On the Numerical Implementation of BEM for Axisymmetric Elasticity

  • M. Guiggiani
  • P. Casalini
Part of the Boundary Elements book series (BOUNDARY, volume 8)

Abstract

The extension of the Boundary Element Method (BEM) to axisymmetric elastic problems was first investigated by Mayr1 and in particular by Cruse et al.2, who extended the ‘fictitious load’ approach to the more general BEM approach by using the fundamental solution developed by Kermanidis3. A rather comprehensive description of the BEM for axisymmetric elastic problems has been recently presented in Brebbia, Telles and Wrobel4 and in Telles5.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mayr M. (1976), On the Numerical Solution of Axisymmetric Elasticity Problems Using an Integral Equation Approach, Mech. Res. Comm., Vol. 3, pp. 393–398.MATHCrossRefGoogle Scholar
  2. 2.
    Cruse T. A., Snow D. W. and Wilson R. B. (1977), Numerical Solutions in Axisymmetric Elasticity, Computers and Structures, Vol. 7, pp. 445–451.MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Kermanidis T. (1975), A Numerical Solution for Axially Symmetrical Elasticity Problems, Int. J. Solids Structures, Vol. 11, pp. 493–500.MATHCrossRefGoogle Scholar
  4. 4.
    Brebbia C. A., Telles J. C. F. and Wrobel L. C (1984), Boundary Elements Techniques, Springer-Verlag, Berlin and New York.CrossRefGoogle Scholar
  5. 5.
    Telles J. C. F. (1983), A Boundary Element Formulation for Axisymmetric Plasticity, in Boundary Elements (Ed. Brebbia C. A., Futagami T. and Tanaka M.), pp. 577–588, Proceedings of the 5th Int. Conf., Hiroshima, Japan, 1983, Springer-Verlag, Berlin and New York.Google Scholar
  6. 6.
    Watson J. O. (1979), Advanced Implementation of the Boundary Element Method for Two- and Three-dimensional Elastostatic. Chapter 3, Developments in Boundary Element Methodl, (Eds. Banerjee P. K. and Butterfield P.), pp. 31–63, Applied Science Publishers, London.Google Scholar
  7. 7.
    Mayr M., Drexler W. and Kuhn G. (1980), A Semianalytical Boundary Integral Approach for Axisymmetric Elastic Bodies with Arbitrary Boundary Conditions, Int. J. Solids Structures, Vol. 16, pp. 863–871.MATHCrossRefGoogle Scholar
  8. 8.
    Erdelyi A. et al. (1953), Higher Trascendental Functions, Vol. 1, Bateman Manuscript Project, MacGraw-Hill, New York.Google Scholar
  9. 9.
    Rizzo F. J. and Shippy D. J. (1986), A Boundary Element Method for Axisymmetric Elastic Bodies. Chapter 3, Developments in Boundary Element Method-4, (Eds. Banerjee P. K. and Watson J. O.), pp. 67–90, Elsevier Applied Science Publishers, Barking.Google Scholar
  10. 10.
    Sarihan V. and Mukherjee S. (1982), Axisymmetric Viscoplastic Deformation by the Boundary Element Method, Int. J. Solids Structures, Vol. 18, pp. 1113–1128.MATHCrossRefGoogle Scholar
  11. 11.
    Kutt H. R. (1975), The Numerical Evaluation of Principal Value Integrals by Finite-Part Integration, Numer. Math., Vol. 24, pp. 205–210.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Shippy D. J. and Rizzo F. J. (1982), On the Effectiveness of Three Boundary Integral Equation Formulations for Certain Axisymmetric Elastostatic Problems, Res Mechanica, Vol. 4, pp. 43–56.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • M. Guiggiani
    • 1
  • P. Casalini
    • 1
  1. 1.Dipartimento di Costruzioni Meccaniche e NucleariUniversita’ di PisaPisaItaly

Personalised recommendations