Skip to main content

The Cholera Family of Enterotoxins

  • Chapter
Protein Toxin Structure

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Cholera continues to plague developing nations which lack the sanitary facilities to prevent bacterial contamination of food and water supplies.1,2 Seven pandemics have been recorded since 1817 with current major outbreaks in South America and Asia.3 Untreated, the profuse diarrhea characteristic of the classical form of cholera rapidly leads to dehydration and hypovolemic shock.4 Antibiotics are of secondary importance to fluid therapy in the short-term management of infected patients. Efforts to prevent the spread of cholera focus on improving sanitation, protecting water supplies, and developing effective vaccines. Current vaccines, using either purified toxin or peptide epitopes, have failed to provide long-term immunity.5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass RI, Libel M, Brandling-Bennett AD. Epidemic cholera in the Americas. Science 1992; 256: 1524–25.

    Article  PubMed  CAS  Google Scholar 

  2. Morris JG Jr, Black RE. Cholera and other vibrioses in the United States. New Engl J Med 1985; 312: 343–50.

    Article  PubMed  Google Scholar 

  3. Finkelstein RA. Combating epidemic cholera. Science 1992; 257: 852.

    Article  Google Scholar 

  4. Field M, Rao MC, Chang EB. Intestinal electrolyte and diarrheal disease. New Engl J Med 1989; 321: 879–83.

    Article  PubMed  CAS  Google Scholar 

  5. Mekalanos JJ, Sadoff JC. Cholera vaccines: fighting an ancient scourge. Science 1994; 265: 1387–89.

    Article  PubMed  CAS  Google Scholar 

  6. De SN. Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 1959; 183: 1533–34.

    Article  PubMed  CAS  Google Scholar 

  7. Finkelstein RA, Cholera, the cholera enterotoxins, and the cholera enterotoxin-related enterotoxin family. In: Owen P, Foster TJ, eds. Immunochemical and Molecular Genetic Analysis of Bacterial Pathogens, New York: Elsevier Science Publishers, 1988: 85–102.

    Google Scholar 

  8. Fishman PH. Mechanism of action of cholera toxin. In: Moss J, Vaughan M, eds. ADP-Ribosylating Toxins and G Proteins: Insights into Signal Transduction. 1990: 127–40.

    Google Scholar 

  9. Burnette WN. AB5 ADP-ribosylating toxins: comparative anatomy and physiology. Structure 1994; 2: 151–58.

    Article  PubMed  CAS  Google Scholar 

  10. Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Reviews 1992; 56: 622–47.

    CAS  Google Scholar 

  11. Foster JW, Kinney DM. ADP-ribosylating microbial toxins. CRC Critical Review in Microbiology 1985; 11: 273–98.

    Article  CAS  Google Scholar 

  12. Passador L, Iglewski W. ADP-ribosylating toxins. Methods in Enzymology 1994; 235: 617–31.

    Article  PubMed  CAS  Google Scholar 

  13. Kassis S, Hagmann J, Fishman PH. Mechanism of action of cholera toxin on intact cells. Generation of Al peptide and activation of adenylate cyclase. J Biol Chem 1982; 257: 12148–52.

    PubMed  CAS  Google Scholar 

  14. Brunton JL. The shiga toxin family: molecular nature and possible role in disease. In Iglewski B, Clark U, eds. The Bacteria. Vol. 11. New York: Academic Press, 1990: 377–97.

    Chapter  Google Scholar 

  15. O’Brien AD, Holmes RK. Shiga and shiga-like toxins. Microbiol Rev 1987; 51: 206–20.

    PubMed  Google Scholar 

  16. Cassel D, Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci USA 1978; 75: 2669–73.

    Article  PubMed  CAS  Google Scholar 

  17. Janicot M, Fougue F, Desbuqois B. Activation of rat liver adenylate cyclase by cholera toxin requires toxin internalization and processing in endosomes. J Biol Chem 1991; 266: 12858–65.

    PubMed  CAS  Google Scholar 

  18. Hansson H-A, Holmgren J, Svennerholm L. Ultrastructural localization of cell membrane GM, ganglioside by cholera toxin. Proc Natl Acad Sci USA 1977; 74: 3782–86.

    Article  PubMed  CAS  Google Scholar 

  19. Critchley DR, Magnani JL, Fishman PH. Interactions of cholera toxin with rat intestinal brush border membranes. J Biol Chem 1981; 256: 8724–31.

    PubMed  CAS  Google Scholar 

  20. Hardy SJS, Holmgren J, Johansson S et al. Coordinated assembly of multisubunit proteins: oligomerization of bacterial enterotoxins in vivo and in vitro. Proc Natl Acad Sci USA 1988; 85: 7109–13.

    Article  PubMed  CAS  Google Scholar 

  21. Mekalanos JJ, Collier RJ, Romig WR. Enzymatic activity of cholera toxin. II. Relationships to proteolytic processing, disulfide bond reduction, and subunit composition. J Biol Chem 1979; 254: 5855–61.

    PubMed  CAS  Google Scholar 

  22. Tomasi M, Battistini A, Araco A et al. The role of the reactive disulfide bond in the interaction of cholera toxin functional regions. Eur J Biochem 1979; 93: 621–27.

    Article  PubMed  CAS  Google Scholar 

  23. Gill DM, Coburn J. ADP-ribosylation by cholera toxin: Functional analysis of a cellular system that stimulates the enzymic activity of cholera toxin fragment Al. Biochemistry 1987; 26: 6364–71.

    Article  PubMed  CAS  Google Scholar 

  24. Gill DM, King CA. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem 1975; 250: 6424–32.

    PubMed  CAS  Google Scholar 

  25. Kahn RA, Gilman AG. Purification of a protein cofactor required for ADP-ribosylation of the stimulatory regulatory component of adenylate cyclase by cholera toxin. J Biol Chem 1984; 259: 6228–34.

    PubMed  CAS  Google Scholar 

  26. Lee C-M, Chang PP, Tsai S-C et al. Activation of heat-labile enterotoxins by native and recombinant adenosine diphosphate-ribosylation factors, 20 kD guanine nucleotide-binding proteins. J Clin Invest 1991; 87: 1780–86.

    Article  PubMed  CAS  Google Scholar 

  27. Moss J, Tsai SC, Vaughan M. Activation of cholera toxin by ADP-ribosylation factors. Methods in Enzymology 1994; 235: 640–47.

    Article  PubMed  CAS  Google Scholar 

  28. Moss J, Vaughan M. ADP-ribosylation of guanyl nucleotide-binding regulatory proteins by bacterial toxins. Adv Enzymology 1988; 61: 303–79.

    CAS  Google Scholar 

  29. Moss J, Vaughan M. Activation of cholera toxin and Escherichia coli heat-labile enterotoxins by ADP-ribosylation factors, a family of 20 kDa guanine nucleotide-binding proteins. Mol Microbiol 1991; 5: 2621–27.

    Article  PubMed  CAS  Google Scholar 

  30. Peterson WJ, Ochoa LG. Role of prostaglandins and cAMP in the secretory effects of cholera toxin. Science 1989; 245: 857–59.

    Article  PubMed  CAS  Google Scholar 

  31. Zhang R-G, Westbrook ML, Westbrook EM et al. The three-dimensional structure of cholera toxin. J Mol Biol 1995; 251: 563–73.

    Article  PubMed  CAS  Google Scholar 

  32. Zhang R-G, Maulik PR, Westbrook EM et al. The 2.4 A crystal structure of the cholera toxin B subunit pentamer: choleragenoid. J Mol Biol 1995; 251: 550–62.

    Article  PubMed  CAS  Google Scholar 

  33. Sixma TK, Pronk SE, Kalk KH et al. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 1991; 351: 371–78.

    Article  PubMed  CAS  Google Scholar 

  34. Sixma TK, Kalk KH, van Zanten BAM et al. Refined crystal structure of Escherichia coli heat-labile enterotoxin, a close relative of cholera toxin. J Mol Biol 1993; 230: 890–918.

    Article  PubMed  CAS  Google Scholar 

  35. Wick MJ, Frank DW, Storey DG et al. Structure, function, and regulation of Pseudomonas aeruginosa exotoxin A. Ann Rev Microbiol 1990; 44: 335–63.

    Article  CAS  Google Scholar 

  36. Allured, VS, Collier RJ, Carroll SF et al. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0 A resolution. Proc Natl Acad Sci USA 1986; 83: 1320–24.

    Article  PubMed  CAS  Google Scholar 

  37. Stein PE, Boodhoo A, Tyrell GJ et al. Crystal structure of the cell-binding B oligomer of verotoxin-1 from E. coli. Nature 1992; 355: 748–50.

    Article  PubMed  CAS  Google Scholar 

  38. Choe S, Bennett MJ, Fujii G et al. The crystal structure of diphtheria toxin. Nature 1992; 357: 216–22.

    Article  PubMed  CAS  Google Scholar 

  39. Fraser ME, Chernaia MM, Kozlov YV et al. Crystal structure of the holotoxin from Shigella dysenteriae at 2.5 A resolution. Nature Structural Biology 1994; 1: 59–64.

    Article  PubMed  CAS  Google Scholar 

  40. Stein PE, Boodhoo A, Armstrong GD et al. The crystal structure of pertussis toxin. Structure 1994; 2: 45–57.

    Article  PubMed  CAS  Google Scholar 

  41. Ludwig DS, Ribi HO, Schoolnik GK. Two-dimensional crystals of cholera toxin B-subunit-receptor complexes: Projected structure at 17-A resolution. Proc Natl Acad Sci USA 1986; 83: 8585–88.

    Google Scholar 

  42. Mosser G, Mallouh V, Brisson A. A 9 A two-dimensional projected structure of cholera toxin B-subunit-GM1 complex determined by electron crystallography. J Mol Biol 1992; 226: 23–28.

    Article  PubMed  CAS  Google Scholar 

  43. Yang J, Tamm LK, Tillack TW et al. New approach for atomic force microscopy of membrane proteins. The imaging of cholera toxin. J Mol Biol 1993; 229: 286–90.

    Article  PubMed  CAS  Google Scholar 

  44. Schon A, Freire E. Thermodynamics of intersubunit interactions in cholera toxin upon binding to the oligosaccharide portion of its cell-surface receptor, ganglioside GM1. Biochemistry 1989; 28: 5019–24.

    Article  PubMed  CAS  Google Scholar 

  45. Surewicz WK, Leddy JJ, Mantsch HH. Structure, stability and receptor interaction of cholera toxin as studied by Fourier-transform infrared spectroscopy. Biochemistry 1990; 29: 8106–111.

    Article  PubMed  CAS  Google Scholar 

  46. Dallas WS, Falkow S. Amino acid sequence homology between cholera toxin and Escherichia coli heat-labile toxin. Nature 1980; 288: 499–501.

    Article  PubMed  CAS  Google Scholar 

  47. Sixma TK, Pronk SE, Kalk KH et al. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 1992; 355: 561–64.

    Article  PubMed  CAS  Google Scholar 

  48. Sixma TK, Stein PE, Hol WGJ. Comparison of the B pentamers of heat-labile enterotoxin and verotoxin 1: Two structures with remarkable similarity and dissimilarity. Biochemistry 1993; 32: 191–98.

    Article  PubMed  CAS  Google Scholar 

  49. Galloway TS, vâa Heyningen S. Binding of NAD’ by cholera toxin. Biochem J 1987; 244: 225–30.

    PubMed  CAS  Google Scholar 

  50. Murzin AG. OB (oligonucleotide/oligosaccharide-binding) fold: common structural and functional solution for nonhomologous sequences. EMBO J 1993; 12: 861–67.

    PubMed  CAS  Google Scholar 

  51. Donta ST, Poindexter NJ, Ginsberg BH. Comparison of the binding of cholera and Escherichia coli enterotoxins to Yl adrenal cells. Biochemistry 1982; 21: 660–64.

    Article  PubMed  CAS  Google Scholar 

  52. Fishman PH, Pacuszka T, Orlandi PA. Gangliosides as receptors for bacterial enterotoxins. Advances in Lipid Research 1993; 25: 165–87.

    PubMed  CAS  Google Scholar 

  53. Holmgren J, Fredman P, Lindbald M et al. Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect Immun 1982; 38: 424–33.

    PubMed  CAS  Google Scholar 

  54. Fukuta S, Magnani JL, Twiddy EM et al. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-1, LT-IIa, and LT-IIb. Infect Immun 1988; 56: 1748–53.

    PubMed  CAS  Google Scholar 

  55. Presta LG, Rose GD. Helix signals in proteins. Science 1988; 240: 1632–41.

    Article  PubMed  CAS  Google Scholar 

  56. De Wolf MJS, Fridkin M, Kohn LD. Tryptophan residues of cholera toxin and its A and B protomers; intrinsic fluorescence and solute quenching upon interacting with the ganglioside GM1, oligo GM1, or dansylated oligo GM,. J Biol Chem 1981; 256: 5489–96.

    PubMed  Google Scholar 

  57. Merritt EA, Sarfaty S, van den Akker F et al. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 1994; 3: 166–75.

    Article  PubMed  CAS  Google Scholar 

  58. Hirst TR, Holmgren J. Conformation of protein secreted across bacterial outer membranes: A study of enterotoxin translocation from Vibrio cholerae. Proc Natl Acad Sci USA 1987; 84: 7418–22.

    Article  PubMed  CAS  Google Scholar 

  59. Hofstra H, Witholt B. Heat-labile enterotoxin in Escherichia coli. Kinetics of association of subunits into periplasmic holotoxin. J Biol Chem 1985; 260: 16037–44.

    PubMed  CAS  Google Scholar 

  60. De Wolf MJS, Van Dessel GAF, Lagrou AR et al. pH-induced transitions in cholera toxin conformation: a fluorescence study. Biochemistry 1987; 26: 3799–806.

    Article  PubMed  Google Scholar 

  61. Goins B, Freire E. Thermal stability and intersubunit interactions of cholera toxin in solution and in association with its cell-surface receptor ganglioside GMI. Biochemistry 1988; 27: 2046–52.

    Article  PubMed  CAS  Google Scholar 

  62. Streatfield SJ, Sandkvist M, Sixma TK et al. Intermolecular interactions between the A-subunit and B-subunit of heat-labile enterotoxins from Escherichia coli promote holotoxin assembly and stability in vitro. Proc Natl Acad Sci USA 1992; 89: 12140–44.

    Article  PubMed  CAS  Google Scholar 

  63. Bhakuni V, Xie D, Freire E. Thermodynamic identification of stable folding intermediates in the B-subunit of cholera toxin. Biochemistry 1991; 30: 5055–60.

    Article  PubMed  CAS  Google Scholar 

  64. Orlandi PA, Fishman PH. Orientation of cholera toxin bound to target cells. J Biol Chem 1993; 268: 17038–44.

    PubMed  CAS  Google Scholar 

  65. Braig K, Otwinowski Z, Hegde R et al. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 1994; 371: 578–86.

    Article  PubMed  CAS  Google Scholar 

  66. Huber R, Romisch J, Paques E-P. The crystal and molecular structure of human annexin V, an anticoagulant protein that binds to calcium and membranes. EMBO 1990; 9: 3867–74.

    CAS  Google Scholar 

  67. Fishman PH, Moss J, Osborne JC Jr. Interaction of choleragen with the oligosaccharide of ganglioside GM1: Evidence for multiple oligosaccharide binding sites. Biochemistry 1978; 17: 711–16.

    Article  PubMed  CAS  Google Scholar 

  68. Masserini M, Freire E, Palestini P et al. Fuc-GM1 ganglioside mimics the receptor function of GM1 for cholera toxin. Biochemistry 1992; 31: 2422–26.

    Article  PubMed  CAS  Google Scholar 

  69. Sattler J, Schwarzmann G, Knack I et al. Studies of ligand binding to cholera toxin III, cooperativity of oligosaccharide binding. Hoppe-Seyler’s Z Physiol Chem 1978; 359: 719–23.

    PubMed  CAS  Google Scholar 

  70. Jobling MG, Holmes RK. Analysis of structure and function of the B subunit of cholera toxin by the use of site-directed mutagenesis. Mol Microbiol 1991; 5: 175–67.

    Article  Google Scholar 

  71. Saukkonen K, Burnette WN, Mar VL et al. Pertussis toxin has eukaryotic-like carbohydrate recognition domains. Proc Natl Acad Sci USA 1992; 89: 118–22.

    Article  PubMed  CAS  Google Scholar 

  72. Armstrong GD, Howard LA, Peppier MS. Use of glycosyltransferases to restore pertussis toxin receptor activity to asialogalactofetuin. J Biol Chem 1988; 263: 8677–84.

    PubMed  CAS  Google Scholar 

  73. Gill DM. Involvement of nicotinamide adenine nucleotide in the action of cholera toxin in vitro. Proc Natl Acad Sci USA 1975; 72: 2064–68.

    Article  PubMed  CAS  Google Scholar 

  74. Lai C-Y, Xia Q C, Salotra PT. Location and amino acid sequence around the ADP-ribosylation site in the cholera toxin active subunit Al. Biochem Biophys Res Commun 1983; 116: 341–348.

    Article  PubMed  CAS  Google Scholar 

  75. Burnette WN, Mar VL, Plater BW et al. Site-directed mutagenesis of the catalytic subunit of cholera toxin: substituting lysine for arginine 7 causes loss of activity. Infect Immun 1991; 59: 4266–70.

    PubMed  CAS  Google Scholar 

  76. Harford SC, Dykes W, Hobden AN et al. Inactivation of the Escherichia coli heat-labile enterotoxin by in vitro mutagenesis of the A-subunit gene. Eur J Biochem 1989; 183: 311–16.

    Article  PubMed  CAS  Google Scholar 

  77. Domenighini M, Montecucco C, Ripka WC. Computer modeling of the NAD binding site of ADP-ribosylating toxins: active-site structure and mechanism of NAD binding. Mol Microbiol 1991; 5: 23–31.

    Article  PubMed  CAS  Google Scholar 

  78. Merritt EA, Pronk SE, Sixma TK et al. Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6 A resolution. FEBS Letters 1994; 337: 88–92.

    Article  PubMed  CAS  Google Scholar 

  79. Joseph KC, Kim SU, Steiber A et al. Endocytosis of cholera toxin into neuronal GERL. Proc Nati Acad Sci USA 1978; 75: 2815–19.

    Article  CAS  Google Scholar 

  80. Joseph KC, Steiber A, Gonatas NK. Endocytosis of cholera toxin in GERL-like structures of murine neuroblastoma cells pretreated with GM1 ganglioside. J Cell Biol 1979; 81: 543–54.

    Article  PubMed  CAS  Google Scholar 

  81. Lewis MJ, Pelham HRB. A human homologue of the yeast HDEL receptor. Nature 1990; 348: 162–63.

    Article  PubMed  CAS  Google Scholar 

  82. Van Heyningen S. Conformational changes in subunit A of cholera toxin following the binding of ganglioside to subunit B. Eur J Biochem 1982; 122: 333–37.

    Article  PubMed  Google Scholar 

  83. Gill DM. The arrangement of the subunits of cholera toxin. Biochemistry 1976; 15: 1242–48.

    Article  PubMed  CAS  Google Scholar 

  84. Tran D, Carpentier J-L, Sawano F et al. Ligands internalized through coated or noncoated invaginations follow a common intracellular pathway. Proc Natl Acad Sci USA 1987; 84: 7957–61.

    Article  PubMed  CAS  Google Scholar 

  85. Acquotti D, Poppe L, Dabrowski J et al. Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: A rotating and laboratory frame nuclear Overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions. J Am Chem Soc 1990; 112: 7772–78.

    Article  CAS  Google Scholar 

  86. McDaniel RV, McIntosh TJ. X-ray diffraction studies of the cholera toxin receptor, GM,. Biophys J 1986; 49: 94–96.

    Article  PubMed  CAS  Google Scholar 

  87. Thompson TE, Tillack TW. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Ann Rev Biophys Chem 1985; 14: 361–86.

    Article  CAS  Google Scholar 

  88. Reed RA, Mattai J, Shipley GG. Interaction of cholera toxin with ganglioside GM1 receptors in supported lipid monolayers. Biochemistry 1987; 26: 824–32.

    Article  PubMed  CAS  Google Scholar 

  89. Ribi HO, Ludwig DS, Mercer KL et al. Three-dimensional structure of cholera toxin penetrating a lipid membrane. Science 1988; 239: 1272–76.

    Article  PubMed  CAS  Google Scholar 

  90. Wisnieski BJ, Bramhall JS. Photolabelling of cholera toxin subunits during membrane penetration. Nature 1981; 289: 319–21.

    Article  PubMed  CAS  Google Scholar 

  91. Moss J, Richards RL, Alving CR et al. Effect of the A and B protomers of choleragen on release of trapped glucose from liposomes containing or lacking ganglioside GM,. J Biol Chem 1977; 252: 797–98.

    PubMed  CAS  Google Scholar 

  92. Tomasi M, Montecucco C. Lipid insertion of cholera toxin after binding to GM, containing liposomes. J Biol Chem 1981; 256: 11177–81.

    PubMed  CAS  Google Scholar 

  93. Tosteson MD, Tosteson DC. Bilayers containing ganglioside develop channels when exposed to cholera toxin. Nature 1978; 275: 142.

    Article  PubMed  CAS  Google Scholar 

  94. Krasilnikov OV, Muratkhodjaev JN, Voronov SE et al. The ionic channels formed by cholera toxin in planar bilayer lipid membranes are entirely attributable to its B-subunit. Biochim Biophys Acta 1991; 1067: 166–70.

    Article  PubMed  CAS  Google Scholar 

  95. Krasilnikov OV, Sabirov RZ, Ternovsky VI et al. A simple method for the determination of the pore radius of ion channels in planar lipid bi-layer membrane. FEMS Microbiol Immun 1992; 5: 93–100.

    Article  CAS  Google Scholar 

  96. Cabral-Lilly D, Sosinsky GE, Reed RA et al. Orientation of cholera toxin bound to model membranes. Biophys J 1994; 66: 935–41.

    Article  PubMed  CAS  Google Scholar 

  97. Houslay MD, Elliott KRF. Is the receptor-mediated endocytosis of cholera toxin a prerequisite for its activation of adenylate cyclase in intact rat hepatocytes? FEBS Lett 1981; 128: 289–92.

    Article  PubMed  CAS  Google Scholar 

  98. Leong J, Vinal AC, Dallas WS. Nucleotide sequence comparison between heat-labile toxin B subunit cistrons from Escherichia coli of human and porcine origin. Infect Immun 1985; 48: 73–77.

    PubMed  CAS  Google Scholar 

  99. Tsuji T, Honda T, Miwatani T et al. The amino acid sequence of the B-subunit of porcine Escherichia coli enterotoxin. FEMS Microbiol Lett 1984; 25: 243–46.

    CAS  Google Scholar 

  100. Yamamoto T, Yokota T. Sequence of heat-labile enterotoxin of Escherichia coli pathogenic for humans. J Bacteriol 1983; 155: 728–33.

    PubMed  CAS  Google Scholar 

  101. Mekalanos JJ, Swartz DJ, Pearson GDN et al. Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature 1983; 306: 551–57.

    Article  PubMed  CAS  Google Scholar 

  102. Dallas WS. Conformity between heat-labile toxin genes from human and porcine enterotoxigenic Escherichia coli. Infect Immun 1983; 40: 647–52.

    PubMed  CAS  Google Scholar 

  103. Kurosky A, Markel DE, Peterson JW. Covalent structure of the B chain of cholera enterotoxin. J Biol Chem 1977; 252: 7257–64.

    PubMed  CAS  Google Scholar 

  104. Dykes CW, Halliday IJ Hobden AN et al. A comparison of the nucleotide sequence of the A subunit of heat-labile enterotoxin and cholera toxin. FEMS Microbiol Lett 1985; 26: 171–74.

    Google Scholar 

  105. Lockman H, Kaper JB. Nucleotide sequence analysis of the A2 and the B subunits of Vibrio cholerae enterotoxin. J Biol Chem 1983; 258: 13722–26.

    PubMed  CAS  Google Scholar 

  106. Carroll SF, Collier RJ. Active site of Pseudomonas aeruginosa exotoxin A. J Biol Chem 1987; 262: 8707–11.

    PubMed  CAS  Google Scholar 

  107. Douglas CM, Collier RJ. Exotoxin A of Pseudomonas aeruginosa: substitution of glutamic acid 553 with aspartic acid drastically reduces toxicity and enzymatic activity. J Biol Chem 1987; 169: 4967–71.

    CAS  Google Scholar 

  108. Tsuji T, Inoue T, Miyama A et al. Glutamic acid-112 of the A subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli is important for ADP-ribosyltransferase. FEBS Lett 1991; 291: 319–21.

    Article  PubMed  CAS  Google Scholar 

  109. Olsvik O, Wahlberg J, Petterson B. Use of automated sequencing of polymerase chain reaction-generated amplicons to identify three types of cholera toxin subunit B in Vibrio cholerae 01 strains. J Clin Microbiol 1993; 31: 22–25.

    Google Scholar 

  110. Kraulis PJ. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 1991; 24: 946–50.

    Article  Google Scholar 

  111. Richards FM, Kundrot CE. DEFINE_Structure: a program for specification of secondary and first level supersecondary structure from alpha carbon coordinate list. Proteins: Struc Funct Genetics 1988; 3: 71–84.

    Article  CAS  Google Scholar 

  112. Sixma TK, Aguirre A, Terwisscha van Scheltinga AC et al. Heat-labile enterotoxin crystal forms with variable A/B5 orientation. FEBS Lett 1992; 305: 81–85.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scott, D.L., Zhang, RG., Westbrook, E.M. (1996). The Cholera Family of Enterotoxins. In: Protein Toxin Structure. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22352-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22352-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22354-3

  • Online ISBN: 978-3-662-22352-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics