Skip to main content

BvgAS Dependent Phenotypic Modulation of Bordetella Species

  • Chapter

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

Abstract

Bordetella species cause respiratory tract infections in humans and other animals. Bordetella pertussis and Bordetella parapertussis have adapted exclusively to the human host causing whooping cough (pertussis) and a milder pertussis-like disease, respectively. Despite the availability of a vaccine, pertussis continues to be a significant cause of morbidity and mortality in young children throughout the world and was reported to cause 400,000 deaths in 1992.1 Pertussis is one of the most infectious diseases known; attack rates of 70% to 100% in susceptible household contacts have been reported.2–4 The disease progresses in three stages. A 10–14 day incubation period is followed by the catarrhal stage characterized by mild, nondistinctive, cold-like symptoms including rhinorrhea, lacrimation, malaise and low-grade fever. After 7–10 days the illness progresses to the paroxysmal phase. Paroxysmal phase symptoms include violent coughing spasms (paroxysms) followed by an inspiratory gasp resulting in the hallmark whooping sound for which the disease is named. This stage lasts from 1 to 4 weeks. Symptoms gradually become less severe and paroxysms less frequent during the convalescent period which may last up to 6 months. B. pertussis is believed to spread exclusively via respiratory droplets. Recovery of B. pertussis from the nasopharynx of infected individuals is maximal during the catarrhal stage, and it is assumed that transmission potential is greatest at this time, decreasing as the disease progresses.2 The host antibody response is thought to play a critical role in clearance of B. pertussis and protection from reinfection.5

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The UNICEF Report. The state of the world’s children 1994. U.S. Committee for UNICEF. New York, N.Y.

    Google Scholar 

  2. Gordon JE, Hood RI. Whooping cough and its epidemiological anomalies. Am J Med Sci 1951; 222: 333–361.

    Article  CAS  PubMed  Google Scholar 

  3. Kendrick PL. Secondary familial attack rates from pertussis in vaccinated and unvaccinated children. Am J Hyg 1940; 32: 89–91.

    Google Scholar 

  4. Lambert H J. Epidemiology of a small pertussis outbreak in Kent, Michigan. Public Health Report. 1965; 80: 365.

    Article  CAS  Google Scholar 

  5. Thomas MG, Redhead K, Lambert HP. Human serum antibody responses to Bordetella pertussis infection and pertussis vaccination. J Inf Dis 1989; 159: 211–218.

    Article  CAS  Google Scholar 

  6. Goodnow RA. Biology of Bordetella bronchiseptica. Microbiol Rev 1980; 44: 722–738.

    CAS  PubMed  Google Scholar 

  7. Cotter PA and Miller JF. BvgAS mediated signal transduction: Analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect Immun 1994; 62: 3381–3390.

    CAS  PubMed  Google Scholar 

  8. Porter JF, Parton R, Wardlaw AC. Growth and survival of Bordetella bronchiseptica in natural waters and in buffered saline without added nutrients. Appl Env Microbiol 1991; 57: 1202–1206.

    CAS  Google Scholar 

  9. Porter JF, Wardlaw AC. Long-term survival of Bordetella bronchiseptica in lakewater and in buffered saline without added nutrients. FEMS Microbiol Lett 1993; 110: 33–36.

    Article  CAS  PubMed  Google Scholar 

  10. Arp LH, Leyh RD, Griffith RW. Adherence of Bordetella avium to tracheal mucosa of turkeys: correlation with hemagglutination. Am J Vet Res 1988; 49: 693–696.

    CAS  PubMed  Google Scholar 

  11. Gray JG, Roberts JF, Dillman RC et al. Pathogensis of change in the upper respiratory tracts of turkeys experimentally infected with an Alcaligenes faecalis isolate. Infect Immun 1983; 42: 350–355.

    CAS  PubMed  Google Scholar 

  12. Saif YM, Moorhead PD, Dearth RN et al. Observations on Alcaligenes faecalis infection in turkeys. Avian Dis 1980; 24: 665–684.

    Article  CAS  PubMed  Google Scholar 

  13. Simmons DG. Turkey coryza. In: Hofstad MS, Barnes HJ, Calnek BW, Reid WM, Yoder HW Jr, eds. Diseases of Poultry. 8. Ames, Iowa: Iowa State University Press 1984: 251–256.

    Google Scholar 

  14. Barnes HJ, Hofstad MS. Susceptibility of turkey poults from vaccinated and unvaccinated hens to alcaligenes rhinotracheitis (turkey coryza). Avian Dis 1983; 27: 378–392.

    Article  CAS  PubMed  Google Scholar 

  15. Cimiotti W, Glunder G, Hinz KH. Survival of the bacterial turkey coryza agent. Vet Rec 1982; 110: 304–306.

    Article  CAS  PubMed  Google Scholar 

  16. Simmons DG, Gray JG. Transmission of acute respiratory disease (rhinotracheitis) of turkeys. Avian Dis 1978; 23: 132–138

    Article  Google Scholar 

  17. Pittman M. Pertussis toxin: The cause of the harmful effects and prolonged immunity of whooping cough: A hypothesis. Rev Infect Dis 1979; 1: 401–412.

    Article  CAS  PubMed  Google Scholar 

  18. Linnemann CC Jr, Nasenbury J. Pertussis in the adult. Ann Rev Med 1977; 28: 179–185.

    Article  PubMed  Google Scholar 

  19. Tuomanen E, Weiss AA. Characterization of two adhesins of Bordetella pertussis for human ciliated respiratory epithelial cells. J Infect Dis 1985; 152: 118–125.

    Article  CAS  PubMed  Google Scholar 

  20. Tuomanen E, Towbin H, Rosenfelder G et al. Receptor analogs and monoclonal antibodies that inhibit adherence of Bordetella pertussis for human ciliated respiratory epithelial cells. J Exp Med 1988; 168: 267–277.

    Article  CAS  PubMed  Google Scholar 

  21. Relman D, Tuomanen E, Falkow S et al. Recognition of a bacterial adhesin by an integrin: Macrophage CR3 (0EM(32

    Google Scholar 

  22. CD 11 b/CD 18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990; 61:1375–1382.

    Google Scholar 

  23. Roberts M, Fairweather NF, Leininger E et al. Construction and characterization of Bordetella pertussis mutants lacking the vir-regulated P.69 outer membrane protein. Mol Microbiol 1991; 5: 1393–1404.

    Article  CAS  PubMed  Google Scholar 

  24. Leininger E, Roberts M, Kenimer JG et al. Pertactin, an Arg-Gly-Asp-containing Bordetella pertussis surface protein that promotes adherence of mammalian cells. Proc Natl Acad Sci USA 1991; 88: 345349.

    Google Scholar 

  25. Mooi FR, Jansen WH, Brunings H et al. Construction and analysis of Bordetella pertussis mutants defective in the production of fimbriae. Microbiol Path 1992; 12: 127–135.

    Article  CAS  Google Scholar 

  26. Goldman WE, Klapper DG, Basemen JB. Detection, isolation, and analysis of a released Bordetella pertussis product toxic to cultured tracheal cells. Infect Immun 1982; 36: 782–794.

    CAS  PubMed  Google Scholar 

  27. Luker KE, Collier JL, Kolodziej EW et al. Bordetella pertussis tracheal cytotoxin and other muramyl peptides: Distinct structure-activity relationships for respiratory epithelial cytopathology. Proc Natl Acad Sci USA 1993; 90: 2365–2369.

    Article  CAS  PubMed  Google Scholar 

  28. Endoh M, Takezawa T, Nakase Y. Adenylate cyclase activity of Bordetella organisms. Its production in liquid medium. Microbiol Immunol 1980; 24: 95–104.

    CAS  PubMed  Google Scholar 

  29. Confer DL, Eaton JW. Phagocyte impotence caused by an invasive bacterial adenylate cyclase. Science. 1982; 217: 948–950.

    Article  CAS  PubMed  Google Scholar 

  30. Hewlett EL, Gordon VM. Adenylate cyclase toxin of Bordetella pertussis. In: Wardlaw A, Parton R, eds. Pathogenesis and Immunity in Pertussis. New York: Wiley and Sons, 1988: 193–209.

    Google Scholar 

  31. Irons LI, Gorringe AR. Pertussis toxin: production, purification, molecular structure, and assay. In: Wardlaw A, Parton R, eds. Pathogenesis and Immunity in Pertussis. New York: Wiley and Sons, 1988: 95–120.

    Google Scholar 

  32. Masure H, Shattuck R, Storm D. Mechanisms of bacterial pathogenicity that involve production of calmodulin-sensitive adenylate cyclases. Microbiol Rev 1987; 51: 60–65.

    CAS  PubMed  Google Scholar 

  33. Ui M. The multiple biological activities of pertussis toxin. In: Wardlaw A, Parton R, eds. Pathogenesis and Immunity in Pertussis. New York: Wiley and Sons, 1988: 121–146.

    Google Scholar 

  34. Munoz JJ, Bergman RK. Bordetella pertussis. Immunological and other biological activities. In: Rose N, ed. Immunology, Vol. 4. New York: Marcel Dekker, 1977: 71–122

    Google Scholar 

  35. Lee CK, Roberts AL, Finn TM et al. A new assay for invasion of HeLa 229 cells by Bordetella pertussis: effects of inhibitors, phenotypic modulation and genetic alterations. Infect Immun 1990; 58: 2516–2522.

    CAS  PubMed  Google Scholar 

  36. Friedman RL, Nordensson K, Wilson L et al. Uptake and intracellular survival of Bordetella pertussis in human macrophages. Infect Immun 1992; 60: 4578–4585.

    CAS  PubMed  Google Scholar 

  37. Ewanowich CA, Melton AR, Weiss AA et al. Invasion of HeLa cells by virulent Bordetella pertussis. Infect Immun 1989; 57: 2698–2704.

    CAS  PubMed  Google Scholar 

  38. Saukkonen K, Cabellos C, Burroughs M et al. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med 1991; 173: 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  39. Roop RM, Veit HP, Sinsky RJ et al. Virulence factors of Bordetella bronchiseptica associated with the production of infectious atrophic rhinitis and pneumonia in experimentally infected neonatal swine. Infect Immun 1987; 55: 217–222.

    PubMed  Google Scholar 

  40. Pittman M. In: Krieg NR, Holt JG, eds. Bergey’s manual of systemic bacteriology. Vol. 1. London: Williams and Wilkins, 1984: 388–393.

    Google Scholar 

  41. Arid) B, Gross R, Smida J et al. Evolutionary relationships in the genus Bordetella. Mol Microbiol 1987; 1: 301–308.

    Article  Google Scholar 

  42. Gentry-Weeks CR, Cookson BT, Goldman WE et al. Dermonecrotic toxin and tracheal cytotoxin, putative virulence factors of Bordetella avium. Infect Immun 1988; 56: 1698–1707.

    CAS  PubMed  Google Scholar 

  43. Jackwood MW, Saif YM. Pili of Bordetella avium: expression, characterization and role in in vitro adherence. Avian Dis 1987; 31: 277–286.

    Article  CAS  PubMed  Google Scholar 

  44. Mooi FR, van der Heide HGJ, ter Avest AR et al. Characterization of fimbrial subunits from Bordetella species. Microbiol Path 1987; 2: 473–484.

    Article  CAS  Google Scholar 

  45. Simmons DG, Rose LP, Brogden KA et al. Partial characterization of the hemagglutinin of Alcaligenes faecalis. Avian Dis 1984; 28: 700–709.

    Article  CAS  PubMed  Google Scholar 

  46. Miller JF, Mekalanos JJ, Falkow S. Coordinate regulation and sensory transduction in the control of bacterial virulence. Science 1989; 243: 916–922.

    Article  CAS  PubMed  Google Scholar 

  47. Leslie PH, Gardner AD. The phases of Haemophilus pertussis. J Hyg 1931; 31: 423–434.

    Article  CAS  PubMed  Google Scholar 

  48. Lacey BW. Antigenic modulation of Bordetella pertussis. J Hyg 1960; 58: 57–93.

    Article  CAS  PubMed  Google Scholar 

  49. Melton AR, Weiss AA. Environmental regulation of expression of virulence determinants in Bordetella pertussis. J Bacteriol 1989; 171: 6206–6212.

    CAS  PubMed  Google Scholar 

  50. Weiss AA, Falkow S. Genetic analysis of phase variation in Bordetella pertussis. Infect Immun 1984; 43: 263–269.

    CAS  PubMed  Google Scholar 

  51. Arica B, Scarlato V, Monack DM et al. Structural and genetic analysis of the bvg locus in Bordetella species. Mol Microbiol 1991; 5: 2481–2491.

    Article  Google Scholar 

  52. Stibitz S, Aaronson W, Monack D et al. Phase variation in Bordetella pertussis by a frameshift in a gene for a novel two component system. Nature. (London). 1989; 338: 266–269.

    Article  CAS  Google Scholar 

  53. Stibitz S, Yang MS. Subcellular localization and immunological detection of proteins encoded by the vir locus of Bordetella pertussis. J Bacteriol 1991; 173: 4288–4296.

    CAS  PubMed  Google Scholar 

  54. Parkinson JS, Kofoid EC. Communication modules in bacterial signalling proteins. Ann Rev Genet 1992; 26: 71–112.

    Article  CAS  PubMed  Google Scholar 

  55. Stock J, Ninfa AJ, Stock AM. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev 1989; 53: 450–490.

    CAS  PubMed  Google Scholar 

  56. Beattie DT, Knapp S, Mekalanos JJ. Evidence that modulation requires sequences downstream of the promoters of two vir-repressed genes of Bordetella pertussis. J Bacteriol 1990; 172: 6997–7004.

    CAS  PubMed  Google Scholar 

  57. Knapp S, Mekalanos JJ. Two trans-acting regulatory genes (vir and mod) control antigenic modulation in Bordetella pertussis. J Bacteriol 1988; 170: 5059–5066.

    CAS  PubMed  Google Scholar 

  58. Beattie DT, Shahin R, Mekalanos JJ. A vir-repressed gene of Bordetella pertussis is required for virulence. Infect Immun 1992; 60: 571–577.

    CAS  PubMed  Google Scholar 

  59. Akerley BJ, Miller JF. Flagellin transcription in Bordetella bronchiseptica is regulated by the BvgAS virulence control system. J Bacteriol 1993; 175: 3468–3479.

    CAS  PubMed  Google Scholar 

  60. Agiato Foster L-A, Giardina PC, Wang M et al. Siderophore biosynthesis in Bordetella bronchiseptica is controlled by the bvg regulon. American Society for Microbiology 93rd General Meeting, Abstract 1558.

    Google Scholar 

  61. Miller JF, Roy CR, Falkow S. Analysis of Bordetella pertussis virulence gene regulation by use of transcriptional fusions in Escherichia coli. J Bacteriol 1989; 171: 6345–6348.

    CAS  PubMed  Google Scholar 

  62. Miller JF, Johnson SA, Black WJ et al. Isolation and analysis of constitutive sensory transduction mutations in the Bordetella pertussis bvgS gene. J Bacteriol 1992; 174: 970–979.

    CAS  PubMed  Google Scholar 

  63. Aricb B, Miller JF, Roy C et al. Sequences required for expression of Bordetella pertussis virulence factors share homology with prokaryotic signal transduction proteins. Proc Natl Acad Sci USA 1989; 86: 6671–6675.

    Article  Google Scholar 

  64. Chang C, Winans SC. Functional roles assigned to the periplasmic, linker, and receiver domains of the Agrobacterium tumefaciens VirA protein. J Bacteriol 1992; 174: 7033–7039.

    CAS  PubMed  Google Scholar 

  65. Iuchi S, Lin ECC. Mutational analysis of signal transduction by ArcB, a membrane sensor protein for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol 1992; 174: 3972–3980.

    CAS  PubMed  Google Scholar 

  66. McCleary WR, Zusman DR. Purification and characterization of the Myxococcus xanthus FrzE protein shows that it has autophosphorylation activity. J Bacteriol 1990; 172: 6661–6668.

    CAS  PubMed  Google Scholar 

  67. Stibitz S. Complementation analysis of the vir locus of Bordetella pertussis. Submitted for publication. 1994.

    Google Scholar 

  68. Uhl MA, Miller JF. Autophosphorylation and phosphotransfer in the Bordetella pertussis BvgAS signal transduction cascade. Proc Natl Acad Sci USA 1994; 91: 1163–1167.

    Article  CAS  PubMed  Google Scholar 

  69. Iuchi S. Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J Biol Chem 1993; 268: 2397223980.

    Google Scholar 

  70. Kalman LV, Gunsalus RP. Nitrate-and molybdenum-independent signal transduction mutations in narX that alter regulation of anaerobic respiratory genes in Escherichia coli. J Bacteriol 1990; 172: 7049–7056.

    CAS  PubMed  Google Scholar 

  71. Collins LA, Egan SM, Stewart V. Mutational analysis reveals functional similarity between NarX, a nitrate sensor in Escherichia coli K-12, and the methyl-accepting chemotaxis proteins. J Bacteriol 1992; 174: 3667–3675.

    CAS  PubMed  Google Scholar 

  72. Ames P, Parkinson JS. Transmembrane signalling by bacterial chemoreceptors: E. coli transducers with locked signal input. Cell 1988; 55: 817–826.

    Article  CAS  PubMed  Google Scholar 

  73. Roy CR, Miller JF, Falkow S. The bvgA gene of Bordetella pertussis encodes a transcriptional activator required for coordinate regulation of several virulence genes. J Bacteriol 1989; 171: 6338–6344.

    CAS  PubMed  Google Scholar 

  74. Boucher PE, Menozzi FD, Locht C. The modular architecture of bacterial response regulators: insights into the activation mechanism of the BvgA transactivator of Bordetella pertussis. J Mol Biol 1994; 241–377.

    Google Scholar 

  75. Swanson RV, Bourret RB, Melvin I. Simon. Intermolecular complementation of the kinase activity of CheA. Mol Microbiol 1993; 8: 435–441.

    Article  CAS  PubMed  Google Scholar 

  76. Yang Y, Inouye M. Requirement of both kinase and phosphatase activities of an Escherichia coli receptor (Taz1) for ligands-dependent signal transduction. 1993; 231: 335–342.

    CAS  Google Scholar 

  77. Genger JA, Dahlquist FW. Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc Natl Acad Sci USA 1991; 88: 750–754.

    Article  Google Scholar 

  78. Pan SQ, Charles T, Jin S et al. Preformed dimeric state of the sensor protein VirA is involved in plant-Agrobacterium signal transduction. Proc Natl Acad Sci USA 1993; 90: 9939–9943.

    Article  CAS  PubMed  Google Scholar 

  79. Scarlato V, Prugnola A, Arica B et al. Positive transcriptional feedback at the bvg locus controls expression of virulence factors in Bordetella pertussis. Proc Natl Acad Sci USA 1990; 87: 6753–6757.

    Article  CAS  PubMed  Google Scholar 

  80. Arid B, Rappuoli R. Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J Bacteriol 1987; 169: 2847–2853.

    Google Scholar 

  81. Kloos WE, Mohapatra N, Dobrogosz WJ et al. Deoxyribonucleotide sequence relationships among Bordetella species. Int J Syst Bacteriol 1981; 31: 173–176.

    Article  Google Scholar 

  82. Musser JM, Hewlett EL, Peppier MS et al. Genetic diversity and relationships in populations of Bordetella spp. J Bacteriol 1986; 166: 230–237.

    CAS  PubMed  Google Scholar 

  83. Gentry-Weeks CR, Provence DL, J. M. Keith JM et al. Isolation and characterization of Bordetella avium phase variants. Infect Immun 1991; 59: 4026–4033.

    CAS  PubMed  Google Scholar 

  84. Akerley BJ, Monack DM, Falkow S et al. Role of the bvgAS locus in negative control of motility and flagella synthesis by Bordetella bronchiseptica. J Bacteriol 1992; 174: 980–990.

    CAS  PubMed  Google Scholar 

  85. Monack DM, Arid) B, Rappuoli R et al. Phase variants of Bordetella bronchiseptica arise by spontaneous deletions in the vir locus. Mol Microbiol 1989; 3: 1719–1728.

    Article  CAS  PubMed  Google Scholar 

  86. Weiss AA, Hewlett EL. Virulence factors of Bordetella pertussis. Ann Rev Microbiol 1986; 40: 661–686.

    Article  CAS  Google Scholar 

  87. Charles IG, Dougan G, Pickard D et al. Molecular cloning and characterization of protective outer membrane protein P.69 from Bordetella pertussis. Proc Natl Acad Sci USA 1989; 86: 3554–3558.

    Article  CAS  PubMed  Google Scholar 

  88. Stibitz S, Weiss AA, Falkow S. Genetic analysis of a region of the Bordetella pertussis chromosome encoding filamentous hemagglutinin and the pleiotropic regulatory locus vir. J Bacteriol 1988; 170: 2904–2913.

    CAS  PubMed  Google Scholar 

  89. Roy CR, Miller JF, Falkow S. Autogenous regulation of the Bordetella pertussis bvgABC operon. Proc Natl Acad Sci USA 1990; 87: 3763–3767.

    Article  CAS  PubMed  Google Scholar 

  90. Roy CR, Falkow S. Identification of Bordetella pertussis regulatory sequences required for transcriptional activation of the fhaB gene and autoregulation of the bvgAS operon. J Bacteriol 1991; 173: 2385–2392.

    CAS  PubMed  Google Scholar 

  91. Miller JF, Roy CR, Falkow S. Regulation of fhaB, bvg and ptx transcription in E. coli: A comparative analysis. In Manclark CR ed: Proceedings of the Sixth International Symposium on Pertussis. Dept. of Health and Human Services, Bethesda, MD. pp 217–224.

    Google Scholar 

  92. Locht C, Keith JM. Pertussis toxin gene: nucleotide sequence and genetic organization. Science 1986; 232: 1258–1264.

    Article  CAS  PubMed  Google Scholar 

  93. Nicosia A, Perugini M, Franzini C et al. Cloning and sequencing of the pertussis toxin genes: operon structure and gene duplication. Proc Natl Acad Sci USA 1986; 83: 4631–4635.

    Article  CAS  PubMed  Google Scholar 

  94. Gross R, Rappuoli R. Positive regulation of pertussis toxin expression. Proc Natl Acad Sci USA 1988; 85: 3913–3917.

    Article  CAS  PubMed  Google Scholar 

  95. Gross R, Carbonetti NH, Rossi R et al. Functional analysis of the pertussis toxin promoter. Res Microbiol 1992; 143: 67 1681.

    Google Scholar 

  96. Carbonetti NH, Patamawenu A, Irish T et al. Differential regulation of virulence factor gene expression in Bordetella pertussis: effects of overexpression of RNA polymerase a subunit. American Society for Microbiology 93rd General Meeting, 1994; Abstract 1224.

    Google Scholar 

  97. Carbonetti NH, Khelef N, Guiso N, Gross R. A phase variant of Bordetella pertussis with a mutation in a new locus involved in the regulation of pertussis toxin and adenylate cyclase toxin expression. J Bacteriol 1993; 175: 6679–6688.

    CAS  PubMed  Google Scholar 

  98. Scarlato V, Arica B, Prugnola A et al. DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro. J Bacteriol 1993; 175: 4764–4771.

    CAS  PubMed  Google Scholar 

  99. Glaser P, Sakamoto H, Bellalou J et al. Secretion of cyclolysin, the calmodulinsensitive adenylate cyclase-hemolysin bifunctional protein of Bordetella pertussis. EMBO J 1988; 7: 3997–4004.

    CAS  PubMed  Google Scholar 

  100. Barry EM, Weiss AA, Ehrmann IE et al. Bordetella pertussis adenylate cyclase toxin and hemolytic activities require a second gene, cyaA, for activation. J Bacteriol 1991; 173: 720–726.

    CAS  PubMed  Google Scholar 

  101. Laoide BM, Ullmann A. Virulence dependent and independent regulation of the Bordetella pertussis rya operon. EMBO J 1990; 9: 999–1005.

    CAS  PubMed  Google Scholar 

  102. Goyard S, Ullmann A. Analysis of Bordetella pertussis cya operon regulation by use of cya-lac fusions. FEMS Microbiol Lett 1991; 77: 251–256.

    Article  CAS  Google Scholar 

  103. Livey I, Duggleby CJ, Robinson A. Cloning and nucleotide sequence analysis of the serotype 2 fimbrial subunit gene of Bordetella pertussis. Mol Microbiol 1987; 1: 203–209.

    Article  CAS  PubMed  Google Scholar 

  104. Mooi FR, ter Avest A, van der Heide HGJ. Structure of the Bordetella pertussis gene encoding for the serotype 3 fimbrial subunit. FEMS Microbiol Lett 1990; 66: 327–332.

    Article  CAS  Google Scholar 

  105. Willems RJL, van der Heide HGJ, Mooi F. Characterization of a Bordetella pertussis fimbrial gene cluster which is located directly downstream of the filamentous hemagglutinin gene. Mol Microbiol 1992; 6: 2661–2671.

    Article  CAS  PubMed  Google Scholar 

  106. Willems R, Paul A, van der Heide HGJ et al. Fimbrial phase variation in Bordetella pertussis: a novel mechanism for transcriptional regulation. EMBO J 1990; 9: 2803–2809.

    CAS  PubMed  Google Scholar 

  107. Scarlato V, Arid) B, Prugnola A et al. Sequential activation and environmental regulation of virulence genes in Bordetella pertussis. EMBO J 1991; 10: 3971–3975.

    CAS  PubMed  Google Scholar 

  108. Rappuoli R, Arica B, Scarlato V. Thermoregulation and reversible differentiation in Bordetella: a model for pathogenic bacteria. Mol Microbiol 1993; 6: 2209–2211.

    Article  Google Scholar 

  109. Melton AR, Weiss AA. Characterization of environmental regulators of Bordetella pertussis. Infect Immun 1993; 61: 807–815.

    CAS  PubMed  Google Scholar 

  110. Weiss AA, Melton AR, Walker KE et al. Use of the promoter fusion transposon Tn5lac to identify mutations in Bordetella pertussis vir-regulated genes. 1989; 57: 2674–2682.

    CAS  Google Scholar 

  111. Beattie DT, Mahan MJ, Mekalanos JJ. Repressor binding to a regulatory site in the DNA coding sequence is sufficient to confer transcriptional regulation of the vir-repressed genes (vrg genes) in Bordetella pertussis. J Bacteriol 1993; 175: 519–527.

    CAS  PubMed  Google Scholar 

  112. Akerley BJ, Cotter PA, Miller JF. Ectopic expression of the flagellar regulon alters the development of the Bordetella-host interaction. Cell 1995; 80: 611–620.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cotter, P.A., Akerley, B.J., Miller, J.F. (1995). BvgAS Dependent Phenotypic Modulation of Bordetella Species. In: Signal Transduction and Bacterial Virulence. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22406-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22406-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22408-3

  • Online ISBN: 978-3-662-22406-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics