Skip to main content

Control of plant shape

  • Chapter
Plant Microtubules

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 11))

Summary

In the past years, the establishment of body shape and Bauplan in animals has been shown to be based upon a spatiotemporal pattern in the activity of transcription factors. The discovery of homeotic genes controlling flower morphogenesis stimulated the view that plant morphogenesis might follow the same principles. Based on this idea, a mutant approach was initiated to screen for pattern deletion mutants in Arabidopsis. Interestingly, the characterization of these mutants lead not to the isolation of the anticipated transcription factors, but to genes that are related to the formation of the cell plate. This outcome moves the spatiotemporal control of cell division into the centre of interest. Plants have developed microtubular structures that seem to be intimately linked to the spatial control of cell division: radial microtubules, preprophase band, and phragmoplast. This chapter will begin with a brief discussion of the impact of plant shape and then discuss the control of division axis and symmetry in cell biological terms. This will be followed by a discussion of potential molecular mechanisms related to this spatial control. A second role of microtubules during the control of plant shape is connected to their participation in mechano and gravity sensing. The prospect part of the chapter will treat, in a speculative way, the possibilities to manipulate gravitropic set-point angles and thus the angle of side branches (e.g. to increase photosynthetic efficiency), but also the control of phyllotaxis (whorl pattern), root architecture and tuber formation (in potatoes).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baluäka F, Kreibaum A, Vitha S, Parker JS, Barlow PW, Sievers A (1997) Central root cap cells are depleted of endoplasmic microtubules and actin microfilament bundles — implications for their role as gravity-sensing statocytes. Protoplasma 196: 212–223

    Article  Google Scholar 

  • Barlow PW, Parker JS (1996) Microtubular cytoskeleton and root morphogenesis. Plant Soil 187: 2336

    Google Scholar 

  • Baskin TI, Bivens NJ (1995) Stimulation of radial expansion in Arabidopsis roots by inhibitors of actomyosin and vesicle secretion, but not by various inhibitors of metabolism. Planta 197: 514–521

    Article  PubMed  CAS  Google Scholar 

  • Björkman T (1988) Perception of gravity by plants. Adv Bot Res 15: 1–4

    Article  Google Scholar 

  • Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191: 230–237

    Google Scholar 

  • Brown RC, Lemmon BE (1991) The cytokinetic apparatus in meiosis: control of division plane in the absence of a preprophase band of microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 259–273

    Google Scholar 

  • Bunning E (1965) Die Entstehung von Mustem in der Entwicklung von Pflanzen. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie vol 15/1, Springer, Berlin Heidelberg New York, pp 383–408

    Google Scholar 

  • Cleary AL, Hardham AR (1993) Pressure induced reorientation of cortical microtubules in epidermal cells of Lolium rigidum Leaves. Plant Cell Physiol 34: 1003–1008

    Google Scholar 

  • Colasanti J, Cho SO, Wick S, Sundaresan V (1993) Localization of the functional p34cc2 Homolog of Maize in Root Tip and Stomatal Complex Cells: Association with Predicted Division Sites. Plant Ce115: 1101–1111

    Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3: 83–110

    Article  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor la. Plant Cell 6: 893–905

    PubMed  CAS  Google Scholar 

  • Edwards ES, Roux SJ (1994) Limited period of graviresponsiveness in germinating spores of Ceratopteris richardii. Planta 195: 150–152

    Article  PubMed  CAS  Google Scholar 

  • Edwards ES, Roux SJ (1997) The influence of gravity and light on developmental polarity of single cells of Ceratopteris richardii gametophytes. Biol Bull 192: 139–140

    Article  PubMed  CAS  Google Scholar 

  • Elinson RB, Rowning B (1988) Transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorsoventral axis. Develop Biol 128: 185–197

    Article  PubMed  CAS  Google Scholar 

  • Fisher DD, Gilroy S, Cyr RJ (1996) Evidence for opposing effects of calmodulin on cortical microtubules. Plant Physiol 112: 1079–1087

    PubMed  CAS  Google Scholar 

  • Fleming AJ, McQueen-Mason, Mandel T, Kuhlemeier C (1992) Induction of leaf primordia by the cell wall protein expansin. Science 276: 1415–1418

    Article  Google Scholar 

  • Friedrich U, Hertel R (1973) Abhängigkeit der geotropischen Krümmung von der Zentrifugalbeschleunigung. Z Pflanzenphysiol 70: 173–184

    Article  Google Scholar 

  • Fujino K, Koda Y, Kikuta Y (1995) Reorientation of cortical microtubules in the sub-apical region during tuberization in single-node stem segments of potato in culture. Plant Cell Physiol 36: 891–895

    CAS  Google Scholar 

  • Galway ME, Masucci JD, Lloyd AM, Walbot V, Davis RW, Schiefelbein JW (1994) The TTG gene is required to specify epidermal cell fate and cell patterning in the Arabidopsis root. Dev Biol 166: 740–754

    Article  PubMed  CAS  Google Scholar 

  • Gerhart J, Ubbeles G, Black S, Hera K, Kirschner M (1981) A reinvestigation of the role of the grey crescent in axis formation in Xenopus laevis. Nature 292: 511–516

    Article  PubMed  CAS  Google Scholar 

  • Gianì S, Breviario D (1996) Rice ß-tubulin mRNA levels are modulated during flower development and in response to external stimuli. Plant Sci 116: 147–157

    Article  Google Scholar 

  • Giftes F, Mickey B, Nettleton I, Howard J (1993) Flexual rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120: 923–934

    Article  Google Scholar 

  • Goebel K (1908) Einleitung in die experimentelle Morphologie der Pflanzen. Teubner, Leipzig, pp 218–251

    Google Scholar 

  • Goodwin BC, Trainor LEH (1985) Tip and whorl morphogenesis in Acetabularia by calcium-regulated strain fields. J Theor Biol 1 17: 79–106

    Article  Google Scholar 

  • Grace J (1977) Plant response to wind. Academic Press, London, pp. 121–134, 135–142

    Google Scholar 

  • Green PB (1992) Cellulose orientation in primary growth: an energy-level model for cytoskeletal alignment. Curr Top Plant Biochem Physiol 11: 99–117

    CAS  Google Scholar 

  • Gu XJ, Verma DPS (1995) Phragmoplastin, a dynamin-like protein associated with cell plate formation in plants. EMBO J 15: 695–704

    Google Scholar 

  • Gunning BES, Sammut M (1990) Rearrangements of microtubules involved in establishing cell division planes start immediately after dna synthesis and are completed just before mitosis. Plant Cell 2: 1273–1282

    PubMed  CAS  Google Scholar 

  • Hardham AR, Green PB, Lang JM (1980) Reorganization of cortical microtubules and cellulose deposition during leaf formation of Graptopetalum paraguayense. Planta 149: 181–195

    Article  CAS  Google Scholar 

  • Harrison M, Pickard BG (1989) Auxin asymmetry during gravitropism by tomato hypocotyls. Plant Physiol 89: 652–657

    Article  PubMed  CAS  Google Scholar 

  • Himmelspach R, Nick P, Schäfer E, Ehmann B (1997) Developmental and light-dependent changes of the cytosolic chaperonin containing TCP-1 ( CCT) subunits in maize seedlings, and the localization in coleoptiles. Plant J 12: 1299–1310

    Google Scholar 

  • Huang M, Gu G, Ferguson EL, Chalfie M (1995) A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378: 292–295

    Article  PubMed  CAS  Google Scholar 

  • Hush JM, Overall RL (1991) Electrical and mechanical fields orient cortical microtubules in higher plant tissues. Cell Biol Int Rev 15: 551–560

    Article  Google Scholar 

  • Hush JM, Hawes CR, Overall RL (1990) Interphase microtubule re-orientation predicts a new cell polarity in wounded pea roots. J Cell Sci 96: 47–61

    Google Scholar 

  • Katsuta J, Shibaoka H (1988) The roles of the cytoskeleton and the cell wall in nuclear positioning in tobacco BY-2 cells. Plant Cell Physiol 29: 403–413

    CAS  Google Scholar 

  • Koda Y (1997) Possible involvement of jasmonates in various morphogenetic events. Physiol Plant 100: 639–646

    Article  CAS  Google Scholar 

  • Koda Y, Omer ESA, Yoshihara T, Shibata H, Sakamura S, Okazawa Y (1988) Isolation of a specific tuber-inducing substance from potato leaves. Plant Cell Physiol 29: 1047–1051

    CAS  Google Scholar 

  • Kuznetsov OA, Hasenstein KH (1996) Intracellular magnetophoresis of amyloplasts and induction of root curvature. Planta 198: 87–94

    Article  PubMed  CAS  Google Scholar 

  • Lambert AM (1993) Microtubule-organizing centers in higher plants. Curr Opin Cell Biol 5: 116–122

    Article  PubMed  CAS  Google Scholar 

  • Lee B (1994) Filling the world’s rice bowl. IRRI, Los Banos

    Google Scholar 

  • Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) y-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6: 303–314

    Google Scholar 

  • Lloyd CW (1991) Cytoskeletal elements of the phragmosome establish the division plane in vacuolated plant cells. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 245–257

    Google Scholar 

  • Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Marc J, Sharkey DE, Durso NA, Zhang M, Cyr RJ (1996) Isolation of a 90-kDa microtubule-associated protein from tobacco membranes. Plant Cell 8: 2127–2138

    PubMed  CAS  Google Scholar 

  • Mayer U, Torres Ruiz RA, Berleth T, Miséra S, Jürgens G (1991) Mutations affecting body organization in Arabidopsis embryo. Nature 353: 402–407

    Article  Google Scholar 

  • Mayer U, Büttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117: 149–162

    Google Scholar 

  • McClinton RS, Sung ZR (1997) Organization of cortical microtubules at the plasma membrane in Arabidopsis. Planta 201: 252–260

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Endogenous proteins that induce cell wall expansion in plants. Plant Cell 4: 1425–1433

    PubMed  CAS  Google Scholar 

  • Millet B, Pickard BG (1988) Early wrong way response occurs in orthogravitropic maize roots treated with lithium. Physiol Plant 72: 555–559

    Article  PubMed  CAS  Google Scholar 

  • Mineyuki Y, Lida H, Anraku Y (1994) Loss of microtubules in the interphase cells of onion (Allium cepa 1.) root tips from the cell cortex and their appearance in the cytoplasm after treatment with cycloheximide. Plant Physiol 104: 281–284

    PubMed  CAS  Google Scholar 

  • Mineyuki Y, Marc J, Palevitz BA (1988) Formation of the oblique spindle in dividing guard mother cells ofAllium. Protoplasma 147: 200–203

    Article  Google Scholar 

  • Mita T, Shibaoka H (1984) Gibberellin stabilizes microtubules in onion leaf sheath cells. Protoplasma 119: 100–109

    Article  Google Scholar 

  • Mohr H (1956) Die Abhängigkeit des Protonemenwachstums und der Protonemapolarität bei Farnen vom Licht. Planta 47: 127–158

    Article  CAS  Google Scholar 

  • Murata T, Wada M (1991a) Effects of centrifugation on preprophase-band formation in Adiantum protonemata. Planta 183: 391–398

    Article  Google Scholar 

  • Murata T, Wada M (1991b) Re-formation of the preprophase band after cold-induced depolymerization of microtubules in Adiantum protonemata. Plant Cell Physiol 32: 1145–1151

    CAS  Google Scholar 

  • Myers AB, Firn RD, Digby J (1994) Gravitropic sign reversal — a fundamental feature of the gravitropic perception or response mechanisms in some plant organs. J Exp Bot 45: 77–83

    Article  Google Scholar 

  • Nick P, Schäfer E, Hertel R, Furuya M (1991) On the putative role of microtubules in gravitropism of maize coleoptiles. Plant Cell Physiol 32: 873–880

    CAS  Google Scholar 

  • Nick P, Yatou O, Furuya M, Lambert AM (1994) Auxin-dependent microtubule responses and seedling development are affected in a rice mutant resistant to EPC. Plant J 6: 651–663

    Article  CAS  Google Scholar 

  • Nick P, Lambert AM, Vantard M (1995) A microtubule-associated protein in maize is induced during phytochrome-dependent cell elongation. Plant J 8: 835–844

    Article  PubMed  CAS  Google Scholar 

  • Nick P, Godbolé R, Wang QY (1997) Probing rice gravitropism with cytoskeletal drugs and cytoskeletal mutants. Biol Bull 192: 141–143

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Pollock MA, Vacik J, Szymanski DB, Ericson B, Feldmann K, Marks MD (1997) Essential role of a kinesin-like protein in Arabidopsis trichome morphogenesis. Proc Natl Acad Sci USA 94: 6261–6266

    Article  PubMed  CAS  Google Scholar 

  • Panteris E, Apostolakos P, Galatis B (1995) The effect of taxol on Triticum preprophase root cells — preprophase microtubule band organization seems to depend on new microtubule assembly. Protoplasma 186: 72–78

    Article  CAS  Google Scholar 

  • Peterson RL, Farquhar ML (1996) Root hairs — specialized tubular cells extending root surfaces. Bot Rev 62: 1–40

    Article  Google Scholar 

  • Quatrano RS (1978) Development of cell polarity. Annu Rev Plant Physiol 29: 489–510

    Article  Google Scholar 

  • Sachs J (1880) Stoff und Form der Pflanzenorgane. Arb Bot Inst Würzburg 2: 469–479

    Google Scholar 

  • Samuels AL, Giddings TH, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells–a new model of cell plate formation in higher plants. J Cell Biol 130: 1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Sanz MJ, Mingocastel A, Vanlammeren AAM, Vreugdenhil D (1996) Changes in the microtubular cytoskeleton preceed in vitro tuber formation in potato. Protoplasma 191: 46–54

    Article  Google Scholar 

  • Schiefelbein J, Galway M, Masucci J, Ford S (1993) Pollen tube and root-hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol 103: 979–985

    Article  PubMed  CAS  Google Scholar 

  • Schwuchow J, Sack FD, Hartmann E (1990) Microtubule distribution in gravitropic protonemata of the moss Ceratodon. Protoplasma 159: 60–69

    Article  PubMed  CAS  Google Scholar 

  • Selker JML, Steucek GL, Green PB (1992) Biophysical mechanisms for morphogenetic progressions at the shoot apex. Dev Biol 153: 29–43

    Article  PubMed  CAS  Google Scholar 

  • Shevell DE, Leu WM, Gilmor CS, Xia GX, Feldmann KA, Chua NH (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77: 1051–1062

    Article  PubMed  CAS  Google Scholar 

  • St.Johnston D, Nüsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophila embryo. Cell 68: 201–219

    Google Scholar 

  • Stokes A, Ball J, Fitter AH, Brain P, Coutts MP (1996) An experimental investigation of the resistance of model root systems to uprooting. Ann Bot 78: 415–421

    Article  Google Scholar 

  • Stoppin V, Vantard M, Schmit AC, Lambert AM (1994) Isolated plant nuclei nucleate microtubule assembly: the nucleus surface in higher plants has centrosome-like activity. Plant Cell 6: 1099–1106

    PubMed  CAS  Google Scholar 

  • Tabony J, Job D (1992) Gravitational symmetry breaking in microtubular dissipative structures. Proc Natl Acad Sci USA 89: 6948–6952

    Article  PubMed  CAS  Google Scholar 

  • Thomas DDS, Dunn DM, Seagull RW (1977) Rapid cytoplasmic responses of oat coleoptiles to cytochalasin B, auxin, and colchicine. Can J Bot 55: 1797–1800

    Article  CAS  Google Scholar 

  • Thompson DW (1959) On growth and form. University Press, Cambridge, pp 465–644

    Google Scholar 

  • Traas J, Bellini C, Nacry P, Kronenberger J, Bouchez D, Caboche M (1995) Normal differentiation patterns in plants lacking microtubular preprophase bands. Nature 375: 676–677

    Article  CAS  Google Scholar 

  • Vantard M, Levilliers N, Hill AM, Adoutte A, Lambert AM (1990) Incorporation of Paramecium axonemal tubulin into higher plant cells reveals functional sites of microtubule assembly. Proc Natl Acad Sci USA 87: 8825–8829

    Article  PubMed  CAS  Google Scholar 

  • Vochting H (1878) Über Organbildung im Pflanzenreich. Cohen, Bonn

    Google Scholar 

  • Vogelmann TC, Bassel AR, Miller JH (1981) Effects of microtubule-inhibitors on nuclear migration and rhizoid formation in germinating fern spores (Onoclea sensibilis). Protoplasma 109: 295–316

    Article  CAS  Google Scholar 

  • Wads M, Furuya M (1970) Photocontrol of the orientation of cell division in Adiantum. I. Effects of the dark and red periods in the apical cell of gametophytes. Dev Growth Differ 12: 109–118

    Google Scholar 

  • Walker LM, Sack FD (1990) Amyloplasts as possible statoliths in gravitropic protonemata of the moss Ceratodon purpureus. Planta 181: 71–77

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203–290

    Article  PubMed  CAS  Google Scholar 

  • Wick SM (1991) The preprophase band. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 231–244

    Google Scholar 

  • Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Internat Rev Cytol 129: 135–206

    Article  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1992) ATP-sensitive binding to microtubules of polypeptides extracted from isolated phragmoplasts of tobacco BY-2 cells. Plant Cell Physiol 33: 601–608

    CAS  Google Scholar 

  • Yasuhara H, Sonobe S, Shibaoka H (1993) Effects of taxol on the development of the cell plate and of the phragmoplast in tobacco BY-2 cells. Plant Cell Physiol 34: 21–29

    CAS  Google Scholar 

  • Yoshihara T, Orner ESA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53: 2835–2837

    Article  CAS  Google Scholar 

  • Young T, Hyams JS, Lloyd CW (1994) Increased cell-cycle-dependent staining of plant cells by the antibody MPM-2 correlates with preprophase band formation. Plant J 5: 279–284

    Article  CAS  Google Scholar 

  • Zandomeni K, Schopfer P (1994) Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress. Protoplasma 182: 96–101

    Article  PubMed  CAS  Google Scholar 

  • Zepf E (1952) Über die Differenzierung des Sphagnumblatts. Z Bot 40: 87–118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nick, P. (2000). Control of plant shape. In: Nick, P. (eds) Plant Microtubules. Plant Cell Monographs, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22300-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22300-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22302-4

  • Online ISBN: 978-3-662-22300-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics