Skip to main content

Structure and Assembly of the Channel-Forming Aeromonas Toxin Aerolysin

  • Chapter
Protein Toxin Structure

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Aeromonas hydrophila is a water-borne Gram-negative bacterium associated with gastroenteritis and opportunistic infections.1 The organism secretes a protein toxin called aerolysin that appears to be a major virulence factor of the bacterium.2 The toxin is synthesized as a preproprotein with a typical signal sequence that is removed during transit across the inner membrane of the Aeromonas bacterium.3 The protoxin then appears to fold and dimerize in the periplasm and leaves the cell in a separate step that requires a group of more than 14 genes of the General Secretory Pathway.4,5

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Altwegg M, Geiss HK. Aeromonas as a human pathogen. CRC Crit Rev Microbiol 1989; 16: 253–86.

    Article  CAS  Google Scholar 

  2. Chakraborty T, Huhle B, Hof H et al. Marker exchange mutagenesis of the aerolysin determinant in Aeromonas hydrophila demonstrates the role of aerolysin in A. hydrophila-associated infections. Infect Immun 1987; 55: 2274–80.

    PubMed  CAS  Google Scholar 

  3. Howard SP, Buckley JT. Protein export by a Gram-negative bacterium: production of aerolysin by Aeromonas hydrophila. J Bacteriol 1985; 161: 1118–24.

    PubMed  CAS  Google Scholar 

  4. Pugsley AP. The complete general secretory pathway in Gram-negative bacteria. Microbiol Rev 1993; 57: 50–108.

    PubMed  CAS  Google Scholar 

  5. Jiang B, Howard SP. The Aeromonas hydrophila exeE gene, required both for protein secretion and normal outer membrane biogenesis, is a member of a general secretion pathway. Molec Microbiol 1992; 6: 1351–61.

    Article  CAS  Google Scholar 

  6. Howard SP, Buckley JT. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry 1982; 21: 1662–67.

    Article  PubMed  CAS  Google Scholar 

  7. Gruber HJ, Wilmsen HU, Cowell S et al. Isolation and reconstitution of the receptor for the hemolytic toxin aerolysin from rat red blood cell membranes. Molec Microbiol 1994; 14: 1093–11.

    Article  CAS  Google Scholar 

  8. Parker MW, Buckley JT, Postma JPM et al. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature 1994; 367: 292–95.

    Article  PubMed  CAS  Google Scholar 

  9. Howard SP, Garland WJ, Green MJ et al. Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila. J Bacteriol 1987; 169: 2869–71.

    CAS  Google Scholar 

  10. Husslein V, Huhle B, Jarchau T et al. Nucleotide sequence and transcriptional analysis of the aerCaerA region of Aeromonas sobria encoding aerolysin and its regulatory region. Molec Microbiol 1988; 2: 507–17.

    Article  CAS  Google Scholar 

  11. Hirono I, Aoki T. Cloning and characterization of three hemolysin genes from Aeromonas salmonicida. Microb Pathog 1993; 15: 269–82.

    Article  PubMed  CAS  Google Scholar 

  12. van der Goot FG, Lakey J, Pattus F et al. Spectroscopic study of the activation and oligomerization of the channel-forming toxin aerolysin: identification of the site of proteolytic activation. Biochemistry 1992; 31: 8566–70.

    Article  PubMed  Google Scholar 

  13. van der Goot FG, Hardie KR, Parker MW et al. The C-terminal peptide produced upon proteolytic activation of the cytolytic toxin aerolysin is not involved in channel formation. J Biol Chem 1994; 269: 30496–501.

    PubMed  Google Scholar 

  14. Bernstein FC, Koetzle TF, Williams GJB et al. The Protein Data Bank: a computer based archival file for macromolecular structures. J Mol Biol 1977; 112: 535–42.

    Article  PubMed  CAS  Google Scholar 

  15. Tucker AD, Parker MW, Tsernoglou D et al. Crystallization of a proform of aerolysin, a hole-forming toxin from Aeromonas hydrophila. J Mol Biol 1990; 212: 561–62.

    Article  CAS  Google Scholar 

  16. van der Goot FG, Ausio J, Wong KR et al. Dimerization stabilizes the pore-forming toxin aerolysin in solution. J Biol Chem 1993; 268: 18272–79.

    PubMed  Google Scholar 

  17. van der Goot FG, Pattus F, Parker MW et al. The cytolytic toxin aerolysin, from the soluble form to the transmembrane channel. Toxicology 1994; 87: 19–28.

    Article  PubMed  Google Scholar 

  18. Argos P. An investigation of protein subunit and domain interfaces. Protein Engng 1988; 2: 101–13.

    Article  CAS  Google Scholar 

  19. Bennett MJ, Choe S, Eisenberg D. Domain swapping: entangling alliances between proteins. Proc Natl Acad Sci USA 1994; 91: 3127–31.

    Article  PubMed  CAS  Google Scholar 

  20. Verner K, Schatz, G. Protein translocation across membranes. Science 1988; 241: 1307–13.

    Article  PubMed  CAS  Google Scholar 

  21. Montgomery DW, Don LK, Zukoski CF et al. The effect of zinc and other metals on complement hemolysis of sheep red blood cells in vitro. Proc Soc Exp Biol Med 1974; 145: 263–67.

    PubMed  CAS  Google Scholar 

  22. Avigad LS, Bernheimer AW. Inhibition by zinc of hemolysis induced by bacterial and other cytolytic agents. Infect Immun 1976; 13: 1378–81.

    PubMed  CAS  Google Scholar 

  23. Wilmsen H-U, Pattus F, Buckley JT. Aerolysin, a hemolysin from Aeromonas hydrophila, forms voltage-gated channels in planar lipid bilayers. J Membr Biol 1990; 115: 71–81.

    Article  PubMed  CAS  Google Scholar 

  24. Wilmsen H-U, Buckley JT, Pattus F. Site-directed mutagenesis at histidines of aerolysin from Aeromonas hydrophila: a lipid planar bilayer study. Molec Microbiol 1991; 5: 2745–51.

    Article  CAS  Google Scholar 

  25. Buckley JT, Wilmsen H-U, Lesieur C et al. Protonation of His-132 promotes oligomerization of the channel-forming toxin aerolysin. Biochemistry 1995; in press.

    Google Scholar 

  26. Green MJ, Buckley JT. Site-directed mutagenesis of the hole-forming toxin aerolysin: studies on the role of histidines in receptor binding and oligomerization of the monomer. Biochemistry 1990; 29: 2177–80.

    Article  PubMed  CAS  Google Scholar 

  27. Hardie KR, Schulze A, Parker MW et al. Aeromonas sp. secrete proaerolysin as a folded dimer. Molec Microbiol 1995; in press.

    Google Scholar 

  28. Vyas NK. Atomic features of protein-carbohydrate interactions. Curr Opin Struct Biol 1991; 1: 732–40.

    Article  CAS  Google Scholar 

  29. Kozaki S, Kato K, Asao T et al. Activities of Aeromonas hydrophila hemolysins and their interaction with erythrocyte membranes. Infect Immun 1987; 55: 1594–99.

    PubMed  CAS  Google Scholar 

  30. Chakraborty T, Schmid A, Notermans S et al. Aerolysin of Aeromonas sobria: evidence for formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus. Infect Immun 1990; 58: 2127–32.

    PubMed  CAS  Google Scholar 

  31. Garland WJ, Buckley JT. The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregration is stimulated by human glycophorin. Infect Immun 1988; 56: 1249–53.

    PubMed  CAS  Google Scholar 

  32. Howard SP, Buckley JT. Activation of the hole-forming toxin aerolysin by extracellular processing. J Bacteriol 1985; 163: 336–40.

    PubMed  CAS  Google Scholar 

  33. van der Goot FG, Pattus F, Wong KR et al. Oligomerization of the channel-forming toxin aerolysin precedes insertion into lipid bilayers. Biochemistry 1993; 32: 2636–42.

    Article  PubMed  Google Scholar 

  34. Wilmsen H-U, Leonard K, Tichelaar W et al. The aerolysin membrane channel is formed by heptamerization of the monomer. EMBO J 1992; 11: 2457–63.

    PubMed  CAS  Google Scholar 

  35. Weiss MS, Abele U, Weckesser J et al. Molecular architecture and electrostatic properties of a bacterial porin. Science 1991; 254: 1627–30.

    Article  PubMed  CAS  Google Scholar 

  36. Cowan SW, Schirmer T, Rummel G et al. Crystal structures explain functional properties of two E. coli porins. Nature 1992; 358: 727–33.

    Article  PubMed  CAS  Google Scholar 

  37. Parker MW, Tucker AD, Tsernoglou D et al. Insights into membrane insertion based on studies of colicins. Trends Biochem Soc 1990; 15: 126–29.

    Article  CAS  Google Scholar 

  38. Ballard J, Sokolov Y, Yuan W-L et al. Activation and mechanism of Clostridium septicum alpha toxin. Molec Microbiol 1993; 10: 627–34.

    Article  CAS  Google Scholar 

  39. Hayashi T, Kamio Y, Hishinuma F et al. Pseudomonas aeruginosa cytotoxin: the nucleotide sequence of the gene and the mechanism of activation of the protoxin. Molec Microbiol 1989; 3: 861–68.

    Article  CAS  Google Scholar 

  40. Schmid A, Benz R, Just I et al. Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. J Biol Chem 1994; 269: 16706–11.

    PubMed  CAS  Google Scholar 

  41. Milne JC, Collier RJ. pH-dependent permeabilization of the plasma membrane of mammalian cells by anthrax protective antigen. Molec Microbiol 1993; 10: 647–53.

    Article  CAS  Google Scholar 

  42. Suzuki C, Nikkuni S. The primary and subunit structure of a novel type of killer toxin produced by a halotolerant yeast, Pichia farinosa. J Biol Chem 1994; 269: 3041–46.

    PubMed  CAS  Google Scholar 

  43. Montecucco C, Papini E, Schiavo G. Bacterial protein toxins penetrate cells via a four-step mechanism. FEBS Lett 1994; 346: 92–98.

    Article  PubMed  CAS  Google Scholar 

  44. Arbuthnott JP, Freer JH, Bernheimer AW. Interaction of staphylococcal alpha toxin with artificial and natural membranes. J Bacteriol 1968; 95: 1153–68.

    PubMed  Google Scholar 

  45. Füssle R, Bhakdi S, Sziegoleit A et al. On the mechanism of membrane damage by Staphylococcus aureus a-toxin. J Cell Biol 1981; 91: 83–94.

    Article  PubMed  Google Scholar 

  46. Menestrina G. Ionic channels formed by Staphylococcus aureus alpha toxin: voltage dependent inhibition by divalent and trivalent cations. J Membr Biol 1986; 90: 177–90.

    Article  PubMed  CAS  Google Scholar 

  47. Pederzolli C, Cescatti L, Menestrina GJ. Chemical modification of S. aureus a-toxin by diethylpyrocarbonate: role of histidines in its membrane damaging properties. J Membr Biol 1991; 119: 41–52.

    Article  PubMed  CAS  Google Scholar 

  48. Tobkes N, Wallace BA, Bayley H. Secondary structure and assembly mechanism of an oligomeric channel protein. Biochemistry 1985; 24: 1915–20.

    Article  PubMed  CAS  Google Scholar 

  49. Gouaux JE, Braha O, Hobaugh MR et al. Subunit stoichiometry of staphyloccal a-hemolysin in crystals and on membranes: A heptameric transmembrane pore. Proc Natl Acad Sci USA 1994; 91: 12828–31.

    Article  PubMed  CAS  Google Scholar 

  50. Milne JC, Furlong D, Hanna PC et al. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J Biol Chem 1994; 269: 20607–12.

    PubMed  CAS  Google Scholar 

  51. Morgan PJ, Hyman SC, Byron O et al. Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 1994; 269: 5315–20.

    Google Scholar 

  52. Gray GS, Kehoe M. Primary sequence for the a-toxin gene from Staphylococcus aureus Wood 46. Infect Immun 1984; 46: 615–18.

    PubMed  CAS  Google Scholar 

  53. Imagawa T, Dohi Y, Higashi Y. Cloning, nucleotide sequence and expression of a hemolysin gene of Clostridium septicum. FEMS Microbiol Letters 1994; 117: 287–92.

    Article  CAS  Google Scholar 

  54. Hunter SEC, Clarke IN, Kelly CD et al. Cloning and nucleotide sequencing of the Clostridium perfringens epsilon-toxin gene and its expression in Escherichia coli. Infect Immun 1992; 60: 102–10.

    PubMed  CAS  Google Scholar 

  55. Tweten RK. Nucleotide sequence of the gene for perfringolysin O (theta-toxin) from C. perfringens: significant homology with the genes for streptolysin O and perfringolysin. Infect Immun 1988; 56: 3235–40.

    PubMed  CAS  Google Scholar 

  56. Kraulis PJ. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 1991; 24: 946–50.

    Article  Google Scholar 

  57. Sibbald PR, Argos P. Scrutineer: a computer program that flexibly seeks and describes motifs and profiles in protein sequence databases. CABIOS 1990; 6: 279–88.

    PubMed  CAS  Google Scholar 

  58. Jones TA, Zou JY, Cowan SW et al. Improved methods for building models in electron density maps and the location of errors in these models. Acta Cryst 1991; A47: 110–19.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parker, M.W., Buckley, J.T., van der Goot, F.G., Tsernoglou, D. (1996). Structure and Assembly of the Channel-Forming Aeromonas Toxin Aerolysin. In: Protein Toxin Structure. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22352-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22352-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22354-3

  • Online ISBN: 978-3-662-22352-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics