V-ATPases in Insects

  • Julian A. T. Dow
Part of the Molecular Biology Intelligence Unit book series (MBIU)


Insects are one of the most successful classes of organism in the world. Their small size, impermeable exocuticle and short generation times have allowed them to adapt to exploit a huge range of ecological niches, many of which place them in conflict with humans. It has been estimated from our rate of discovery of new species that as many as 30 M species of insect exist, comfortably more than all other living species put together. So a study of how insects exploit V-ATPases is a study of how most organisms exploit them.


Salivary Gland Goblet Cell Fluid Secretion Malpighian Tubule American Zoologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harvey, W. R. and Nedergaard, S. (1964). Sodium-independent active transport of potassium in the isolated midgut of the cecropia silkworm. Proc.Natn.Acad.Sci.U.S.A. 51, 757–765.Google Scholar
  2. 2.
    Wood, J. L. and Harvey, W. R. (1975). Active transport of potassium by the Cecropia midgut; tracer kinetic theory and transport pool size. J. exp. Biol. 63, 301–311.PubMedGoogle Scholar
  3. 3.
    Wieczorek, H. (1992). The insect V-ATPase, a plasma-membrane proton pump energizing secondary active-transport-molecular analysis of electrogenic potassium-transport in the tobacco hornworm midgut. J. exp. Biol. 172, 335–343.PubMedGoogle Scholar
  4. 4.
    Wieczorek, H., Putzenlechner, M., Zeiske, W., and Klein, U. (1991). A vacuolar-type proton pump energizes H+/K+ antiport in an animal plasma membrane. J.Biol.Chem. 266, 15340–15347.PubMedGoogle Scholar
  5. 5.
    Wieczorek, H., Weerth, S., Schindlebeck, M., and Klein, U. (1989). A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J.Biol.Chem. 264, 11143–11148.PubMedGoogle Scholar
  6. 6.
    Dow, J. A. T. (1986). Insect midgut function. Adv. Insect Physiol. 19, 187–328.Google Scholar
  7. 7.
    Gluck, S. and Nelson, R. (1992). The role of the V-ATPase in renal epithelial H+ transport. J. exp. Biol. 172, 205–218.PubMedGoogle Scholar
  8. 8.
    Harvey, B. J. (1992). Energization of sodium-absorption by the H+-ATPase pump in mitochondria-rich cells of frog skin. J. exp. Biol. 172, 289–309.PubMedGoogle Scholar
  9. 9.
    Chatterjee, D., Chakraborty, M., Leit, M., Neff, L., Jamsakellokumpu, S., Fuchs, R., Bartkiewicz, M., Hernando, N., and Baron, R. (1992). The osteoclast proton pump differs in its pharmacology and catalytic subunits from other vacuolar H+-ATPases. J. exp. Biol. 172, 193–204.PubMedGoogle Scholar
  10. 10.
    House, C. R. (1980). Physiology of invertebrate salivary glands. Biol.Rev. 55, 417–473.Google Scholar
  11. 11.
    Berridge, M. J. and Irvine, R. F. (1984). Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312, 315–321.PubMedGoogle Scholar
  12. 12.
    Berridge, M. J., Lindley, B. D., and Prince, W. T. (1975). Stimulus-secretion coupling in an insect salivary gland: cell activation by elevated potassium concentrations. J. exp. Biol. 62, 629–636.PubMedGoogle Scholar
  13. 13.
    Just, F. and Walz, B. (1993). Immunocytochemical localization of H+-ATPase in salivary glands of the cockroach, Periplaneta americana. Proc. German Zool. Soc. 86, 28.Google Scholar
  14. 14.
    Klein, U. (1992). The insect V-ATPase, a plasma-membrane proton pump energizing secondary active transport-immunological evidence for the occurrence of a V-ATPase in insect ion-transporting epithelia. J. exp. Biol. 172, 345–354.PubMedGoogle Scholar
  15. 15.
    Harvey, W. R., Cioffi, M., and Wolfersberger, M. G. (1981). Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Amer.Zool. 21, 775–791.Google Scholar
  16. 16.
    Thomas, M. V. and May, T. E. (1984a). Active potassium ion transport across the caterpillar midgut I. Tissue electrical properties and potassium ion transport inhibition. J. exp. Biol. 108, 273–291.Google Scholar
  17. 17.
    Thomas, M. V. and May, T. E. (1984b). Active potassium transport across the caterpillar midgut II. Intracellular microelectrode studies. J. exp. Biol. 108, 293–304.Google Scholar
  18. 18.
    Harvey, W. R. and Wolfersberger, M. G. (1979). Mechanism of inhibition of active potassium transport in isolated midgut of Manduca sexta by Bacillus thuringiensis endotoxin. J. exp. Biol. 83, 293–294.PubMedGoogle Scholar
  19. 19.
    Schweikl, H., Klein, U., Schindlebeck, M., and Wieczorek, H. (1989). A vacuolar-type ATPase, partially purified from potassium transporting plasma membranes of tobacco hornworm midgut. J.Biol.Chem. 264, 11136–11142.PubMedGoogle Scholar
  20. 20.
    Hakim, R. S., Baldwin, K. M., and Bayer, P. E. (1988). Cell differentiation in the embryonic midgut of the tobacco hornworm, Manduca sexta. Tissue & Cell 20, 51–62.Google Scholar
  21. 21.
    Baldwin, K. M. and Hakim, R. S. (1991). Growth and differentiation of the larval midgut epithelium during molting in the moth, Manduca sexta. Tissue & Cell 23, 411–422.Google Scholar
  22. 22.
    Wigglesworth, V.B. The principles of insect physiology. Seventh edition ed., London: Chapman and Hall, 1972.Google Scholar
  23. 23.
    Lawrence, P. A. The making of a fly. Oxford: Blackwell Scientific, 1993.Google Scholar
  24. 24.
    Flower, N. E. and Filshie, B. K. (1976). Goblet cell membrane differentiations in the midgut of a lepidopteran larva. J.Cell Sci. 20, 357–375.PubMedGoogle Scholar
  25. 25.
    Moffett, D. F. and Koch, A. (1992). Driving forces and pathways for H+ and K+ transport in insect midgut goblet cells. J. exp. Biol. 172, 403–415.PubMedGoogle Scholar
  26. 26.
    Moffett, D. F. and Koch, A. (1991). Lidocaine and barium distinguish separate routes of transbasai K+ uptake in the posterior midgut of the tobacco hornworm (Manduca sexta). J. exp. Biol. 157, 243–256.Google Scholar
  27. 27.
    Moffett, D. F. and Koch, A. R. (1988a). Electrophysiology of K+ transport by midgut epithelium of lepidopteran insect larvae I. The transbasai electrochemical gradient. J. exp. Biol. 135, 25–38.Google Scholar
  28. 28.
    Moffett, D. F. and Koch, A. R. (1988b). Electrophysiology of K+ transport by midgut epithelium of lepidoteran insect larvae II. The transapical electrochemical gradient. J. exp. Biol. 135, 39–49.Google Scholar
  29. 29.
    Clegg, C. H., Correli, L. A., Cadd, G. G., and McKnight, G. S. (1987). Inhibition of intracellular cAMP-dependent protein kinase using mutant genes of the regulatory type I subunit. J. Biol. Chem. 262, 13111–9.PubMedGoogle Scholar
  30. 30.
    Dow, J. A. T. (1992). pH gradients in lepidopteran midgut. J. exp. Biol. 172, 355–375.PubMedGoogle Scholar
  31. 31.
    Maddrell, S. H. P. and O’Donnell, M. J. (1992). Insect Malpighian tubules: V-ATPase action in ion and fluid transport. J. exp. Biol. 172, 417–429.PubMedGoogle Scholar
  32. 32.
    Harvey, B. J. and Dow, J. A. T. (1994). A high-conductance chloride channel in apical membranes of Drosophila melanogaster Malpighian tubule. In preparationGoogle Scholar
  33. 33.
    Brown, P. D., Greenwood, S. L., Robinson, J., and Boyd, R. (1993). Chloride channels of high conductance in the microvillous membrane of term human placenta. Placenta 14, 103–115.PubMedGoogle Scholar
  34. 34.
    Reeves, W. B. and Andreoli, T. E. (1992). Renal epithelial chloride channels. Annual Review Of Physiology 54, 29–50.PubMedGoogle Scholar
  35. 35.
    Phillips, J. E., Hanrahan, J., Chamberlin, M., and Thomson, B. (1986). Mechanisms and control of reabsorption in insect hindgut. Advances In Insect Physiology 19, 329–422.Google Scholar
  36. 36.
    Maddrell, S. H. P. and O’Donnell, M. J. (1993). Gramicidin switches transport in insect epithelia from potassium to sodium. J. exp. Biol. 177, 287–292.Google Scholar
  37. 37.
    Lebovitz, R. M., Takeyasu, K., and Fambrough, D. M. (1989). Molecular characterization and expression of the (Na+ + K+)-ATPase a-subunit in Drosophila melanogaster. EMBO J. 8, 193–202.PubMedGoogle Scholar
  38. 38.
    Anstee, J. H. and Bowler, K. (1979). Ouabain sensitivity of insect epithelial tissues. Comp.Biochem.Physiol. 62A, 763–769.Google Scholar
  39. 39.
    Bertram, G., Shleithoff, L., Zimmermann, P., and Wessing, A. (1991). Bafilomycin-Al is a potent inhibitor of urine formation by Malpighian tubules of Drosophila hydei-is a vacuolar-type ATPase involved in ion and fluid secretion? J.Insect Physiol. 37, 201–209.Google Scholar
  40. 40.
    Dow, J. A. T., Maddrell, S. H. P., Görtz, A., Skaer, N. V., Brogan, S., and Kaiser, K. (1994b). The Malpighian tubules of Drosophila melanogaster: fluid secretion and its control. J. exp. Biol. 197, in press.Google Scholar
  41. 41.
    Maddrell, S. H. P. and Overton, J. A.(1988). Stimulation of sodium transport and fluid secretion by ouabain in an insect Malpighian tubule. J. exp. Biol. 137, 265–276.PubMedGoogle Scholar
  42. 42.
    Weltens, R., Leyssens, A., Zhang, A. L., Lohhrmann, E., Steels, P., and van Kerkhove, E. (1992). Unmasking of the apical electrogenic H pump in isolated Malpighian tubules (Formica polyctena) by the use of barium. Cell. Physiol. Biochem. 2, 101–116.Google Scholar
  43. 43.
    Ohya, Y., Umemoto, N., Tanida, I., Ohta, A., Iida, H., and Anraku, Y. (1991). Calcium-sensitive cls mutants of saccharomyces-cerevisiae showing a pet-phenotype are ascribable to defects of vacuolar membrane H+-ATPase activity. J. Biol. Chem. 266, 13971–13977.PubMedGoogle Scholar
  44. 44.
    Maddrell, S. H. P. (1976). Excretion of alkaloids by Malpighian tubules of insects. J. exp. Biol. 64, 267–281.PubMedGoogle Scholar
  45. 45.
    Spring, J. H. and Phillips, J. E. (1980a). Studies on locust rectum I. Stimulants of electrogenic ion transport. J. exp. Biol. 86, 211–223.Google Scholar
  46. 46.
    Spring, J. H. and Phillips, J. E. (1980b). Studies on locust rectum II. Identification of specific ion transport processes regulated by corpora cardiaca and cyclic AMP. J. exp. Biol. 86, 225–236.Google Scholar
  47. 47.
    Klein, U., Timme, M., Novak, F. J. S., Lepier, A., Harvey, W. R., and Wieczorek, H. (1994). In preparationGoogle Scholar
  48. 48.
    Thomson, R. B. and Phillips, J. E. (1992). Electrogenic proton secretion in the hindgut of the desert locust, Schistocerca gregaria. J. Membrane Biol. 125, 133–154.Google Scholar
  49. 49.
    Jan, Y. N. and Jan, L. Y. (1990). Genes required for specifying cell fates in Drosophila embryonic sensory nervous system. Trends In Neurosciences 13, 493–498.PubMedGoogle Scholar
  50. 50.
    Thurm, U. and Kuppers, J. (1980). Epithelial physiology of insect sensilla. In VBW80-Insect biology in the future, (ed. M. Locke and D.S. Smith), pp. 735–76. London: Academic Press.Google Scholar
  51. 51.
    Wieczorek, H. (1982). A biochemical approach to the electrogenic potassium pump of insect sensilla: potassium sensitive ATPase in the labellum of the fly. J. comp. Physiol. 148A, 303–311.Google Scholar
  52. 52.
    Wieczorek, H. and Gnatzy, W. (1985). The electrogenic potassium pump of insect cuticular sensilla. Further characterisation of ouabain and azide-insensitive, K+-stimulated ATPases in the labellum of the blowfly. Insect Biochem. 15, 225–232.Google Scholar
  53. 53.
    Bradley, T. J. (1984). Mitochondrial placement and function in insect ion-transporting cells. Amer.Zool. 24, 157–167.Google Scholar
  54. 54.
    Dow, J. A. T. and O’Donnell, M. J. (1990). Reversible alkalinization by Manduca sexta midgut. J. exp. Biol. 150, 247–256.Google Scholar
  55. 55.
    Gräf, R., Novak, F.J.S., Harvey, W.R., Wieczorek, H. (1992). Cloning and sequencing of cDNA encoding the putative insect plasma membrane V-ATPase subunit A. FEBS Letters 119-122.Google Scholar
  56. 56.
    Dow, J.A.T. and Harvey, W.R. (1988). The role of midgut electrogenic K+ pump potential difference in regulating lumen K+ and pH in larval lepidoptera. J. exp. Biol. 140, 455–463.PubMedGoogle Scholar
  57. 57.
    Dow, J. A. T. and Peacock, J. M. (1989). Microelectrode evidence for the electrical isolation of goblet cavities of the middle midgut of Manduca sexta. J. exp. Biol. 143, 101–114.Google Scholar
  58. 58.
    Giordana, B., Parenti, P., Hanozet, G. M., and Sacchi, V. F. (1985). Electrogenic K+-basic amino acid cotransport in the midgut of lepidopteran larvae. J.Membrane Biol. 88, 45–53.Google Scholar
  59. 59.
    Maddrell, S. H. P. (1991). The fastest fluid-secreting cell known: the upper Malpighian tubule cell of Rhodnius. BioEssays 13, 357–362.Google Scholar
  60. 60.
    Dow, J. A. T., Maddrell, S. H. P., Davies, S.-A., Skaer, N. J. V., and Kaiser, K. (1994a). A novel role for the nitric oxide/cyclic GMP signalling pathway: the control of fluid secretion in Drosophila. Amer.J.Physiol. 266, R1716–R1719.PubMedGoogle Scholar
  61. 61.
    Dow, J. A. T. and Maddrell, S. H. P. (1993). Fluid secretion by the Malpighian tubule of Drosophila melanogaster is stimulated by nitric oxide and cGMP. J. Physiol. 473, 97P.Google Scholar
  62. 62.
    Moriyama, Y., Takano, T., and Ohkuma, S. (1982). Acridine orange as a fluorescent probe for lysosomal proton pump. J. Biochem. 92, 1333–1336.PubMedGoogle Scholar
  63. 63.
    Russell, V. E. W., Klein, U., Reuveni, M., Spaeth, D. D., Wolfersberger, M. G., and Harvey, W. R. (1992). Antibodies to mammalian and plant V-ATPases cross react with the V-ATPase of insect cation-transporting plasma membranes. J. exp. Biol. 166, 131–143.PubMedGoogle Scholar
  64. 64.
    Gillespie, J., Ozanne, S., Percy, J., Warren, M., Haywood, J., and Apps, D. (1991). The vacuolar H+-translocating ATPase of renal tubules con-D. (1991). The vacuolar H+-translocating ATPase of renal tubules contains a 115-kDa glycosylated subunit. FEBS Letters 282, 69–72.PubMedGoogle Scholar
  65. 65.
    Gräf, R., Lepier, A., Harvey, W. R., and Wieczorek, H. (1994). A novel 14-kDa V-ATPase subunit in the tobacco hornworm midgut. J.Biol.Chem. 269, in press.Google Scholar
  66. 66.
    Klein, U. and Zimmermann, B. (1991). The vacuolar-type ATPase from insect plasma membrane: immunocytochemical localization in insect sensilla. Cell Tissue Res. 266, 265–273.Google Scholar
  67. 67.
    Gill, S. S. and Ross, L. S. (1991). Molecular-cloning and characterization of the B-subunit of a vacuolar H+-ATPase from the midgut and Mal-pighian tubules of Helicoverpa virescens. Arch.Biochem.Biophys. 291, 92–99.PubMedGoogle Scholar
  68. 68.
    Dow, J. A. T., Goodwin, S. F., and Kaiser, K. (1994). Analysis of the gene encoding the 57 kDa B-subunit of the V-ATPase in Drosophila melanogaster. In preparationGoogle Scholar
  69. 69.
    Dow, J. A. T., Goodwin, S. F., and Kaiser, K. (1992). Analysis of the gene encoding a 16-kDa proteolipid subunit of the vacuolar H+-ATPase from Manduca sexta midgut and tubules. Gene 122, 355–360.PubMedGoogle Scholar
  70. 70.
    Meagher, L., McLean, P., and Finbow, M. E. (1990). Sequence of a cDNA from Drosophila coding for the 16 kD proteolipid component of the vacuolar H+-ATPase. Nucleic Acids Res. 18, 6712.PubMedGoogle Scholar
  71. 71.
    Warner, A. E. (1988). The gap junction. J.Cell Sci. 89, 1–7.PubMedGoogle Scholar
  72. 72.
    Berdan, R. C. and Gilula, N. B. (1988). The arthropod gap junction and pseudo-gap junction: isolation and preliminary biochemical analysis. Cell Tissue Res. 251, 257–274.PubMedGoogle Scholar
  73. 73.
    Lane, N. J. and Finbow, M. (1988). Isolation of gap and septate junctions from arthropod tissues. J.Cell Biol. 107, 793a.Google Scholar
  74. 74.
    O’Donnell, M. J. (1992). A simple method for construction of flexible, subminiature ion-selective electrodes. J. exp. Biol. 162, 353–359.Google Scholar
  75. 75.
    Finbow, M. E. and Pitts, J. D. (1993). Is the gap junction channel-the connexon-made of connexin or ductin? J.Cell Sci. 106, 463–471.PubMedGoogle Scholar
  76. 76.
    Dermietzel, R., Volker, M., Hwang, T. K., Berzborn, R. J., and Meyer, H. E. (1989). A 16 kDa protein co-isolating with gap junctions from brain tissue belonging to the class of proteolipids of the vacuolar H+-ATPases. FEBS Lett. 253, 1–5.PubMedGoogle Scholar
  77. 77.
    Ryerse, J. S. (1978). Ecdysterone switches off fluid secretion at pupation in insect Malpighian tubules. Nature 271, 745–746.Google Scholar
  78. 78.
    Ryerse, J. S. (1991). Gap junction protein tissue distribution and abundance in the adult brain of Drosophila. Tissue & Cell 23, 709–718.Google Scholar
  79. 79.
    Birman, S., Meunier, F.-M., Lesbats, B., Le Caer, J.-P., Rossier, J., and Israël, M. (1990). A 15 kD proteolipid found in mediatophore preparations from Torpedo electric organ presents high sequence homology with the bovine chromaffin granule protonophore. FEBS Lett. 261, 303–306.PubMedGoogle Scholar
  80. 80.
    Cioffi, M. and Wolfersberger, M. G. (1983). Isolation of separate apical, lateral and basal plasma membrane from cells of an insect epithelium. A procedure based on tissue organization and ultrastructure. Tissue & Cell 15, 781–803.Google Scholar
  81. 81.
    Bohrmann, J. (1993). Antisera against a channel-forming 16 kDa protein inhibit dye-coupling and bind to cell membranes in Drosophila ovarian follicles. J.Cell Sci. 105, 513–518.PubMedGoogle Scholar
  82. Disposition and orientation of ductin (DCCD-reactive vacuolar H+-AT-Pase subunit) in mammalian membrane complexes. Exp. Cell Res. 207, 261-270.Google Scholar
  83. 83.
    Finbow, M. E., Eliopoulos, E. E., Jackson, P. J., Keen, J. N., Meagher, L., Thompson, P., Jones, P., and Findlay, J. B. C. (1992). Structure of a 16 kDa integral membrane protein that has identity to the putative proton channel of the vacuolar H+-ATPase. Protein Engineering 5, 7–15.PubMedGoogle Scholar
  84. 84.
    Finbow, M. E., Pitts, J. D., Goldstein, D. J., Schlegel, R., and Findlay, J. B. C. (1991). The E5 oncoprotein target: A 16-kDa channel-forming protein with diverse functions. Molecular Carcinogenesis 4, 441–444.PubMedGoogle Scholar
  85. 85.
    Rubin, G. M. (1988). Drosophila melanogaster as an experimental organism. Science 240, 1453–1459.PubMedGoogle Scholar
  86. 86.
    Lai, S. P., Watson, J. C., Hansen, J. N., and Sze, H. (1991). Molecular cloning and sequencing of cDNAs encoding the proteolipid subunit of the vacuolar H+-ATPase from a higher plant. J. Biol. Chem. 266, 16078–84.PubMedGoogle Scholar
  87. 87.
    Pietrantonio, P. V. and Gill, S. S. (1993). Sequence of a 17 kDa vacuolar H+-ATPase proteolipid subunit from insect midgut and Malpighian tubules. Insect Biochem. Molec. Biol. 23, 675–680.Google Scholar
  88. 88.
    Brown, D., Sabolic, I., and Gluck, S. (1992). Polarized targeting of V-ATPase in kidney epithelial cells. J. exp. Biol. 172, 231–243.PubMedGoogle Scholar
  89. 89.
    Gluck, S. L., Nelson, R. D., Lee, B. S., Wang, Z. Q., Guo, X. L., Fu, J. Y., and Zhang, K. (1992). Biochemistry of the renal V-ATPase. J. exp. Biol. 172, 219–229.PubMedGoogle Scholar
  90. 90.
    Brown, D., Sabolic, L, and Gluck, S. (1991). Colchicine-induced redistribution of proton pumps in kidney epithelial cells. Kidney International 40, S79–S83.Google Scholar
  91. 91.
    Bradley, T. J. (1989). Membrane dynamics in insect Malpighian tubules. Am.J.Physiol. 257, R967–R972.PubMedGoogle Scholar
  92. 92.
    Stone, D. K., Crider, B. P., and Xie, X.-S. (1990). Structural properties of vacuolar proton pumps. Kidney international 38, 649–653.PubMedGoogle Scholar
  93. 93.
    Butt, E., Geiger, J., Jarchau, T., Lohmann, S. M., and Walter, U. (1993). The cGMP-dependent protein-kinase-gene, protein, and function. Neurochemical Research 18, 27–42.PubMedGoogle Scholar
  94. 94.
    Moffett, D. F., Smith, C. J., and Green, J. M. (1983). Effects of caffeine, cAMP and A23187 on ion transport by the midgut of tobacco horn-worm. Comp.Biochem.Physiol. 75C, 305–310.Google Scholar
  95. 95.
    Wolfersberger, M. G. and Giangiacomo, K. M. (1983). Active potassium transport by the isolated lepidopteran larval midgut: stimulation of net potassium flux and elimination of the slower phase decline of the short circuit current. J. exp. Biol. 102, 199–210.Google Scholar
  96. 96.
    Ryerse, J. S. (1980). The control of Malpighian tubule developmental physiology by 20-hydroxyecdysone and juvenile hormone. J. Insect Physiol. 26, 449–457.Google Scholar
  97. 97.
    Ryerse, J. S. (1989). Electron microscope immunolocation of gap junctions in Drosophila. Tisue & Cell 21, 835–839.Google Scholar
  98. 98.
    Cioffi, M. (1984). Comparative ultrastructure of arthropod transporting epithelia. Amer.Zool. 24, 139–156.Google Scholar
  99. 99.
    van Hille, B., Richener, H., Evans, D.B., Green, J. R. and Bilbe, G. (1993). Identification of two subunit A isoforms of the vacuolar (1993). Identification of two subunit A isoforms of the vacuolar H+-ATPase in human osteoclastoma. Journal of Biological Chemistry 268, 7075–80.PubMedGoogle Scholar
  100. 100.
    Nelson, H. and Nelson, N. (1990). Disruption of genes encoding sub-units of yeast vacuolar H+-ATPase causes conditional lethality. Proc. Natl Acad. Sci. U. S. A. 87, 3503–3507.PubMedGoogle Scholar
  101. 101.
    Noumi, T., Beltran, C., Nelson, H., and Nelson, N. (1991). Mutational analysis of yeast vacuolar H+-ATPase. Proc. Natl Acad. Sci. U. S. A. 88, 1938–1942.PubMedGoogle Scholar
  102. 102.
    Lindsley, D. L. and Zimm, G. G. The genome of Drosophila melanogaster. San Diego: Academic Press, 1992.Google Scholar
  103. 103.
    Kaiser, K. and Goodwin, S. F. (1990). “Site-selected” transposon mutagenesis of Drosophila. Proc.Natn.Acad.Sci.U.S.A. 87, 1686–1690.Google Scholar
  104. 104.
    Spradling, A. C. and Rubin, G. M. (1982). Transposition of cloned P elements into Drosophila germ line chromosomes. Science 218, 341–347.PubMedGoogle Scholar
  105. 105.
    Gogarten, J. P., Fichmann, J., Braun, Y., Morgan, L., Styles, P., Taiz, S. L., DeLapp, K., and Taiz, L. (1992). The use of antisense mRNA to inhibit the tonoplast H+-ATPase in carrot. Plant Cell 4, 851–64.PubMedGoogle Scholar
  106. 106.
    Zhao, J. J. and Pick, L. (1993). Generating loss-of-function phenotypes of the fushi tarazu gene with a targeted ribozyme in Drosophila. Nature 365, 448–451.PubMedGoogle Scholar
  107. 107.
    Knipple, D. C. and Marsella-Herrick, P. (1988). Versatile plasmid vectors for the construction, analysis and heat-inducible expression of hybrid genes in eukaryotic cells. Nucleic Acid Res. 16, 7748.PubMedGoogle Scholar
  108. 108.
    McGarry, T. J. and Lindquist, S. (1986). Inhibition of heat shock protein synthesis by heat-inducible antisense RNA. Proc.Natn.Acad.Sci.U.S.A. 83, 399–403.Google Scholar
  109. 109.
    Bellen, H. J., O’Kane, C., Wilson, C., Grossniklaus, U., Pearson, R. K., and Gehring, W. J. (1989). P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes & Dev. 3, 1288–1300.Google Scholar
  110. 110.
    O’Kane, C. J. and Gehring, W. J. (1987). Detection in situ of genomic regulatory elements in Drosophila. Proc.Natl.Acad.Sci.U.S.A. 84, 9123–9127.PubMedGoogle Scholar
  111. 111.
    Kaiser, K. (1993). Second-generation enhancer traps. Current Biology 3, 560–562.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Julian A. T. Dow

There are no affiliations available

Personalised recommendations