Advertisement

Pigeon-hole and double counting

  • Martin Aigner
  • Günter M. Ziegler

Abstract

Some mathematical principles, such as the two in the title of this chapter, are so obvious that you might think they would only produce equally obvious results. To convince you that “It ain’t necessarily so” we illustrate them with examples that were suggested by Paul Erdós to be included in The Book. We will encounter instances of them also in later chapters.

Keywords

Double Counting Common Neighbor Dual Graph Barycentric Subdivision Ramsey Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. E. J. Brouwer: Über Abbildungen von Mannigfaltigkeiten, Math. Annalen 71 (1911), 97–115.MathSciNetCrossRefGoogle Scholar
  2. [2]
    W. C. Brown: On graphs that do not contain a Thomsen graph, Canadian Math. Bull. 9 (1966), 281–285.MATHCrossRefGoogle Scholar
  3. [3]
    P. Erdös, A. Rényi, & V. Sos: On a problem of graph theory, Studia Sci. Math. Hungar. 1 (1966), 215–235.MATHGoogle Scholar
  4. [4]
    P. Erdös, & G. Szekeres:A combinatorial problem ingeometry, Compositio Math. (1935), 463–470.Google Scholar
  5. [5]
    S. Hoten, & W. D. Morris: The order dimension of the complete graph, Preprint 1998; Discrete Math., to appear.Google Scholar
  6. [6]
    I. Reiman: Über ein Problem von K. Zarankiewicz, Acta Math. Acad. Sci. Hungar. 9 (1958), 269–273.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    J. Spencer: Minimal scrambling sets of simple orders, Acta Math. Hungar. 22 (1971), 349–353.CrossRefGoogle Scholar
  8. [8]
    E. Sperner: Neuer Beweis fir die Invarianz der Dimensionszahl und des Gebietes, Abh. Math. Sem. Hamburg 6 (1928), 265–272.MATHCrossRefGoogle Scholar
  9. [9]
    W. T. Trotter: Combinatorics and Partially Ordered Sets: Dimension Theory, John Hopkins University Press, Baltimore and London 1992.MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Martin Aigner
    • 1
  • Günter M. Ziegler
    • 2
  1. 1.Institut für Mathematik II (WE2)Freie Universität BerlinBerlinGermany
  2. 2.Fachbereich Mathematik, MA 7-1Technische Universität BerlinBerlinGermany

Personalised recommendations