Skip to main content

Regulation of Virulence in Vibrio Cholerae by the ToxR System

  • Chapter
Signal Transduction and Bacterial Virulence

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 63 Accesses

Abstract

The bacterium Vibrio cholerae causes the human diarrheal disease called cholera. The primary virulence determinant in this pathogen is the cholera toxin, and studies of toxin biogenesis as well as its effects on eukaryotic cells have contributed a great deal to our understanding of fundamental questions in molecular and cellular biology. In addition, V. cholerae has become a model organism for studying mucosal pathogenesis and immunity. Work originally aimed at developing toxoid or live oral vaccine preparations to protect susceptible populations against cholera has led to the general question of how toxin and other virulence factors are regulated in V. cholerae, which is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg MB, Boyko SA, Calderwood SB. Positive transcriptional regulation of an iron-regulated virulence gene in Vibrio cholerae. Proc Natl Acad Sci USA 1991; 88: 1125–1129

    Article  PubMed  CAS  Google Scholar 

  2. Williams SG, Attridge SR, Manning PA. The transcriptional activator HIyU of Vibrio cholerae: nucleotide sequence and role in virulence gene expression. Mol Microbiol 1993; 9: 751–760.

    Article  PubMed  CAS  Google Scholar 

  3. Gill DM. The arrangement of subunits in cholera toxin. Biochem 1976; 15: 1242–1248.

    Article  CAS  Google Scholar 

  4. Mekalanos JJ, Collier RJ, Romig WR. The enzymatic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 1979; 254: 5855–5861

    PubMed  CAS  Google Scholar 

  5. Gill DM, Meren R. ADP-ribosylation of membrane proteins catalyzed by cholera toxin: basis of activation of adenylate cyclase. Proc Natl Acad Sci USA 1978; 75: 3050–3054.

    Article  PubMed  CAS  Google Scholar 

  6. Field M. Intestinal secretion and its stimulation by enterotoxins. In: Ouchterlony O, Holmgren J, eds. Cholera and related diarrheas. Karger: Basel, 1980: 46–52.

    Google Scholar 

  7. Richardson SH. Factors influencing in vivo skin permeability factor production by Vibrio cholerae. J Bacteriol 1969; 100: 27–34.

    PubMed  CAS  Google Scholar 

  8. Evans DJ, Richardson SH. In vitro production of choleragen and vascular permeability factor by Vibrio cholerae. J Bacteriol 1968; 96: 126–130

    PubMed  CAS  Google Scholar 

  9. Taylor RK, Miller VL, Furlong DB et al. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 1987; 84: 2833–2837.

    Article  PubMed  CAS  Google Scholar 

  10. Taylor RK. Genetic studies of enterotoxin and other potential virulence factors of Vibrio cholerae. In: Hopwood DA, Chater KF, eds. Genetics of bacterial diversity, London: Academic, 1989:309329.

    Google Scholar 

  11. Peterson KM, Mekalanos JJ. Characterization of the ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 1988; 56: 2822–2829.

    PubMed  CAS  Google Scholar 

  12. Ogierman MA, Zabihi S, Mourtzios L et al. Genetic organization and sequence of the promoter-distal region of the tcp gene cluster of Vibrio cholerae. Gene 1993; 126: 51–60.

    Article  PubMed  CAS  Google Scholar 

  13. Spanderio V, Giron JA, Silveira WD et al. Characterization of the outer membrane protein OmpU of Vibrio cholerae. American Society for Microbiology General Meeting, 1994; Abstract B-272

    Google Scholar 

  14. Herrington DA, Hall RH, Losonosky JJ et al. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 1988; 168: 1487–1492.

    Article  PubMed  CAS  Google Scholar 

  15. Iredell JR, Manning PA. The toxincoregulated pilus of Vibrio cholerae 01: a model for type 4 pilus biogenesis? Trends in Microbiol. 1994; 2: 187–192.

    Article  CAS  Google Scholar 

  16. Kaufman MR, Seyer JM, Taylor RK. Processing of TCP pilin by TcpJ typifies a common step intrinsic to a newly recognized pathway of extracellular protein secretion by gram-negative bacteria. Genes Develop 1991; 5: 1834–1846

    Article  PubMed  CAS  Google Scholar 

  17. Kaufman MR, Shaw CE, Jones ID et al. Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretory systems and localization of the toxT virulence regulator to the TCP cluster. Gene 1993; 126: 43–49.

    Article  PubMed  CAS  Google Scholar 

  18. Peek JA, Taylor RK. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci USA 1992; 89: 6210–6214.

    Article  PubMed  CAS  Google Scholar 

  19. Yu J, Webb H, Hirst TR. A homologue of the Escherichia coli DsbA protein involved in disulfide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol 1992; 6: 1949–1958

    Article  PubMed  CAS  Google Scholar 

  20. Harkey CW, Everiss KD, Peterson KM. The Vibrio cholerae toxin-coregulated-pilus gene tcpl encodes a homologue of methyl-accepting chemotaxis proteins. Infect Immun 1994; 62: 2669–2678.

    PubMed  CAS  Google Scholar 

  21. Freter R, O’Brien PCM. Role of chemotaxis in the association of motile bacterial with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect Immun 1981; 34: 222–233

    PubMed  CAS  Google Scholar 

  22. Freter R, O’Brien PCM, Macsai MMS. Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 1981; 34: 234–240

    PubMed  CAS  Google Scholar 

  23. Mekalanos JJ. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 1983; 35: 253–263.

    Article  PubMed  CAS  Google Scholar 

  24. Fasano A, Baudry B, Pumplin DW et al. Vibrio cholerae produces a second enterotoxin which affects intestinal tight junctions. Proc Natl Acad Sci USA 1991; 88: 5242–5246.

    Article  PubMed  CAS  Google Scholar 

  25. Trucksis M, Galen JE, Michalski J et al. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci USA 1993; 90: 5267–5271.

    Article  PubMed  CAS  Google Scholar 

  26. Pearson GDN, Woods A, Chiang SL et al. CTX genetic element encodes a site-specific recombination system and an intestinal colonization factor. Proc Natl Acad Sci USA 1993; 90: 3750–3754

    Article  PubMed  CAS  Google Scholar 

  27. Miller VL, Mekalanos JJ. Synthesis of cholera toxin is positively regulated at the transcriptional level by toxR. Proc Natl Acad Sci USA 1984; 81: 3471–3475.

    Article  PubMed  CAS  Google Scholar 

  28. Miller VL, Mekalanos JJ. A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 1988; 170: 2575–2583.

    PubMed  CAS  Google Scholar 

  29. Miller VL, Taylor RK, Mekalanos JJ. Cholera toxin transcriptional activator ToxR is a transmembrane DNA binding protein. Cell 1987; 48: 271–279.

    Article  PubMed  Google Scholar 

  30. Ottemann KM, DiRita VJ, Mekalanos JJ. ToxR proteins with substitutions in residues conserved with OmpR fail to activate transcription from the cholera toxin promoter. J. Bacteriol 1992; 174: 68076814.

    Google Scholar 

  31. Higgins DE, DiRita VJ. Transcriptional control of toxT,a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol Microbiol 1994; in press.

    Google Scholar 

  32. Watson N, Dunyak DS, Rosey EL et al. Identification of elements involved in transcriptional regulation of the Escherichia coli cad operon by external pH. J Bacteriol 1992; 174: 530–540.

    PubMed  CAS  Google Scholar 

  33. DiRita VJ, Mekalanos JJ. Periplasmic interaction between two membrane regulatory protein, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell 1991; 64: 29–37.

    Article  PubMed  CAS  Google Scholar 

  34. Miller VL, DiRita VJ, Mekalanos JJ. Identification of toxS, a regulatory gene whose product enhances ToxR-mediated activation of the cholera toxin promoter. J Bacteriol 1989; 171: 1288–1293.

    PubMed  CAS  Google Scholar 

  35. Dziejman M, Mekalanos JJ. Analysis of membrane protein interactions: ToxR can dimerize the amino terminus of phage lambda repressor. Mol Microbiol 1994; 13: 485–494

    Article  PubMed  CAS  Google Scholar 

  36. Steffes C, Ellis J, Wu J et al. The lysP gene encodes the lysine-specific permease. J Bacteriol 1992; 174: 3242–3249

    PubMed  CAS  Google Scholar 

  37. Neely M, Dell CL, Olson ER. Roles of LysP and CadC in mediating the lysine requirement for acid induction of the Escherichia coli cad operon. J Bacteriol 1994; 176: 3278–3285.

    PubMed  CAS  Google Scholar 

  38. Russo FD, Silhavy TJ. Alpha: the Cinderella subunit of RNA polymerase. J Biol Chem. 1992; 14515–14518.

    Google Scholar 

  39. Mekalanos JJ, Swartz DJ, Pearson GDN et al. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 1983; 306: 551–557.

    Article  PubMed  CAS  Google Scholar 

  40. DiRita VJ, Parsot C, Jander G et al. Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 1991; 88: 5403–5407.

    Article  PubMed  CAS  Google Scholar 

  41. Higgins DE, Nazareno E, DiRita VJ. The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J Bacteriol 1992; 174: 6974–6980.

    PubMed  CAS  Google Scholar 

  42. Parsot C, Mekalanos JJ. Structural analysis of the acfA and acfD genes of Vibrio cholerae: effects of DNA topology and transcriptional activators on expression. J Bacteriol 1992; 174: 5211–5218.

    PubMed  CAS  Google Scholar 

  43. Jordi BJAM, Dagberg B, de Haan LAM et al. The positive regulator CfaD overcomes the repression mediated by histone-like protein H-NS (H1) in the CFA/I fimbrial operon of Escherichia coli. EMBO J 1992; 11: 2627–2632.

    PubMed  CAS  Google Scholar 

  44. Maurelli AT, Blackmon B, Curtiss R III. Temperature-dependent expression of virulence genes in Shigella species. Infect Immun 1984; 43: 195–201.

    PubMed  CAS  Google Scholar 

  45. Cornelis G, Sluiters C, Lambert de Rouvroit C et al. Homology between VirF, the transcriptional activator of the Yersinia virulence regulon, and AraC, the Escherichia coli arabinose operon regulator. J Bacteriol 1989; 171: 254–262.

    PubMed  CAS  Google Scholar 

  46. Parsot C, Mekalanos JJ. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response. Proc Natl Acad Sci USA 1990; 87: 98989902.

    Google Scholar 

  47. Miller JF, Johnson SA, Black WJ et al. Constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J Bacteriol 1991; 970–980.

    Google Scholar 

  48. Ames P, Parkinson JS. Transmembrane signalling by bacterial chemoreceptors: E. coli transducers with locked signal output. Cell 1988; 55: 817–826.

    CAS  Google Scholar 

  49. Lin Z, Kumagai K, Baba K et al. Vibrio parahaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the thermostable direct hemolysin gene. J Bacteriol. 1993; 175: 3844–3855.

    PubMed  CAS  Google Scholar 

  50. Reich KA, Schoolnik GK. The light organ symbiont Vibrio fischeri possesses a homolog of the Vibrio cholerae trans-membrane transcriptional activator ToxR. J Bacteriol 1994; 176: 3085–3088.

    PubMed  CAS  Google Scholar 

  51. Parsot C, Mekalanos JJ. Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J Bacteriol 1991; 2842–2851

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

DiRita, V.J. (1995). Regulation of Virulence in Vibrio Cholerae by the ToxR System. In: Signal Transduction and Bacterial Virulence. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22406-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22406-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22408-3

  • Online ISBN: 978-3-662-22406-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics