Shiga Toxin

  • Marie E. Fraser
  • Maia M. Chernaia
  • Yuri V. Kozlov
  • Michael N. G. James
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Shiga toxin is named after Kiyoshi Shiga who described the bacterium Shigella dysenteriae type 1 in the wake of the 1896 dysentery epidemic in Japan.1 This bacterium produces a protein toxin, the Shiga toxin. (See ref. 2 for a review.) Certain enterohemorrhagic strains of Escherichia coli produce very similar cytotoxins and these are named Shiga-like toxins (SLTs). S. dysenteriae causes the severe form of dysentery and the strains of E. coli which produce SLTs have been associated with hemorrhagic colitis and the hemolytic uremic syndrome (“hamburger disease”) in humans.3,4 Although the role of Shiga toxin or the Shiga-like toxins in the pathogenesis of S. dysenteriae or E. coli is not fully understood, the toxin is known to be important in causing the symptoms of these respective diseases.


Cholera Toxin Hemolytic Uremic Syndrome Disulfide Bridge Pertussis Toxin Shiga Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shiga K. Über den Dysenterie-bacillus (Bacillus dysenteriae). Zentralbl Bakteriol Orig 1898; 24: 913–18.Google Scholar
  2. 2.
    O’Brien AD, Tesh VL, Donohue-Rolfe A et al. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Topics in Microbiol Immunol 1992; 180: 65–94.CrossRefGoogle Scholar
  3. 3.
    Karmali MA, Petric M, Lim C et al. The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. J Infect Dis 1985; 151: 775–82.PubMedCrossRefGoogle Scholar
  4. 4.
    Strockbine NA, Marques LRM, Newland JW et al. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun 1986; 53: 135–40.PubMedGoogle Scholar
  5. 5.
    Donohue-Rolfe A, Keusch GT, Edson C et al. Pathogenesis of Shigella diarrhea. IX. Simplified high yield purification of Shigella toxin and characterization of subunit composition and function by the use of subunit-specific monoclonal and polyclonal antibodies. J Exp Med 1984; 160: 1767–81.PubMedCrossRefGoogle Scholar
  6. 6.
    Tamura M, Nogimori K, Murai S et al. Subunit structure of islet-activating protein, pertussis toxin, in conformity with the A-B model. Biochemistry 1982; 21: 5516–22.PubMedCrossRefGoogle Scholar
  7. 7.
    Seidah NG, Donohue-Rolfe A, Lazure C et al. Complete amino acid sequence of Shigella toxin B-chain. J Biol Chem 1986; 261: 13928–31.PubMedGoogle Scholar
  8. 8.
    Jacewicz M, Clausen H, Nudelman E et al. Pathogenesis of Shigella diarrhea. XI. Isolation of a Shigella toxin-binding glycolipid from rabbit jejunum and HeLa cells and its identification as globotriosylceramide. J Exp Med 1986; 163: 1391–404.PubMedCrossRefGoogle Scholar
  9. 9.
    Lindberg AA, Brown JE, Stroemberg N et al. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 1987; 262: 1779–85.PubMedGoogle Scholar
  10. 10.
    Kozlov Y, Kabishev A, Fedchenko V et al. Cloning and sequencing of Shiga-toxin structural genes. Proc Acad Sci USSR 1987; 295: 740–44.Google Scholar
  11. 11.
    Kozlov YV, Kabishev AA, Lukyanov EV et al. The primary structure of the operons coding for Shigella dysenteriae toxin and temperate phage H30 Shiga-like toxin. Gene 1988; 67: 213–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Olsnes S, Reisbig R, Eiklid K. Subunit structure of Shigella cytotoxin. J Biol Chem 1981; 256: 8732–38.PubMedGoogle Scholar
  13. 13.
    Reisbig R, Olsnes S, Eiklid K. The cytotoxic activity of Shigella toxin. Evidence for catalytic inactivation of the 60S ribosomal subunit. J Biol Chem 1981; 256: 8739–44.PubMedGoogle Scholar
  14. 14.
    Endo Y, Tsurugi K, Yutsudo T et al. Site of action of Vero toxin (VT2) from Escherichia coli O157:H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. Eur J Biochem 1988; 171: 45–50.PubMedCrossRefGoogle Scholar
  15. 15.
    Obrig TG, Moran TP, Brown JE. The mode of action of Shiga toxin on peptide elongation of eukaryotic protein synthesis. Biochem J 1987; 244: 287–94.PubMedGoogle Scholar
  16. 16.
    Sandvig K, van Deurs B. Endocytosis and intracellular sorting of ricin and Shiga toxin. FEBS Lett 1994; 346: 99–102.PubMedCrossRefGoogle Scholar
  17. 17.
    Sandvig K, Olsnes S, Brown JE et al. Endocytosis from coated pits of Shiga toxin: a glycolipid-binding protein from Shigella dysenteriae 1. J Cell Biol 1989; 108: 1331–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Sandvig K, Prydz K, Ryd M et al. Endocytosis and intracellular transport of the glycolipid-binding ligand Shiga toxin in polarized MDCK cells. J Cell Biol 1991; 113: 553–62.PubMedCrossRefGoogle Scholar
  19. 19.
    Sandvig K, Garred 0, Prydz K et al. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum. Nature 1992; 358: 510–12.PubMedCrossRefGoogle Scholar
  20. 20.
    Stein PE, Boodhoo A, Tyrrell GJ et al. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 1992; 355: 748–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Konowalchuk J, Speirs JI, Stavric S. Vero response to a cytotoxin of Escherichia coli. Infection and Immunity 1977; 18: 775–79.PubMedGoogle Scholar
  22. 22.
    St. Hilaire PM, Boyd MK, Toone EJ. Interaction of the Shiga-like toxin type 1 B-subunit with its carbohydrate receptor. Biochemistry 1994; 33: 14452–63.Google Scholar
  23. 23.
    Donohue-Rolfe A, Jacewicz M, Keusch GT. Isolation and characterization of functional Shiga toxin subunits and renatured holotoxin. Mol Microbiol 1989; 3: 1231–36.PubMedCrossRefGoogle Scholar
  24. 24.
    Merritt EA, Hol WGJ. AB5 toxins. Curr Opinion in Structural Biology 1995; 5: 165–71.CrossRefGoogle Scholar
  25. 25.
    Murzin AG. OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 1993; 12: 861–67.PubMedGoogle Scholar
  26. 26.
    Murzin AG, Brenner SE, Hubbard T et al. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 1995; 247: 536–40.PubMedGoogle Scholar
  27. 27.
    Stein PE, Boodhoo A, Armstrong GD et al. The crystal structure of pertussis toxin. Structure 1994; 2: 45–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Sixma TK, Pronk SE, Kalk KH et al. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 1992; 355: 561–64.PubMedCrossRefGoogle Scholar
  29. 29.
    Sixma TK, Stein PE, Hol WGJ et al. Comparison of the B-pentamers of heat-labile enterotoxin and verotoxin-1: two structures with remarkable similarity and dissimilarity. Biochemistry 1993; 32: 191–98.PubMedCrossRefGoogle Scholar
  30. 30.
    Sixma TK, Pronk SE, Kalk KH et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 1991; 351: 371–77.PubMedCrossRefGoogle Scholar
  31. 31.
    Sixma TK, Aguirre A, van Scheltinga ACT et al. Heat-labile enterotoxin crystal forms with variable A/B5 orientation. Analysis of conformational flexibility. FEBS Lett 1992; 305: 81–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Mlsna D, Monzingo AF, Katzin BJ et al. Structure of recombinant ricin A chain at 2.3 A. Prot Sci 1993; 2: 429–35.CrossRefGoogle Scholar
  33. 33.
    Xiong JP, Xia ZX, Wang Y. Crystal structure of trichosanthin-NADPH at 1.7 A resolution reveals active-site architecture. Nature Struct Biol 1994; 1: 695–700.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhou K, Fu Z, Chen M et al. Structure of trichosanthin at 1.88 A resolution. Proteins 1994; 19: 4–13.PubMedCrossRefGoogle Scholar
  35. 35.
    Ren J, Wang Y, Dong Y et al. The N-glycosidase mechanism of ribosome-inactivating proteins implied by crystal structures of u-momorcharin. Structure 1994; 2: 7–16.PubMedCrossRefGoogle Scholar
  36. 36.
    Monzingo AF, Collins EJ, Ernst SR et al. The 2.5 A structure of pokeweed antiviral protein. J Mol Biol 1993; 233: 705–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Ago H, Kataoka J, Tsuge H et al. X-ray structure of a pokeweed antiviral protein, coded by a new genomic clone, at 0.23 nm resolution. Eur J Biochem 1994; 225: 369–74.PubMedCrossRefGoogle Scholar
  38. 38.
    Hosur MV, Nair B, Satyamurthy P et al. X-ray structure of gelonin at 1.8 A resolution. J Mol Biol 1995; 250: 368–80.PubMedCrossRefGoogle Scholar
  39. 39.
    Monzingo AF, Robertus JD. X-ray analysis of substrate analogs in the ricin A-chain active site. J Mol Biol 1992; 227: 1136–45.PubMedCrossRefGoogle Scholar
  40. 40.
    Mekalanos JJ, Collier RJ, Romig WR. Enzymic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 1979; 254: 5855–61.PubMedGoogle Scholar
  41. 41.
    Moss J, Osborne JC Jr., Fishman PH et al. Escherichia coli heat-labile enterotoxin. Ganglioside specificity and ADP-ribosyltransferase activity. J Biol Chem 1981; 256: 12861–65.PubMedGoogle Scholar
  42. 42.
    Moss J, Stanley SJ, Vaughan M et al. Interaction of ADP-ribosylation factor with Escherichia coli enterotoxin that contains an inactivating lysine 112 substitution. J Biol Chem 1993; 268: 6383–87.PubMedGoogle Scholar
  43. 43.
    Merritt EA, Pronk S, Sixma TK et al. Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6 A resolution. FEBS Lett 1994; 337: 88–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 1983; 22: 2577–637.PubMedCrossRefGoogle Scholar
  45. 45.
    Fraser ME, Chernaia MM, Kozlov YV et al. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nature Struct Biol 1994; 1: 59–64.PubMedCrossRefGoogle Scholar
  46. 46.
    Kraulis PJ. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 1991; 24: 946–50.CrossRefGoogle Scholar
  47. 47.
    Jones TA, Zou JY, Cowan SW et al. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Cryst 1991; A47: 110–19.CrossRefGoogle Scholar
  48. 48.
    Jones TA, Kjeldgaard M. O-the manual (version 5.10.1) Uppsala, Sweden. 1995; 1–152.Google Scholar
  49. 49.
    SUPPOS is from the BIOMOL package Gröningen, Holland.Google Scholar
  50. 50.
    Rossmann MG, Blow DM. The detection of sub-units within the crystallographic asymmetric unit. Acta Cryst 1962; 15: 24–31.CrossRefGoogle Scholar
  51. 51.
    Arnone A, Bier CJ, Cotton FA et al. A high resolution structure of an inhibitor complex of the extracellular nuclease of Staphylococcus aureus I. Experimental procedures and chain tracing. J Biol Chem 1971; 246: 2302–16.PubMedGoogle Scholar
  52. 52.
    Prasad GS, Earhart CA, Murray DL et al. Structure of toxic shock syndrome toxin 1. Biochemistry 1993; 32: 13761–66.PubMedCrossRefGoogle Scholar
  53. 53.
    Swaminathan S, Furey W, Pletcher J et al. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 1992; 359: 801–06.PubMedCrossRefGoogle Scholar
  54. 54.
    Schad EM, Zaitseva I, Zaitsev VN et al. Crystal structure of the super-antigen staphylococcal enterotoxin type A. EMBO J 1995; 14: 3292–301.PubMedGoogle Scholar
  55. 55.
    Ruff M, Krishnaswamy S, Boeglin M et al. Class II aminoacyl transfer RNA synthetases:crystal structure of yeast aspartyl-tRNA synthetse complexed with tRNA Asp. Science 1991; 252: 1682.PubMedCrossRefGoogle Scholar
  56. 56.
    Delarue M, Poterszman A, Nikonov S et al. Crystal structure of a prokaryotic aspartyl tRNA-synthetase. EMBO J 1994; 13: 3219–29.PubMedGoogle Scholar
  57. 57.
    Cavarelli J, Eriani G, Rees B et al. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J 1994; 13: 327–37.PubMedGoogle Scholar
  58. 58.
    Onesti S, Miller AD, Brick P. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. Structure 1995; 3: 163–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Williamson RA, Martorell G, Carr MD et al. Solution structure of the active domain of tissue inhibitor of metalloproteinases-2. A new member of the OB fold protein family. Biochemistry 1994; 33: 11745–59.PubMedCrossRefGoogle Scholar
  60. 60.
    Arutiunian EG, Terzian SS, Voronova AA et al. X-ray diffraction study of inorganic pyrophosphatase from Baker’s yeast at the 3 A resolution (Russian). Dokl Akad Nauk SSSR 1981; 258: 1481.Google Scholar
  61. 61.
    Oganessyan VY, Kurilova SA, Vorobyeva NN et al. X-ray crystallographic studies of recombinant inorganic pyrophosphatase from Escherichia coli. FEBS Lett 1994; 348: 301–04.PubMedCrossRefGoogle Scholar
  62. 62.
    Teplyakov A, Obmolova G, Wilson KS et al. Crystal structure of inorganic pyrophosphatase from Thermus thermophilus. Prot Sci 1994; 3: 1098–107.CrossRefGoogle Scholar
  63. 63.
    Bernstein FC, Koetzle TF, Williams GJB et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol 1977; 112: 535–42.PubMedCrossRefGoogle Scholar
  64. 64.
    Abola EE, Bernstein FC, Bryant SH et al. Protein Data Bank. In: Allen, FH, Bergerhoff, G, Sievers, R, eds. Crystallographic databases-information content, software systems, scientific applications. Bonn/Cambridge/ Chester: Data Commission of the International Union of Crystallography, 1987; 107–32.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Marie E. Fraser
  • Maia M. Chernaia
  • Yuri V. Kozlov
  • Michael N. G. James

There are no affiliations available

Personalised recommendations