Stereo Chemistry and Electronic Structure XAFS Spectroscopy: Data-Analysis and Applications

  • D. C. Koningsberger


The structural and electronic characterization of a material provides a basic understanding of its properties. Traditionally, diffraction techniques (XRD, neutron diffraction, LEED) are being used for most of the structural investigations and reliable structures can be determined for materials that exhibit a long-range structural order (like single crystals or polycrystalline material). X-ray Absorption Fine Structure (XAFS) spectroscopy is a powerful technique to characterize all forms of matter irrespective of their degree of crystallinity. EXAFS (Extended X-ray Absorption Fine Structure spectroscopy probes the local structure of a material. The local structure of highly disordered solids, amorphous materials and liquids can be unraveled with EXAFS. In addition, the chemical state and the electronic properties can be determined from the X-ray Absorption Near Edge Structure (XANES) which extends within 40 eV of the X-ray absorption edge. One of the major advantages of XAFS is its atomic selectivity which enables the investigation of the local structure of each different constituent of a sample. As shown by Fontaine (1993), the recent availability of high-brightness synchrotron radiation sources has resulted in a prosperous development XAFS spectroscopy.


Platinum Foil EXAFS Spectrum EXAFS Data Stereo Chemistry White Line Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ASHLEY C.A., DONIACH S., 1975 — Phys. Rev. B11, 1279.CrossRefADSGoogle Scholar
  2. BINSTED N., COOK S.L., EVANS J., GREAVES G.N., PRICE R.J., 1987 — J. Am. Chem. Soc. 109, 3669.CrossRefGoogle Scholar
  3. BOUDART M, DJEGA-MARIADASSOU, 1984 — Kinetics of Heterogenous Catalytic Reactions — Princeton University Press, Princeton N.J.Google Scholar
  4. BROWN M., PEIERLES R.E., STERN E.A., 1977 — Phys. Rev. B15, 738.CrossRefADSGoogle Scholar
  5. BUNKER B.A., STERN E.A., 1983 — Phys. Rev. B27, 1017.CrossRefADSGoogle Scholar
  6. CITRIN P.H., EISENBERGER P., KINCAID B.M., 1976 — Phys. Rev. Lett. 22, 3551.Google Scholar
  7. COOK JR. J.W., SAYERS D.E., 1981 — J. Appl. Phys. 52, 5024.CrossRefADSGoogle Scholar
  8. VAN DIJK M.P., VAN VEEN J.A.R., BOUWENS S.M.A.M., VAN ZON F.B.M., KONINGSBERGER D.C., 1990 — Proc. 2nd European Conf. on Progress in X-Ray Synchrotron Radiation Research — SIF (Bologna) 139–142.Google Scholar
  9. FONTAINE A., 1993 — Neutron and Synchrotron Radiation for Condensed Matter Studies, Vol I, Theory, Instruments and Methods — Springer-Verlag (Berlin) and Les Editions de Physique (Les Ulis, France).Google Scholar
  10. GALLEZOT P., DATKA J., MASSARDIER J., PRIMET M., IMELIK B., 1977 — Proc. 6th Int. Congr. Catal., London 1976, — Chem. Society (London) 696.Google Scholar
  11. GALLEZOT P., WEBER R., DALLA BETTA R.A., BOUDART M., 1979 — Z. Naturforsch A34, 40.ADSGoogle Scholar
  12. GORDON M.B., CYROT-LACKMANN F., DESJONQUERES M.C., 1977 — Surf. Sci. 68, 359.CrossRefADSGoogle Scholar
  13. HALLER G.L., RESASCO D.E., 1989 — Adv. Catal. 36, 173.CrossRefGoogle Scholar
  14. HENRICH V.C., 1985 — Rep. Progr. Phys. 48, 1481.CrossRefADSGoogle Scholar
  15. HORSLEY J.A., 1982 — J. Chem. Phys. 76, 1451.CrossRefADSGoogle Scholar
  16. MCHUGH B.J., LARSEN G., HALLER G.L., 1990 — J. Phys. Chem. 94, 8621.CrossRefGoogle Scholar
  17. MCKALE A.G., KNAPP G.S., CHAN S.-K., 1986 — Phys. Rev. B33, 841.CrossRefADSGoogle Scholar
  18. MCKALE A.G., VEAL B.W., PAULIKAS A.P., CHAN S.-K., KNAPP G.S., 1988 — J. Am. Chem. Soc. 110, 3763.CrossRefGoogle Scholar
  19. KAMPERS F.W.H., 1989 — Exafs in Catalysis; Instrumentation and Applications — PhD Thesis, Eindhoven University of Technology.Google Scholar
  20. KAMPERS F.W.H., MAAS T.M.J., VAN GRONDELLE J., BRINKGREVE P., KONINGSBERGER D.C., 1989 — Rev. Sci. Instr. 60, 2635.Google Scholar
  21. KIP B.J., DUIVENVOORDEN F.B.M., KONINGSBERGER D.C., PRINS R., 1986 — J. Am. Chem. Soc. 108, 5633.CrossRefGoogle Scholar
  22. KIP B.J., DUIVENVOORDEN F.B.M., KONINGSBERGER D.C., PRINS R., 1987 — J. Catal. 105, 26.CrossRefGoogle Scholar
  23. KONINGSBERGER D.C., GATES B.C., 1992 — Catal. Lett. 14, 271.CrossRefGoogle Scholar
  24. LAMB H.H., GATES B.C., KNOEZINGER H., 1988 — Angew. Chem. Int. Ed. Engl. 27, 1127.CrossRefGoogle Scholar
  25. LEE P.A., PENDRY J.B., 1975 — Phys. Rev. B27, 95.Google Scholar
  26. LENGELER B., 1986 — J. Phys. (Paris) 47, 75.Google Scholar
  27. LYTLE F.W., 1976 — J. Catal. 43, 376.CrossRefGoogle Scholar
  28. LYTLE F.W., WEI P.S.P., GREGOR R.B., VIA G.H., SINFELT J.H., 1979 — J. Chem. Phys. 70, 4849.CrossRefADSGoogle Scholar
  29. LYTLE F.W.(1), Greegor R.B., Marques E.C., Sandstrom D.R., Via G.H., Sinfelt J.H., 1985 — J. Catal. 95, 546.CrossRefGoogle Scholar
  30. LYTLE F.W.(2), GREEGOR R.B., MARQUES E.C., BIEBESHEIMER V.A., SANDSTROM D.R., HORSLEY J.A., VIA G.H., SINFELT J.H., 1985 — ACS Symp. Ser. 288, 280.CrossRefGoogle Scholar
  31. LYTLE F.W., SAYERS D.E., STERN E.A., 1988 — Physica B158, 701.Google Scholar
  32. LYTLE F.W., GREEGOR R.B., 1990 — Appl. Phys. Lett. 56, 192.CrossRefADSGoogle Scholar
  33. MALONEY S.D., VAN ZON F.B.M., KELLEY M.J., KONINGSBERGER D.C., GATES B.C., 1990 — Catal. Lett. 5, 161.CrossRefGoogle Scholar
  34. MALONEY S.D., KELLEY M.J., KONINGSBERGER D.C., GATES B.C., 1991 — J. Phys. Chem. 95, 9406.CrossRefGoogle Scholar
  35. MANSOUR A.N., COOK JR. J.W., SAYERS D.E., 1984 — J. Phys. Chem 88, 2330.CrossRefGoogle Scholar
  36. MARTENS J.H.A., PRINS R., ZANDBERGEN H., KONINGSBERGER D.C., 1988 — J. Phys. Chem. 92, 1903.CrossRefGoogle Scholar
  37. MATTHEISS L.F., DIETZ R.E., 1980 — Phys. Rev. B22, 1663.CrossRefADSGoogle Scholar
  38. MILLER J.T., MEYERS B.L., MODICA F.S., LANE F.S., VAARKAMP M., KONINGSBERGER D.C., 1993 — J. Catalysis, in press.Google Scholar
  39. MOTT N.F., 1949 — Proc. Phys. Soc. London 62, 416.CrossRefADSGoogle Scholar
  40. MUSTRE DE LEON J., REHR J.J., ZABINSKY S.I., ALBERS R.C., 1991 — Phys. Rev. B44, 4146.CrossRefGoogle Scholar
  41. PENDRY J.B., 1974 — Low Energy Electron Diffraction — Academic Press (London).Google Scholar
  42. RAVENEK W., JANSEN A.P.J., VAN SANTEN R.A., 1989 — J. Phys. Chem. 93, 6445.CrossRefGoogle Scholar
  43. SAILLARD J.Y., HOFFMANN R., 1984 — J. Am. Chem. Soc. 106, 2006.CrossRefGoogle Scholar
  44. SAMANT M.G., BOUDART M., 1991 — J. Phys. Chem. 95, 4070.CrossRefGoogle Scholar
  45. SAYERS D.E., 1987 — X-Ray Absorption: Principles, Applications, Techniques of Exafs, Sexafs and Xanes — John Wiley & Sons (New York), 211–253.Google Scholar
  46. STERN E.A., SAYERS D.E., LYTLE F.W., 1975 — Phys. Rev. B11, 4836.CrossRefADSGoogle Scholar
  47. STEVENSON S.A., DUMESTIC J.A., RUCKENSTEIN E., Editors, 1987 — MetalSupport Interactions in Catalysis, Sintering and Redispersion — Van Nostrand Reinhold (New York).Google Scholar
  48. TEO B.K., LEE P.A., 1979 — J. Am. Chem. Soc. 101, 2815.CrossRefGoogle Scholar
  49. VAARKAMP M.(1), DRING I., OLDMAN R.J., STERN E.A., KONINGSBERGER D.C., 1993 — Phys. Rev. B., in press.Google Scholar
  50. VAARKAMP M.(2), 1993 — The Structure and Catalytic Properties of Supported Platinum Catalysts — PhD Thesis, Eindhoven University of Technology.Google Scholar
  51. VAARKAMP M.(3), MODICA F.S., MILLER J.T., KONINGSBERGER, 1993 — J. Catal., in press.Google Scholar
  52. YOSHITAKE H., IWASAWA Y., 1991 — J. Phys. Chem. 95, 7368.CrossRefGoogle Scholar
  53. van ZON J.B.A.D., KONINGSBERGER D.C., VAN’t BLIK H.F.J., Sayers D.E., 1985 — J. Chem. Phys. 82, 5742.CrossRefADSGoogle Scholar
  54. van ZON F.B.M., MALONEY S.D., GATES B.C., KONINGSBERGER D.C., 1993 — J. Amer. Chem. Soc., in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. C. Koningsberger

There are no affiliations available

Personalised recommendations