  CAS  Google Scholar 

  22. Michiels T, Wattiau P, Brasseur R et al. Secretion of Yop proteins by yersiniae. Infect Immun 1990; 58: 2840–2849.

    PubMed  CAS  Google Scholar 

  23. Martinez RJ. Plasmid-mediated and temperature-regulated surface properties of Yersinia enterocolitica. Infect Immun 1983; 41: 921–930.

    PubMed  CAS  Google Scholar 

  24. Sory MP, Cornelis GR. Yersinia enterocolitica 0:9 as a potential live oral carrier for protective antigens. Microb Pathog 1988; 4: 431–442.

    Article  PubMed  CAS  Google Scholar 

  25. Rosqvist R, Forsberg A, Wolf-Watz H. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun 1991; 59: 4562–4569.

    PubMed  CAS  Google Scholar 

  26. Guan K, Dixon JE. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 1990; 249: 553–556.

    Article  PubMed  CAS  Google Scholar 

  27. Bliska JB, Guan K, Dixon JE et al. A mechanism of bacterial pathogenesis: tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci USA 1991; 88: 1187–1191.

    Article  PubMed  CAS  Google Scholar 

  28. Rosqvist R, Bölin I, Wolf-Watz H. Inhibition of phagocytosis in Yersinia pseudotuberculosis: a virulence plasmidencoded ability involving the Yop2b protein. Infect Immun 1988; 56: 2139–2143.

    PubMed  CAS  Google Scholar 

  29. Galyov EE, Hakansson S, Forsberg A et al. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature 1993; 361: 730–732.

    Article  PubMed  CAS  Google Scholar 

  30. Reisner BS, Straley SC. Yersinia pestis YopM: Thrombin binding and over-expression. Infect Immun 1992; 60: 52425252.

    Google Scholar 

  31. Michiels T, Cornelis GR. Secretion of hybrid proteins by the Yersinia Yop export system. J Bacteriol 1991; 173: 1677 1685.

    Google Scholar 

  32. Michiels T, Vanooteghem JC, Lambert de Rouvroit C et al. Analysis of virC, an operon involved in the secretion of Yop proteins by Yersinia enterocolitica. J Bacteriol 1991; 173: 4994–5009.

    PubMed  CAS  Google Scholar 

  33. Genin S, Boucher CA. A superfamily of proteins involved in different secretion pathways in Gram-negative bacteria: modular structure and specificity of the N-terminal domain. Mol Gen Genet 1994; 243: 112–118.

    Article  PubMed  CAS  Google Scholar 

  34. Kazmierczak BI, Mielke DL, Russel M et al. PIV, a filamentous phage protein that mediates phage export across the bacterial cell envelope, forms a multimer. J Mol Biol 1994; 238: 187–198.

    Article  PubMed  CAS  Google Scholar 

  35. Van Gijsegem F, Genin S, Boucher CA. Conservation of secretion pathways for pathogenicity determinants of plant and animal pathogenic bacteria. Trends Microbiol 1993; 1: 175–180.

    Article  PubMed  Google Scholar 

  36. Bergman T, Erickson K, Galyov E et al. The lcrB (ysc N/U) gene cluster of Yersinia pseudotuberculosis is involved in Yop secretion and shows high homology to the spa gene clusters of Shigella flexneri and Salmonella typhimurium. J Bacteriol 1994; 176: 2619–2626.

    PubMed  CAS  Google Scholar 

  37. Woestyn S, Allaoui A, Wattiau P et al. YscN, the putative energizer of the Yersinia yop secretion machinery. J Bacteriol 1994; 176: 1561–1569.

    PubMed  CAS  Google Scholar 

  38. Allaoui A, Woestyn S, Sluiters C et al. YscU, a Yersinia enterocolitica inner membrane protein involved in Yop secretion. J Bacteriol 1994; 176: 4534–4542.

    PubMed  CAS  Google Scholar 

  39. Fields KA, Plano GV, Straley SC. A lowCa2+ response (LCR) secretion (ysc) locus lies within the lcrB region of the LCR plasmid in Yersinia pestis. J Bacteriol 1994; 176: 569–579.

    PubMed  CAS  Google Scholar 

  40. Plano GV, Straley SC. Multiple effects of lcrD mutations in Yersinia pestis. J Bacteriol 1993; 175: 3536–3545.

    PubMed  CAS  Google Scholar 

  41. Wattiau P, Cornelis GR. SycE, a chaperone-like protein of Yersinia enterocolitica involved in the secretion of YopE. Mol Microbiol 1993; 8: 123–131.

    Article  PubMed  CAS  Google Scholar 

  42. Wattiau P, Bernier B, Deslée P et al. Individual chaperones required for Yop secretion by Yersinia. Proc Natl Acad Sci USA 1994; 91: 10495–10497.

    Article  Google Scholar 

  43. Rosqvist R, Forsberg A, Rimpilainen M et al. The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Mol Microbiol 1990; 4: 657–667.

    Article  PubMed  CAS  Google Scholar 

  44. Rosqvist R, Magnusson KE, Wolf-Watz H. Target cell contact triggers expression •and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J 1994; 13: 964–972.

    PubMed  CAS  Google Scholar 

  45. Sory MP, Cornelis GR. Translocation of a hydrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 1994; 14: 583–594.

    Article  PubMed  CAS  Google Scholar 

  46. Pepe JC, Badger JL, Miller VL. Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Mol Microbiol 1994; 11: 123135.

    Google Scholar 

  47. Mikulskis AV, Delor I, Ha Thi V et al. Cornelis GR. Regulation of the Yersinia enterocolitica enterotoxin Yst gene. Influence of growth phase, temperature, osmolarity, pH and bacteria host factors. Mol Microbiol 1994; 14: 905–915.

    Article  PubMed  CAS  Google Scholar 

  48. Iriarte M, Stainier I, Cornelis GR. The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun 1995; in press.

    Google Scholar 

  49. Hengge-Aronis R. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation in E. coli. Cell 1993; 72: 165–168.

    Article  PubMed  CAS  Google Scholar 

  50. Lange R, Barth M, and Hengge-Aronis R. Complex transcriptional control of the as-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli. J Bacteriol 1993; 175: 7910–7917.

    PubMed  CAS  Google Scholar 

  51. Weichart D, Lange R, Henneberg N et al. Identification and characterization of stationary phase-inducible genes in Escherichia coli. Mol Microbiol 1993; 10: 407–420.

    Article  PubMed  CAS  Google Scholar 

  52. Iriarte M, Cornelis GR. MyfF, an element of the network regulating the synthesis of fibrillae in Yersinia enterocolitica. J Bacteriol 1995; 177 (3): 738–744.

    PubMed  CAS  Google Scholar 

  53. Cornelis GR, Sluiters C, Delor I et al. ymoA, a Yersinia enterocolitica chromosomal gene modulating the expression of virulence functions. Mol Microbiol 1991; 5: 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  54. Isberg RR, Swain A, Falkow S. Analysis of expression and thermoregulation of the Yersinia pseudotuberculosis inv gene with hybrid proteins. Infect Immun 1988; 56: 2133–2138.

    PubMed  CAS  Google Scholar 

  55. Pierson DE, Falkow S. Nonpathogenic isolates of Yersinia enterocolitica do not contain functional inv-homologous sequences. Infect Immun 1990; 58: 1059–1064.

    PubMed  CAS  Google Scholar 

  56. Parsot C, Mekalanos JJ. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response. Proc Natl Acad Sci USA 1990; 87: 9898–9902.

    Article  PubMed  CAS  Google Scholar 

  57. Lindler LE, Klempner MS, Straley S. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 1990; 58: 2569–2577.

    PubMed  CAS  Google Scholar 

  58. Taylor RK, Miller VL, Furlong DB, Mekalanos JJ. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 1987; 84: 2833–2837.

    Article  PubMed  CAS  Google Scholar 

  59. DiRita VJ, Mekalanos JJ. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 1991; 64: 29–37.

    Article  PubMed  CAS  Google Scholar 

  60. Cornelis GR, Sluiters C, Lambert de Rouvroit C et al. Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 1989; 171: 254–262.

    PubMed  CAS  Google Scholar 

  61. Lambert de Rouvroit C, Sluiters C, Cornelis GR. Role of the transcriptional activator VirF and temperature in the expression of the pYV plasmid genes of Yersinia enterocolitica. Mol Microbiol 1992; 6: 395–409.

    Article  Google Scholar 

  62. Genin S, Gough CL, Zischek C et al. Evidence that the hrpB gene encodes a positive regulator of pathogenicity genes from Pseudomonas solanacearum. Mol Microbiol 1992; 6: 3065–3076.

    Article  PubMed  CAS  Google Scholar 

  63. Wattiau P, Cornelis GR. Identification of DNA sequences recognized by VirF, the transcriptional activator of the Yersinia yop regulon. J Bacteriol 1994; 176: 3878–3884

    PubMed  CAS  Google Scholar 

  64. Hoe NP, Goguen JD. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol 1993; 175: 7901–7909.

    PubMed  CAS  Google Scholar 

  65. Rohde JR, Fox JM, Minnich SA. Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA super-coiling. Mol Microbiol 1994; 12: 187–199.

    Article  PubMed  CAS  Google Scholar 

  66. Higgins CF, Dorman CJ, Stirling DA et al. A physiological role for DNA super-coiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52: 569–584.

    Article  PubMed  CAS  Google Scholar 

  67. Dorman CJ, Bhriain NN, Higgins CF. DNA supercoiling and environmental regulation of gene expression in Shigella flexneri. Nature 1990; 344: 789–792.

    Article  PubMed  CAS  Google Scholar 

  68. Göransson M, Sonden B, Nilsson P et al. Transcriptional silencing and thermoregulation of gene expression in Escherichia coli. Nature 1990; 344: 68 2685.

    Google Scholar 

  69. Dorman CJ, Bhriain NN. DNA topology and bacterial virulence gene regulation. Trends Microbiol 1993; 1: 92–99.

    Article  PubMed  CAS  Google Scholar 

  70. Nieto JM, Carnona M, Bolland S et al. The hha gene modulates haemolysin expression in Escherichia coli. Mol Microbiol 1991; 5: 1285–1293.

    Article  PubMed  CAS  Google Scholar 

  71. Mikulskis AV, Cornelis GR. A new class of proteins regulating gene expression in enterobacteria. Mol Microbiol 1994; 11: 77–86.

    Article  PubMed  CAS  Google Scholar 

  72. Forsberg A, Vitanen AM, Skurnik M et al. The surface-located YopN protein is involved in calcium signal transduction in Yersinia pseudotuberculosis. Mol Microbiol 1991; 5: 977–986.

    Article  PubMed  CAS  Google Scholar 

  73. Yother J, Goguen JD. Isolation and characterization of Cat+ blind mutants in Yersinia pestis. J Bacteriol 1985; 164: 704–711.

    PubMed  CAS  Google Scholar 

  74. Skrzypek E, Straley SC. LcrG, a secreted protein involved in negative regulation of the low-calcium response in Yersinia pestis. J Bacteriol 1993; 175: 3520–3528.

    CAS  Google Scholar 

  75. Rimpilainen M, Forsberg A, Wolf-Watz H. A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol 1992; 174: 3355–3363.

    PubMed  CAS  Google Scholar 

  76. Brubaker RR. The Vwa+ virulence of Yersinia: the molecular basis of the attendant nutritional requirement for Ca++. Rev Infect Dis 1983; 5: 5748–5758.

    Article  Google Scholar 

  77. Cornelis GR, Vanooteghem JC, Sluiters C. Transcription of the yop regulon from Y. enterocolitica requires trans acting pYV and chromosomal genes. Microb Pathog 1987; 2: 367–379.

    Article  PubMed  CAS  Google Scholar 

  78. Price SB, Cowan C, Perry RD et al. The Yersinia pestis V antigen is a regulatory protein necessary for Cat+-dependent growth and maximal expression of lowCa2+ response virulence genes. J Bacteriol 1991; 173: 2649–2657.

    PubMed  CAS  Google Scholar 

  79. Bergman T, Hakansson S, Forsberg A et al. Analysis of the V antigen lcrGvHyopBD operon of Yersinia pseudotuberculosis: evidence for a regulatory role of LcrH and LcrV. J Bacteriol 1991; 173: 1607–1616.

    PubMed  CAS  Google Scholar 

  80. Hughes KT, Gillen KL, Semon MJ et al. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 1993; 262: 1277–1280.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cornelis, G.R., Iriarte, M., Sory, MP. (1995). Environmental Control of Virulence Functions and Signal Transduction in Yersinia Enterocolitica . In: Signal Transduction and Bacterial Virulence. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22406-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22406-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22408-3

  • Online ISBN: 978-3-662-22406-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics