Skip to main content

PhoP/PhoQ: Regulating Salmonella Adaptation to Host Microenvironments

  • Chapter
Signal Transduction and Bacterial Virulence

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Salmonella serotypes can colonize and infect an enormous range of vertebrate hosts after orally ingestion. Infection results in a wide spectrum of acute and chronic illnesses; including gastroenteritis, enteric (typhoid) fever, and bacteremia.1 The consequence of Salmonellae ingestion by vertebrates depends on the serotype. Certain Salmonella serotypes have very narrow host specificity while others infect a wide variety of animal hosts.1 Examples of host-specific serotypes include S. typhi (man), S. pullorum (fowl), and S. arizonae (reptiles). Such serotypes, with rare exceptions, are only pathogenic for a specific host. In contrast S. typhimurium infects a wide variety of hosts, though disease manifestation varies. In immunocompetent humans an acute self limited gastroenteritis is seen after S. typhimurium ingestion, while in mice a systemic illness similar to human enteric fever occurs. In addition host immune status dramatically alters disease outcome. Humans with the acquired immunodeficiency syndrome (AIDS) are highly susceptible to severe systemic infection with S. typhimurium2 and the susceptibility of inbred mice to this serotype varies widely as a result of mutations that alter immune function.3,4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller SI, Hohmann EL, Pegues DA. Salmonella (including Salmonella thyphi). In: Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases, 4th ed. 1994: 2013–2032.

    Google Scholar 

  2. Sperber SJ, Schleupner CJ. Salmonellosis during infection with the human immunodeficiency virus. Rev Infect Dis 1987; 9: 925–934.

    Article  PubMed  CAS  Google Scholar 

  3. Lissner CR, Swanson R, O’Brien A. Genetic control of the innate resistance of mice to Salmonella typhimurium: Expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J Immunol 1983; 131: 3006–3013.

    PubMed  CAS  Google Scholar 

  4. Hormaeche CE, Harrington KA, Joysey HS. Natural resistance to Salmonellae in mice: control by genes within the major histocompatibility complex. J Infect Dis 1985; 152: 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  5. Fields PI, Swanson RV, Haidaris CG et al. Mutants of Salmonella typhimurium that cannot survive within the macrophage are avirulent. Proc Natl Acad Sci USA 1986; 83: 5189–5193.

    Article  PubMed  CAS  Google Scholar 

  6. Vidal SM, Malo D, Vogan K, Skamene E, Gros P. Natural resistance to infection with intracellular parasites: Isolation of a candidate for Bcg. Cell 1993; 73: 469–485.

    CAS  Google Scholar 

  7. McCormack BA, Miller SI, Delp-Archer C et al. Transepithelial signalling to neutrophils by Salmonella: a novel virulence mechanism for gastroenteritis. Infect Immun 1995; in press.

    Google Scholar 

  8. Miller SI, Kukral AM, Mekalanos JJ. A two-component regulatory system (phoP/ phoQ) controls Salmonella typhimurium virulence. Proc Natl Acad Sci USA 1989; 86: 5054–5058.

    Article  PubMed  CAS  Google Scholar 

  9. Stock JB, Ninfa AJ, Stock AM. Protein phosphorylation and regulations of adaptive responses in bacteria. Microbiol Rev 1989; 53: 450–490.

    PubMed  CAS  Google Scholar 

  10. Kier LD, Weppleman RM, Ames BN. Regulation of nonspecific acid phosphatase in Salmonella: phonN and phoP genes. J Bacteriol 1979; 138: 155–161.

    PubMed  CAS  Google Scholar 

  11. Miller SI, Mekalanos JJ. Constitutive expression of the PhoP regulon attenuates Salmonella virulence and survival within macrophages. J Bacteriol 1990; 172: 2485–2490.

    PubMed  CAS  Google Scholar 

  12. Belden WJ, Miller SI. Further characterization of the PhoP regulon: Identification of new phoP-activated virulence loci. Infect Immun 1994; 62: 5095–5101.

    PubMed  CAS  Google Scholar 

  13. Behlau I, Miller SI. A PhoP-repressed gene promotes Salmonella typhimurium invasion of epithelial cells. J Bacteriol 1993; 175: 4475–4484.

    PubMed  CAS  Google Scholar 

  14. Gunn JS, Alpuche-Aranda CM, Loomis WP et al. A virulence gene cluster required for Salmonella typhimurium survival within macrophage phasosomes. 1995; submitted for publication.

    Google Scholar 

  15. Pulkkinen WS, Miller SI. A Salmonella typhimurium virulence protein is similar to a Yersinia enterocolitica and a bacteriophage lambda outer membrane protein. J Bacteriol 1991; 173: 86–93.

    PubMed  CAS  Google Scholar 

  16. Kier LR, Weppelman R, Ames BN. Resolution and purification of three periplasmic phosphatases of Salmonella typhimurium. J Bacteriol 1977; 130: 399–410.

    PubMed  CAS  Google Scholar 

  17. Weppelman R, Kier LD, Ames BN. Properties of two phosphates and a cyclic phosphodiesterase of Salmonella typhimurium. J Bacteriol 1977; 130: 411–419.

    PubMed  CAS  Google Scholar 

  18. Kasahara M, Nakata A, Shinagawa H. Molecular analysis of the Salmonella typhimurium phoN gene, which encodes nonspecific acid phosphatase. J Bacteriol 1991; 173: 6760–6765.

    PubMed  CAS  Google Scholar 

  19. Groisman EA, Saier MH, Ochman H. Horizontal transfer of a phosphatase gene as evidence for mosaic structure of the Salmonella chromosome. EMBO J 1992; 11: 1309–1316.

    PubMed  CAS  Google Scholar 

  20. Miller VL, Bliska JB, Falkow S. Nucleotide sequence of the Yersinia enterocolitica ail gene and characterization of the Ail protein product. J Bacteriol 1990; 172: 1062–1069.

    PubMed  CAS  Google Scholar 

  21. Barondess JJ, Beckwith J. A bacterial virulence determinant encoded by lysogenic coliphage lambda. Nature (London) 1990; 346: 871–872.

    Article  CAS  Google Scholar 

  22. Stoorvogel, J, van Brussel MJAWM, Tommassen J et al. Molecular characterization of an Enterobacter cloacae outer membrane protein (OmpX). J Bacteriol 1991; 173: 156–160.

    PubMed  CAS  Google Scholar 

  23. Heffernan EJ, Hardwood J, Fierer J, Guiney D. The Samonella typhimurium virulence plasmid complement resistance gene rck is homologous to a family of virulence-related outer membrane protein genes, including pagC and ail. J Bacteriol 1992; 174: 84–91.

    PubMed  CAS  Google Scholar 

  24. Galan JE, Ginocchio C, Costeas P. Molecular and functional characterization of the Salmonella invasion gene invA: Homology of InvA to members of a new protein family. J Bacteriol 1992; 174, 4338–4349.

    Google Scholar 

  25. Groisman EA, Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J 1993; 12: 3779–3787.

    PubMed  CAS  Google Scholar 

  26. Eichelburg K, Ginocchio CC, Galan JE. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: Homology of InvC to FoF, ATPase family of proteins. J Bacteriol 1994; 176: 4501–4510.

    Google Scholar 

  27. Galan JE, Curtiss III R. Virulence and vaccine potential of phoP mutants of Sal-monella typhimurium. Microb Pathog 1989; 6: 422–443.

    Article  Google Scholar 

  28. Fields PI, Groisman EA, Heffron F. A Salmonella locus that controls resistance to microbicidal proteins from phagocytic cells. Science 1989; 243: 1059–1062.

    Article  PubMed  CAS  Google Scholar 

  29. Alpuche Aranda C, Swanson JA, Loomis WP et al. Salmonella typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc Natl Acad Sci USA 1992; 89: 10079–10083.

    Article  PubMed  CAS  Google Scholar 

  30. Miller SI, Pulkkinen WS, Selsted ME et al. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect Immun 1990; 58: 3 706–3710.

    Google Scholar 

  31. Foster JW, Hall HK. Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol 1990; 172: 771–778.

    PubMed  CAS  Google Scholar 

  32. Selsted ME, Miller SI, Henschen AH et al. Enteric defensins: antibiotic peptide components of intestinal host defense. J Cell Biol 1992; 118: 929–936.

    Article  PubMed  CAS  Google Scholar 

  33. Alpuche Aranda CM, Racoosin EL, Swanson JA et al. Salmonella enter macrophages by macropinocytosis and survive within spacious phagosomes. J Exp Med 1994; 179: 601–608.

    Article  PubMed  CAS  Google Scholar 

  34. Kagan BL, Selsted ME, Ganz T et al. Antimicrobial peptides form voltage-dependent ion-permeable channels in planar lipid bilayer membranes. Proc Natl Acad Sci USA 1989; 87: 210–214.

    Article  Google Scholar 

  35. Abshire SK, Neidhardt EC. Growth rate paradox of Salmonella typhimurium within host macrophages. J Bacteriol 1993; 175: 3744–3748.

    PubMed  CAS  Google Scholar 

  36. Buchmeier NA, Heffron F. Induction of Salmonella stress proteins upon infection of macrophages. Science 1990; 248: 730–732.

    Article  PubMed  CAS  Google Scholar 

  37. Jones BD, Falkow S. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun 1994; 62: 3745–3752.

    PubMed  CAS  Google Scholar 

  38. Case CC, Bukau B, Granett S et al. Contrasting mechanisms of envZ control of mal and pho regulon genes in Escheri- chia coli. J Bacteriol 1986; 166: 706–7121.

    PubMed  CAS  Google Scholar 

  39. Slauch JM, Garrett S, Jackson DE et al. EnvZ functions through OmpR to control porin gene expression in Escherichia coli K-12. J Bacteriol 1988; 170: 439–441.

    PubMed  CAS  Google Scholar 

  40. Garrett S, Silhary TJ. Isolation of mutations in the alpha operon of Escherichia coli that suppress the transcriptional defect conferred by a mutation in the porin regulatory gene envZ. J Bacteriol 1987; 169: 1379–1385.

    PubMed  CAS  Google Scholar 

  41. Racoosin EL, Swanson JA. M-CSF-induced macropinocytosis increases solute endocytosis but receptor mediated endocytosis. J Cell Sci 1992; 102: 867–880.

    PubMed  CAS  Google Scholar 

  42. Racoosin EL, Swanson JA. Macropinosome maturation and fusion with tubular lysosomes in macrophages. J Cell Biol 1993; 121: 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  43. Miller SI, Alpuche-Aranda C, Berthiaume E, Mock B et al. Spacious phagosome formation correlates with Salmonella serotype mouse virulence and inbred mouse susceptibility to Salmonella typhimurium. 1995; submitted for publication.

    Google Scholar 

  44. Takeuchi A. Electron microscopic studies of experimental Salmonella infection I. Penetration into the intestinal epithelium by Salmonella typhimurium. Am J Pathol 1967; 50: 109–136.

    PubMed  CAS  Google Scholar 

  45. Francis CL, Starnbach MN, Falkow S. Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction of S. typhimurium grown under low oxygen conditions. Mol Microbiol 1992; 6: 3077–3087.

    Article  PubMed  CAS  Google Scholar 

  46. Finlay BB, Ruschkowiscki S, Dedhar S. Cytoskeletal rearrangements accompanying Salmonella entry into epithelial cells. J Cell Sci 1991; 99: 283–296.

    PubMed  Google Scholar 

  47. Kaniga K, Bossio JC, Galan JE. The Salmonella typhimurium invasion genes invF and invG encode homologues of the AraC and Pu1D family of proteins. Mol Microbiol 1994; 13: 555–568.

    Article  PubMed  CAS  Google Scholar 

  48. McCormack BA, Colgan SP, Delp-Archer C et al. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to human subepithelial neutrophils. J Cell Biol 1993; 123: 895–907.

    Article  Google Scholar 

  49. Tacket CO, Hone DM, Curtiss III R et al. Comparison of the safety and immunogenecity of AaroC AaroD and Aga Acrp Salmonella typhi strains in adult volunteers. Infect Immun 1992; 60: 536–541.

    PubMed  CAS  Google Scholar 

  50. Miller SI, Loomis WP, Alpuche-Aranda C et al. The PhoP virulence regulon and live oral Salmonella vaccines. Vaccine 1993; 11: 122–125.

    Article  PubMed  CAS  Google Scholar 

  51. Hohmann EL, Oletta CA, Loomis WP et al. Macrophage-inducible expression of a model antigen in Salmonella typhimurium enhances immunogenecity. Proc Natl Acad Sci USA 1995; in press.

    Google Scholar 

  52. Peguses D, Hautman M, Behlau I, Miller SI. PhoP/PhoQ transcriptional repression of S. typhimurium invasion: evidence for a role in protein secretion. Mol Microbiol 1995; in press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miller, S.I. (1995). PhoP/PhoQ: Regulating Salmonella Adaptation to Host Microenvironments. In: Signal Transduction and Bacterial Virulence. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22406-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22406-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22408-3

  • Online ISBN: 978-3-662-22406-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics