Skip to main content

Cerebellar Grafting and the Recovery of Function

  • Chapter
Neural Transplantation in Cerebellar Ataxia

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

  • 74 Accesses

Abstract

Evidence for functional recovery after cerebellar transplantation has been obtained in the pcd mouse model of hereditary cerebellar ataxia.1–4 Grafts of embryonic day 11–12 (E11–E12) cerebellar cell suspensions were placed bilaterally into the deep cerebellar nuclei of the host mutants, according to the protocol that places emphasis on reconstructing the corticonuclear γ-aminobutyric acid (GABA)ergic projection.5 Vehicle-injected pcd homozygotes were used as controls in the behavioral studies. Animals were tested in a battery of motor tasks six weeks postoperatively to determine the recovery of behavioral responses. Surviving Purkinje cells immunoreactive for 28 kDa Ca2+-binding protein (CaBP) were found in all graft-recipient animals. Counts of CaBP-immunoreactive neurons in histochemical preparations of the transplanted cerebella, combined over both sides, yielded numbers in the range of 1000–6500 surviving Purkinje cells per animal, with a 2865 cell average.2

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Triarhou LC, Zhang W, Lee W-H. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport 1995; 6: 1827–1832.

    Article  PubMed  CAS  Google Scholar 

  2. Triarhou LC, Zhang W, Lee W-H. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transpl 1996; 5: 269–277.

    Article  CAS  Google Scholar 

  3. Zhang W, Lee W-H, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nature Med 1996; 2: 65–71.

    Article  PubMed  CAS  Google Scholar 

  4. Triarhou LC. The cerebellar model of neural grafting: Structural integration and functional recovery. Brain Res Bulletin 1996; 39: 127–138.

    Article  CAS  Google Scholar 

  5. Triarhou LC, Low WC, Ghetti B. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei of pcd mutant mice, with particular emphasis on re-establishment of a Purkinje cell cortico-nuclear projection. Anat Embryol (Berl) 1992; 185: 409–420.

    Article  CAS  Google Scholar 

  6. Bures J, Buresovâ O, Huston J. Techniques and Basic Experiments for the Study of Brain and Behavior. Amsterdam: Elsevier Scientific, 1976: 37–89.

    Google Scholar 

  7. Cory-Slechta DA. Behavioral measures of neurotoxicity. Neuro-toxicology 1989; 10: 271–296.

    CAS  Google Scholar 

  8. Ishimatsu S, Igisu H, Tanaka I. A simple apparatus to measure weakness and ataxia in the mouse. Neurotoxicology 1990; 11: 719.

    PubMed  CAS  Google Scholar 

  9. Jones BJ, Roberts DJ. The quantitative measurement of motor incoordination in naïve mice using an accelerating rotarod. J Pharm Pharmacol 1968; 20: 302–304.

    Article  PubMed  CAS  Google Scholar 

  10. Pellegrino LJ, Altman J. Effects of differential interference with postnatal cerebellar neurogenesis on motor performance, activity level, and maze learning of rats: A developmental study. J Comp Physiol Psychol 1979; 93: 1–33.

    Article  PubMed  CAS  Google Scholar 

  11. Altman J, Bayer SA. Embryonic development of the rat cerebellum. II. Translocation and regional distribution of the deep neurons. J Comp Neurol 1985; 231: 27–41.

    Article  PubMed  CAS  Google Scholar 

  12. Altman J, Bayer SA. Embryonic development of the rat cerebellum. III. Regional differences in the time of origin, migration, and settling of Purkinje cells. J Comp Neurol 1985; 231: 42–65.

    Article  PubMed  CAS  Google Scholar 

  13. Yuasa S, Kawamura K, Ono K et al. Development and migration of Purkinje cells in the mouse cerebellar primordium. Anat Embryol (Berl) 1991; 184: 195–212.

    Article  CAS  Google Scholar 

  14. Gardette R, Alvarado-Mallart RM, Crepel F et al. Electrophysiological demonstration of a synaptic integration of transplanted Purkinje cells into the cerebellum of the adult Purkinje cell degeneration mutant mouse. Neuroscience 1988; 24: 777–789.

    Article  PubMed  CAS  Google Scholar 

  15. Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci USA 1986; 83: 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  16. Sotelo C, Alvarado-Mallart RM. Reconstruction of the defective cerebellar circuitry in adult Purkinje cell degeneration mutant mice by Purkinje cell replacement through transplantation of solid embryonic implants. Neuroscience 1987; 20: 1–22.

    Article  PubMed  CAS  Google Scholar 

  17. Hudson DB, Valcana T, Bean G et al. Glutamic acid: a strong candidate as the neurotransmitter of the cerebellar granule cell. Neurochem Res 1976; 1: 73–81.

    Article  CAS  Google Scholar 

  18. Wetts R, Moran T, Oster-Granite M et al. Effect of Purkinje cell loss on complex motor behavior. Soc Neurosci Abstr 1985; 11: 1037.

    Google Scholar 

  19. Caddy KWT, Biscoe TJ. Structural and quantitative studies in the normal C3H and Lurcher mutant mouse. Phil Trans Roy Soc Lond (Biol) 1979; 287: 167–201.

    Article  CAS  Google Scholar 

  20. Mullen RJ, LaVail MM. Two new types of retinal degeneration in cerebellar mutant mice. Nature (Lond) 1975; 258: 528–530.

    Article  CAS  Google Scholar 

  21. Greer CA, Shepherd GM. Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration. Brain Res 1982; 235: 156–161.

    Article  PubMed  CAS  Google Scholar 

  22. O’Gorman S, Sidman RL. Degeneration of thalamic neurons in `Purkinje cell degeneration’ mutant mice. I. Distribution of neuron loss. J Comp Neurol 1985; 234: 277–297.

    Article  PubMed  Google Scholar 

  23. Björklund A, Lindvall O, Isacson O et al. Mechanisms of action of intracerebral neural implants: Studies on nigral and striatal grafts to the lesioned striatum. Trends Neurosci 1987; 10: 509–516.

    Article  Google Scholar 

  24. Mitsacos A, Stasi K, Kouvelas ED et al. Functional integration of transplanted Purkinje cells into the atrophic cerebellum: II. Inhibitory amino acid receptors and efferent innervation. Abstr Am Soc Neural Transpl 1996; 3: 50.

    Google Scholar 

  25. Bäurle J, Grösser-Cornehls U. Increased somatal parvalbumin and glycine immunoreactivity in the cerebellar targets of Purkinje cell degeneration mutants. Soc Neurosci Abstr 1995; 21: 2081.

    Google Scholar 

  26. Triarhou LC, Norton J, Alyea C et al. A quantitative study of the granule cells in the Purkinje cell degeneration (pcd) mutant. Ann Neurol 1985; 18: 146.

    Google Scholar 

  27. Ghetti B, Triarhou LC. The Purkinje cell degeneration mutant: A model to study the consequences of neuronal degeneration. In: Plaitakis A, ed. Cerebellar Degenerations: Clinical Neurobiology. Boston: Kluwer Academic Publishers, 1992: 159–181.

    Chapter  Google Scholar 

  28. Triarhou LC, Norton J, Ghetti B. Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp Brain Res 1987; 66: 577–588.

    Article  PubMed  CAS  Google Scholar 

  29. Ghetti B, Norton J, Triarhou LC. Nerve cell atrophy and loss in the inferior olivary complex of “Purkinje cell degeneration” mutant mice. J Comp Neurol 1987; 260: 409–422.

    Article  PubMed  CAS  Google Scholar 

  30. Triarhou LC, Ghetti B. Stabilisation of neurone number in the inferior olivary complex of aged `Purkinje cell degeneration’ mutant mice. Acta Neuropathol (Berl) 1991; 81: 597–602.

    Article  CAS  Google Scholar 

  31. Triarhou LC, Ghetti B. Monoaminergic nerve terminals in the cerebellar cortex of Purkinje cell degeneration mutant mice: Fine structural integrity and modification of cellular environs following loss of Purkinje and granule cells. Neuroscience 1986; 18: 795–807.

    Article  PubMed  CAS  Google Scholar 

  32. Triarhou LC, Ghetti B. Serotonin immunoreactivity in the cerebellum of two neurological mutant mice and the corresponding wild-type genetic stocks. J Chem Neuroanat 1991; 4: 421–428.

    Article  PubMed  CAS  Google Scholar 

  33. Triarhou LC, Low WC, Ghetti B. Serotonin fiber innervation of cerebellar cell suspensions intraparenchymally grafted to the cerebellum of pcd mutant mice. Neurochem Res 1992; 17: 475–482.

    Article  PubMed  CAS  Google Scholar 

  34. Gilman S. Gait disorders. In: Rowland LP, ed. Merritt’s Textbook of Neurology. Philadelphia: Lea and Febiger, 1989: 54–56.

    Google Scholar 

  35. Plum F. Ataxia and related gait disorders. In: Wyngaarden JB, Smith LH Jr, Bennett JC, eds. Cecil Textbook of Medicine. 19th ed. Philadelphia: Saunders, 1992: 2113–2115.

    Google Scholar 

  36. Miale IL, Sidman RL. An autoradiographic analysis of histogenesis in the mouse cerebellum. Exp Neurol 1961; 4: 277–296.

    Article  PubMed  CAS  Google Scholar 

  37. Altman J. Morphological development of the rat cerebellum and some of its mechanisms. Exp Brain Res [Suppl] 1982; 6: 8–49.

    Article  Google Scholar 

  38. Ungerstedt U, Arbuthnott GW. Quantitative recording of rotational behavior in rats after 6-hydroxydopamine lesions of the nigrostriatal dopamine system. Brain Res 1970; 24: 485–493.

    Article  PubMed  CAS  Google Scholar 

  39. Witt TC, Triarhou LC. Transplantation of mesencephalic cell suspensions from wild-type and heterozygous weaver mice into the denervated striatum: Assessing the role of graft-derived dopaminergic dendrites in the recovery of function. Cell Transpl 1995; 4: 323–333.

    Article  CAS  Google Scholar 

  40. Kafetzopoulos E, Gouskos S, Evangelou SN. The fractal geometry of behaviour. Proceedings of IBRO Workshop on Mechanisms of Neuronal Plasticity, University of Patras, 1992.

    Google Scholar 

  41. Kobayashi M, Musha T. 1/f fluctuation of heartbeat period. IEEE Trans Biomed Eng 1982; 29: 456–457.

    Article  PubMed  CAS  Google Scholar 

  42. Shlesinger MF. Fractal time and 1/f noise in complex systems. Ann NY Acad Sci 1987; 504: 214–228.

    Article  Google Scholar 

  43. Goldberger AL, West BJ. Chaos and order in the human body. MD Computing 1992; 9: 25–34.

    PubMed  CAS  Google Scholar 

  44. McKenna TM, McMullen TA, Shlesinger MF. The brain as a dynamic physical system. Neuroscience 1994; 60: 587–605.

    Article  PubMed  CAS  Google Scholar 

  45. Bak P, Chen K, Creutz M. Self-organized criticality in the `Game of Life’. Nature (Lond) 1989; 342: 780–782.

    Article  Google Scholar 

  46. Pinsker HM, Willis WD, eds. Information Processing in the Nervous System. New York: Raven Press, 1980.

    Google Scholar 

  47. Middleton FA, Strick PL. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 1994; 266: 458–461.

    Article  PubMed  CAS  Google Scholar 

  48. Dahhaoui M, Lannou J, Stelz T et al. Role of the cerebellum in spatial orientation in the rat. Behav Neural Biol 1992; 58: 180–189.

    Article  PubMed  CAS  Google Scholar 

  49. Dahhaoui M, Caston J, Lannou J et al. Role of the cerebellum in habituation exploration behavior in the rat. Physiol Behav 1992; 52: 339–344.

    Article  PubMed  CAS  Google Scholar 

  50. Krupa DJ, Thompson JK, Thompson RF. Localization of a memory trace in the mammalian brain. Science 1993; 260: 989–991.

    Article  PubMed  CAS  Google Scholar 

  51. Aiba A, Kano M, Chen C et al. Deficient cerebellar long-term depression and impaired motor learning in mGluRl mutant mice. Cell 1994; 79: 377–388.

    Article  PubMed  CAS  Google Scholar 

  52. Freeman JH Jr, Barone S Jr, Stanton ME. Disruption of cerebellar maturation by an antimitotic agent impairs the ontogeny of eyeblink conditioning in rats. J Neurosci 1995; 15: 7301–7314.

    PubMed  CAS  Google Scholar 

  53. Kim SG, Ugurbil K, Strick PL. Activation of a cerebellar output nucleus during cognitive processing. Science 1994; 265: 949–951.

    Article  PubMed  CAS  Google Scholar 

  54. Caston J, Vasseur F, Stelz T et al. Differential roles of cerebellar cortex and deep cerebellar nuclei in the learning of the equilibrium behavior: Studies in intact and cerebellectomized Lurcher mutant mice. Dev Brain Res 1995; 86: 311–316.

    Article  CAS  Google Scholar 

  55. Goodlett CR, Hamre KM, West JR. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res 1992; 47: 129–141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Triarhou, L.C. (1997). Cerebellar Grafting and the Recovery of Function. In: Neural Transplantation in Cerebellar Ataxia. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22213-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22213-3_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22215-7

  • Online ISBN: 978-3-662-22213-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics