Skip to main content

Control of the Response to Low Temperatures

  • Chapter
Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Summary

Low temperatures limit the productivity of a number of cultivated plant species especially in temperate regions. Microtubules seem to play a dual role in this response —on the one hand, they depolymerize in response to low, non-freezing temperatures and this is correlated with corresponding changes of cell growth; on the other hand, there is evidence for a role of microtubule depolymerization in the sensing process itself, an aspect that is relevant to cryopreservation of tissue and seeds in gene banks. The cold stability of microtubules varies between species and can be regulated by hormones such as abscisic acid and by physiological responses such as cold acclimation. The tubulin domains that are responsible for the microtubular response to low temperature can be inferred from a comparison of tubulin isotypes with inherent differences in cold stability. The mediating signal chains seem to involve calcium and calmodulin. This chapter concludes with an outlook on biotechnological strategies to manipulate the cold response of microtubules and thus the cold resistance of plant organs or developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi T, Shibaoka H (1987) Effects of gibberellin on the arrangement and the cold stability of cortical microtubules in epidermal cells of pea internodes. Plant Cell Physiol 28: 339–348

    CAS  Google Scholar 

  • Akashi T, Kawasaki S, Shibaoka H (1990) Stabilization of cortical microtubules by the cell wall in cultured tobacco cells — Effects of extensin on the cold stability of cortical microtubules. Planta 182: 363–369

    Article  Google Scholar 

  • Anthony RG, Waldin TR, Ray JA, Bright SWJ, Hussey PJ (1998) Herbicide resistance caused by spontaneous mutation of the cytoskeletal protein tubulin. Nature 393: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Atkin RK, Barton GE, Robinson DK (1973) Effect of root-growing temperature on growth substances in xylem exudate of Zea mays. J Exp Bot 24: 475–487

    Article  Google Scholar 

  • Bartolo ME, Carter JV (199la) Microtubules in mesophyll cells of nonacclimated and cold-acclimated spinach. Plant Physiol 97: 175–181

    Google Scholar 

  • Bartolo ME, Carter JV (1991b) Effect of microtubule stabilization on the freezing tolerance of mesophyll cells of spinach. Plant Physiol 97: 182–187

    Article  PubMed  CAS  Google Scholar 

  • Bartolo ME, Carter JV (1992) Lithium decreases cold-induced microtubule depolymerization in mesophyll cells of spinach. Plant Physiol 99: 1716–1718

    Article  PubMed  CAS  Google Scholar 

  • Berberich T, Kusano T (1997) Cycloheximide induces a subset of low temperature-inducible genes in maize. Mol Gen Genet 254: 275–283

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Bokros CL, Hugdahl JD, Blumenthal SSD, Morejohn LC (1996) Proteolytic analysis of polymerized maize tubulin: regulation of microtubule stability to low temperature and Ca’ by the carboxyl terminus of I3-tubulin. Plant Cell Environ 19: 539–548

    Article  CAS  Google Scholar 

  • Burke MJ, Gusta LV, Quamme HA, Weiser CJ, Li PH (1976) Freezing and injury in plants. Annu Rev Plant Physiol 27: 507–528

    Article  Google Scholar 

  • Chu B, Xin Z, Li PH, Carter JV (1992) Depolymerization of cortical microtubules is not a primary cause of chilling injury in corn (Zea mays L. cv Black Mexican Sweet) suspension culture cells. Plant Cell Environ 15: 307–312

    Article  Google Scholar 

  • Chu B, Kerr GP, Carter JV (1993a) Stabilizing microtubules with taxol increases microfilament stability during freezing of rye root tips. Plant Cell Environ 16: 883–889

    Article  CAS  Google Scholar 

  • Chu B, Snustad DP, Carter JV (1993b) Alteration of I3-tubulin gene expression during low-temperature exposure in leaves of Arabidopsis thaliana. Plant Physiol 103: 371–377

    PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3: 83–110

    Article  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor 1 a. Plant Cell 6: 893–905

    PubMed  CAS  Google Scholar 

  • Evans L (1975) Crop physiology. Cambridge University Press, London

    Google Scholar 

  • Fisher DD, Cyr RI (1993) Calcium levels affect the ability to immunolocalize calmodulin to cortical microtubules. Plant Physiol 10: 543–551

    Google Scholar 

  • Gilmour SL, Thomashow MF (1991) Cold acclimation and cold-regulated gene expression in ABA mutants of Arabidopsis thaliana. Plant Mol Biol 17: 1233–1240

    Article  PubMed  CAS  Google Scholar 

  • Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187–223

    Article  CAS  Google Scholar 

  • Haupt W (1958) Über die Primärvorgänge bei der polarisierenden Wirkung des Lichtes auf keimende Equisetumsporen. Planta 51: 74–83

    Article  Google Scholar 

  • Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18: 449–453

    Article  PubMed  CAS  Google Scholar 

  • Holubowicz T, Boe AA (1969) Development of cold hardiness in apple seedlings treated with gibberellic acid and abscisic acid. J Am Soc Hort Sci 94: 661–664

    CAS  Google Scholar 

  • Hughes MA, Dunn MA (1996) The molecular biology of plant acclimation to low temperature. J Exp Bot 47: 291–305

    Article  CAS  Google Scholar 

  • Irving RM (1969) Characterization and role of an endogenous inhibitor in the induction of cold hardiness in Acer negundo. Plant Physiol 44: 801–805

    Article  PubMed  CAS  Google Scholar 

  • Irving RM, Lanphear FO (1968) Regulation of cold hardiness in Acer negundo. Plant Physiol 43: 9–13

    Article  PubMed  CAS  Google Scholar 

  • Ishizaki-Nishizawa O, Fujii T, Azuma M, Sekiguchi K, Murata N, Ohtani T, Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14: 1003–1006

    Article  PubMed  CAS  Google Scholar 

  • Ivens GW, Blackman GE (1950) Inhibition of growth of apical meristems by ethyl phenylcarbamate. Nature 166: 954–955

    Article  PubMed  CAS  Google Scholar 

  • Jian LC, Sun LH, Lin ZP (1989) Studies on microtubule cold stability in relation to plant cold hardiness. Acta Bot Sin 31: 737–741

    Google Scholar 

  • Juniper BE, Lawton JR (1979) The effect of caffeine, different fixation regimes and low temperature on microtubules in the cells of higher plants. Planta 145: 411–416

    Article  CAS  Google Scholar 

  • Kamiya N (1959) Protoplasmic streaming. Protoplasmatologia 8: 1–199

    Google Scholar 

  • Kerr GP, Carter JV (1990) Relationship between freezing tolerance of root-tip cells and cold stability of microtubules in rye (Secale cereale L. cv. Puma ). Plant Physiol 93: 77–82

    Google Scholar 

  • Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold shock and elicitors on cytoplasmic calcium. Nature 352: 524–526

    Article  PubMed  CAS  Google Scholar 

  • Kodama H, Hamada T, Horiguchi G, Nishimura M, Iba K (1994) Genetic enhancement of cold tolerance by expression of a gene for chloroplast A3 fatty acid desaturase in transgenic tobacco. Plant Physiol 105: 601–605

    PubMed  CAS  Google Scholar 

  • Krishna P, Sacco M, Cherutti JF, Hill S (1995) Cold-induced accumulation of HSP90 transcripts in Brassica napus. Plant Physiol 107: 915–923

    PubMed  CAS  Google Scholar 

  • Kurkela S, Franck M (1990) Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene. Plant Mol Biol 15: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Lalk I, Dorffling K (1985) Hardening, abscisic acid, proline and freezing resistance in two winter wheat varieties. Physiol Plant 63: 287–292

    Article  CAS  Google Scholar 

  • Ling V, Mäntyla E, Welin B, Sundberg B, Palva ET (1994) Alterations in water status, endogenous abscisic acid content and expression of rabl8 gene during the development of freezing tolerance in Arabidopsis thaliana. Plant Physiol 104: 1341–1349

    Google Scholar 

  • Lyons JM (1973) Chilling injury in plants. Annu Rev Plant Physiol 24: 445–466

    Article  CAS  Google Scholar 

  • Mazars C, Thion L, Thuleau P, Graziana A, Knight MR, Moreau M, Ranjeva R (1997) Organization of cytoskeleton controls the changes in cytosolic calcium of cold-shocked Nicotiana plumbaginifolia protoplasts. Cell Calcium 22: 413–420

    Article  PubMed  CAS  Google Scholar 

  • Mazur P (1963) Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J Gen Physiol 47: 347–369

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K (1992) Induction of cold stability of microtubules in cultured tobacco cells. Plant Physiol 100: 740–748

    Article  PubMed  CAS  Google Scholar 

  • Modig C, Stromberg E, Wallin M (1994) Different stability of posttranslationally modified brain microtubules isolated from cold-temperate fish. Mol Cell Biochem 130: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Molisch H (1897) Untersuchungen über das Erfrieren der Pflanzen. Gustav Fischer Verlag, Jena, p 73

    Google Scholar 

  • Monroy AF, Dhindsa RS (1995) Low-temperature signal transduction: induction of cold acclimation-specific genes of alfalfa by calcium at 25°C. Plant Cell 7: 321–331

    PubMed  CAS  Google Scholar 

  • Monroy AF, Sarhan F, Dhindsa RS (1993) Cold-induced changes in freezing tolerance, protein phosphorylation, and gene expression. Plant Physiol 102: 1227–1235

    Article  PubMed  CAS  Google Scholar 

  • Monteith JL, Elston LF (1971) Microclimatology and crop production. In: Wareing PF, Cooper JP (eds) Potential crop production. Heinemann, London, pp 129–139

    Google Scholar 

  • Morisset C, Gazeau C, Hansz J, Dereuddre (1993) Importance of actin cytoskeleton behaviour during preservation of carrot cell suspension in liquid nitrogen. Protoplasma 173: 35–47

    CAS  Google Scholar 

  • Morisset C, Gazeau C, Hansz J, Dereuddre (1994) Is actin important for cryosurvival? Cryo-Letters 15: 215–222

    CAS  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356: 710–713

    Article  CAS  Google Scholar 

  • Nick P, Schäfer E (1991) Induction of transverse polarity by blue light: an all-or-none response. Planta 185: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Petrâtsek J, Freudenreich A, Heuing A, Opatmÿ Z, Nick P (1998) Heat-shock protein 90 is associated with microtubules in tobacco cells. Protoplasma 202: 161–174

    Article  Google Scholar 

  • Pihakaski-Maunsbach K, Puhakainen T (1995) Effect of cold exposure on cortical microtubules of rye (Secale cereale) as observed by immunocytochemistry. Physiol Plant 93: 563–571

    Article  CAS  Google Scholar 

  • Rikin A, Richmond AE (1976) Amelioration of chilling injuries in cucumber seedlings by abscisic acid. Physiol. Plant 38: 95–97

    Google Scholar 

  • Rikin A, Waldman M, Richmond AE, Dovrat A (1975) Hormonal regulation of morphogenesis and cold resistance. I. Modifications by abscisic acid and gibberellic acid in alfalfa (Medicago sativa L.) seedlings. J Exp Bot 26: 175–183

    CAS  Google Scholar 

  • Rikin A, Atsmon D, Gitler C (1980) Chilling injury in cotton (Gossypium hirsutum L.): effects of antimicrotubular drugs. Plant Cell Physiol 21: 829–837

    CAS  Google Scholar 

  • Sachs J (1865) Handbuch der Experimental-Physiologie der Pflanzen. Engelmann, Leipzig, p 514

    Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157: 165–171

    Article  CAS  Google Scholar 

  • Shibaoka H, Hogetsu T (1977) Effects of ethyl n-phenylcarbamate on wall microtubules and on gibberellin-and kinetin-controlled cell expansion. Bot Mag Tokyo 90: 317–321

    Article  CAS  Google Scholar 

  • Stair DW, Dahmer ML, Bashaw EC, Hussey MA (1998) Freezing tolerance of selected Pennisetum species. Int J Plant Sci 159: 599–605

    Article  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ (1998) Mode of action of the CORJ5a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 95: 14570–14575

    Article  PubMed  CAS  Google Scholar 

  • Templeman WG, Sexton WA (1945) Effect of some arylcarbamic esters and related compounds upon cereals and other plant species. Nature 156: 630

    Article  CAS  Google Scholar 

  • Thion L, Mazars C, Thuleau P, Graziana A., Rossignol M, Moreau M, Ranjeva R (1996) Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 393: 13–18

    Article  PubMed  CAS  Google Scholar 

  • Toguri T (1996) Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase. Nat Biotechnol 14: 1003–1006

    Article  PubMed  Google Scholar 

  • Tucker EB, Allen NS (1986) Intracellular particle motion (cytoplasmic streaming) in staminal hairs of Setcreasea purpurea: effect of azide and low temperature. Cell Motil Cytoskel 6: 305–313

    Article  CAS  Google Scholar 

  • Warren-Wilson JD (1966) An analysis of plant growth and its control in the arctic environment. Ann Bot 30: 383–402

    Google Scholar 

  • Wasteneys GO, Gunning BES, Hepler PK (1993) Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells. Cell Motil Cytoskel 24: 205–213

    Article  Google Scholar 

  • Watson DJ (1952) The physiological basis of variation yield. Adv Agron 4: 101–145

    Article  Google Scholar 

  • Wolter FP, Schmidt R, Heinz E (1992) Chilling sensitivity of Arabidopsis thaliana with genetically engineered membrane lipids. EMBO J 11: 4685–4692.

    PubMed  CAS  Google Scholar 

  • Woods CM, Reids MS, Patterson BD (1984) Response to chilling stress in plant cells. I. Changes in cyclosis and cytoplasmic structure. Protoplasma 121: 8–16

    Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci USA 91: 6050–6053

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nick, P. (2000). Control of the Response to Low Temperatures. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22300-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22300-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22302-4

  • Online ISBN: 978-3-662-22300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics