Skip to main content

Basic Studies on Cerebellar Tissue Transplantation

  • Chapter
Neural Transplantation in Cerebellar Ataxia

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

  • 74 Accesses

Abstract

As a rule, the genesis of neuronal populations, including Purkinje cells, is concluded during embryonic life, and the regenerative capacity of the adult CNS is confined to compensatory fiber sprouting and not mitotic divisions of nerve cells.1 Therefore, neurons that die as a result of regressive processes can only be replaced by implantation after harvesting from an external source. Intracerebral grafting of developing neuroblasts into the adult pathological brain has been successfully used to replace degenerated neurons in several experimental instances.2,3 In particular, primordial cerebellar tissue has been shown to survive and grow after orthotopic or heterotopic implantation into the adult rodent brain. An account of these studies is presented in this chapter. Cerebellar neuron grafting has also been applied to neurological mutant mice both to create appropriate confrontations between wild-type and mutant cells in elucidating gene effects on the involved lineage and to study the structural integration of transplanted wild-type Purkinje cells into the disrupted cerebellar loop; an account of cerebellar transplantation studies using ataxic mouse mutants is given in chapter 7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cotman CW, ed. Synaptic Plasticity. New York: Guilford, 1985.

    Google Scholar 

  2. Björklund A. Intracerebral transplantation: prospects for neuronal replacement in neurodegenerative diseases. Res Publ Assoc Res New Ment Dis 1993; 71: 361–374.

    Google Scholar 

  3. Dunnett SB, Björklund A, eds. Functional Neural Transplantation. New York: Raven Press, 1994.

    Google Scholar 

  4. Allerand CD. Patterns of neuronal differentiation in developing cultures of neonatal mouse cerebellum: A living and silver impregnation study. J Comp Neurol 1971; 142: 167–204.

    Article  PubMed  CAS  Google Scholar 

  5. Herndon RM, Seil FJ, Seidman C. Synaptogenesis in mouse cerebellum: A comparative in vivo and tissue culture study. Neuroscience 1981; 6: 2587–2598.

    Article  PubMed  CAS  Google Scholar 

  6. Seil FJ. Cerebellum in tissue culture. Rev Neurosci 1979; 4: 105–177.

    Google Scholar 

  7. Das GD, Altman J. Transplanted precursors of nerve cells: Their fate in the cerebellums of young rats. Science 1971; 173: 637–638.

    Article  PubMed  CAS  Google Scholar 

  8. Das GD, Altman J. Studies on the transplantation of developing neural tissues in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats. Brain Res 1972; 38: 233–249.

    Article  PubMed  CAS  Google Scholar 

  9. Das GD. Transplantation of cerebellar tissue in the cerebellum of neonate rabbits. Brain Res 1973; 50: 170–173.

    Article  PubMed  CAS  Google Scholar 

  10. Hine RJ. Transplanted cerebellar tissue in the rat: Its growth and its afferents. Anat Rec 1977; 187: 605.

    Google Scholar 

  11. Wells J, McAllister JP. The development of cerebellar primordia transplanted to the neocortex of the rat. Dev Brain Res 1982; 4: 167–179.

    Article  Google Scholar 

  12. Alvarado-Mallart RM, Sotelo C. Differentiation of cerebellar anlage heterotopically transplanted to adult rat brain: A light and electron microscopic study. J Comp Neurol 1982; 212: 247–267.

    Article  PubMed  CAS  Google Scholar 

  13. Kromer LF, Björklund A, Stenevi U. Intracephalic implants: A technique for studying neuronal interactions. Science 1979; 204: 1117–1119.

    Article  PubMed  CAS  Google Scholar 

  14. Kromer LF, Björklund A, Stenevi U. Intracephalic embryonic neural implants in the adult rat brain. I. Growth and mature organization of brainstem, cerebellar, and hippocampal implants. J Comp Neurol 1983; 218: 433–459.

    Article  PubMed  CAS  Google Scholar 

  15. Ezerman EB, Kromer LF. Development and neuronal organization of dissociated and reaggregated embryonic cerebellum after intracephalic transplantation to adult rodent recipients. Dev Brain Res 1985; 23: 287–292.

    Article  Google Scholar 

  16. Ezerman EB. Survival and development of embryonic and postnatal cerebellum transplanted into adult rat hosts: effect of growth as explants in culture prior to transplantation. Dev Brain Res 1988; 41: 253–261.

    Article  Google Scholar 

  17. Alexandrova MA, Polezhaev LV. Transplantation of various regions of embryonic brain tissue into the brain of adult rats. J Hirnforsch 1984; 25: 89–98.

    PubMed  CAS  Google Scholar 

  18. Kikuchi Y. Transplantation of embryonic cerebella into adult rat cerebella. Brain Nerve (Tokyo) 1989; 41: 45–53.

    CAS  Google Scholar 

  19. Chopko BW, Voneida TJ. Fetal rat cerebellar fragment transplantation into adult rat forebrain lesion cavities. J Neural Transpl Plast 1992; 3: 63–69.

    Article  CAS  Google Scholar 

  20. Stenevi U, Björklund A, Svendgaard N-A. Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res 1976; 114: 1–20.

    Article  PubMed  CAS  Google Scholar 

  21. Takâcs J, Tran Minh Nhon T, Hâmori J. Electron microscopical study of synaptic glomeruli in cerebellum transplanted to the anterior eye chamber. Acta Biol Hung (Budapest) 1986; 37: 259–276.

    Google Scholar 

  22. Woodward DJ, Seiger A, Olson L et al. Intrinsic and extrinsic determinants of dendritic development as revealed by Golgi studies of cerebellar and hippocampal transplants in oculo. Exp Neurol 1977; 57: 984–998.

    Article  PubMed  CAS  Google Scholar 

  23. Takâcs J, Hâmori J. Morphological study of cerebellar transplant cocultivated with cerebral cortical graft in the anterior eye chamber. I. Granular layer. Anat Embryol (Berl) 1988; 177: 543–556.

    Article  Google Scholar 

  24. Hâmori J, Takâcs J. Morphological study of cerebellar transplant cocultivated with cerebral cortical graft in the anterior eye chamber. II. Purkinje cells and molecular layer. Anat Embryol (Berl) 1988; 177: 557–569.

    Article  Google Scholar 

  25. Wiestler OD, Aguzzi A, Schneemann M et al. Oncogene complementation in fetal brain transplants. Cancer Res 1992; 52: 3760–3767.

    PubMed  CAS  Google Scholar 

  26. Wiestler OD, Brustle O, Eibl RH et al. Retrovirus-mediated oncogene transfer into neural transplants. Brain Pathol 1992; 2: 47–59.

    PubMed  CAS  Google Scholar 

  27. Snyder EY, Deitcher DL, Walsh C et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 1992; 68: 33–51.

    Article  PubMed  CAS  Google Scholar 

  28. Tsuda M, Yuasa S, Fujino Y et al. Retrovirus-mediated gene transfer into mouse cerebellar primary culture and its application to the neural transplantation. Brain Res Bulletin 1990; 24: 787–792.

    Article  CAS  Google Scholar 

  29. Yuasa S, Tsuda M, Kawamura K. Fate and behavior of genetically labeled cerebellar cells after transplantation into mouse cerebellum. Neurosci Res 1993; 17: 257–263.

    Article  PubMed  CAS  Google Scholar 

  30. Anagnostopoulos J, Knoth R, Duffner T et al. Vascularization of fetal cerebellar tissue transplanted into the striatum of rats. In: Cervós-Navarro J, Ferszt R, eds. Stroke and Microcirculation. New York: Raven Press, 1987: 171–176.

    Google Scholar 

  31. Kiessling M, Mies G, Paschen W et al. Blood flow and metabolism in heterotopic cerebellar grafts during hypoglycemia. Acta Neuropathol (Berl) 1988; 77: 142–151.

    CAS  Google Scholar 

  32. Kleihues P, Kiessling M, Thilmann R et al. Resistance to hypoglycemia of cerebellar transplants in the rat forebrain. Acta Neuropathol (Berl) 1986; 72: 23–28.

    Article  CAS  Google Scholar 

  33. Gerloff C, Knappe UJK, Hettmannsperger U et al. Intrastriatal cerebellar grafts: differentiation of cerebellar anlage and sprouting of Purkinje cell axons. Dev Brain Res 1993; 74: 30–40.

    Article  CAS  Google Scholar 

  34. Rosenstein JM. Permeability to blood-borne protein and [3H]GABA in CNS tissue grafts. I. Intraventricular grafts. J Comp Neurol 1991; 305: 676–690.

    Article  PubMed  CAS  Google Scholar 

  35. Sotelo C. Cerebellar synaptogenesis: Mutant mice—neuronal grafting. J Physiol (Paris) 1991; 85: 134–144.

    CAS  Google Scholar 

  36. Sotelo C. Cell interactions underlying Purkinje cell replacement by neural grafting in the pcd mutant cerebellum. Can J Neurol Sci 1993; 20 [Suppl 31: S43 - S52.

    Google Scholar 

  37. Sotelo C, Alvarado-Mallart RM, Gardette R et al. Fate of grafted embryonic Purkinje cells in the cerebellum of the adult “Purkinje cell degeneration” mutant mouse. I. Development of reciprocal graft-host interactions. J Comp Neurol 1990; 295: 165–187.

    Article  PubMed  CAS  Google Scholar 

  38. Tsurushima H, Yuasa S, Kawamura K et al. Migration of donor Purkinje cells in the host adult rat cerebellum. Brain Nerve (Tokyo) 1993; 45: 255–262.

    CAS  Google Scholar 

  39. Tsurushima H, Yuasa S, Kawamura K et al. Expression of tenascin and BDNF during the migration and differentiation of grafted Purkinje and granule cells in the adult rat cerebellum. Neurosci Res 1993; 18: 109–120.

    Article  PubMed  CAS  Google Scholar 

  40. Marshak TL, Kleshchinov VN, Brodsky VYA. DNA content in neurons of embryonic cerebellum transplanted into the brain cortex of the adult rats. Ontogenez (Mosk) 1993; 24: 53–57.

    CAS  Google Scholar 

  41. Celio MR, Baier W, Schärer L et al. Monoclonal antibodies directed against the calcium binding protein Calbindin D-28k. Cell Calcium 1990; 11: 599–602.

    Article  PubMed  CAS  Google Scholar 

  42. Sotelo C, Alvarado-Mallart RM. Growth and differentiation of cerebellar suspensions transplanted into the adult cerebellum of mice with heredodegenerative ataxia. Proc Natl Acad Sci USA 1986; 83: 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  43. Triarhou LC, Low WC, Ghetti B. Intraparenchymal grafting of cerebellar cell suspensions to the deep cerebellar nuclei of pcd mutant mice, with particular emphasis on re-establishment of a Purkinje cell cortico-nuclear projection. Anat Embryol (Berl) 1992; 185: 409–420.

    Article  CAS  Google Scholar 

  44. Sotelo C, Alvarado-Mallart RM. Cerebellar transplants: Immunocytochemical study of the specificity of Purkinje cell inputs and outputs. In: Björklund A, Stenevi U, eds. Neural Grafting in the Mammalian CNS. Amsterdam: Elsevier, 1985: 205–215.

    Google Scholar 

  45. Chang AC, Triarhou LC, Alyea CJ et al. Developmental expression of polypeptide PEP-19 in cerebellar suspensions transplanted into the cerebellum of pcd mutant mice. Exp Brain Res 1989; 76: 639–645.

    Article  PubMed  CAS  Google Scholar 

  46. Rouse RV, Sotelo C. Grafts of dissociated cerebellar cells containing Purkinje cell precursors organize into zebrin I defined compartments. Exp Brain Res 1990; 82: 401–407.

    Article  PubMed  CAS  Google Scholar 

  47. Wassef M, Sotelo C, Thomasset M et al. Expression of compartmentation antigen zebrin I in cerebellar transplants. J Comp Neurol 1990; 294: 223–234.

    Article  PubMed  CAS  Google Scholar 

  48. Sotelo C. Transplantation de neurones embryonnaires dans le cervelet de souris: Restauration de l’ intégrité cérébelleuse chez des souris avec ataxie hérédo-dégénérative. Méd Sci 1988; 8: 507–514.

    Google Scholar 

  49. Tokunaga A, Ono K, Date I et al. A monoclonal antibody that labels Purkinje cells in the rat cerebellum. Brain Res Bulletin 1991; 27: 669–674.

    Article  CAS  Google Scholar 

  50. Hall M, Wang Y, Granholm AC et al. Comparison of fetal rabbit brain xenografts to three different strains of athymic nude rats: electrophysiological and immunohistochemical studies of intraocular grafts. Cell Transpl 1992; 1: 71–82.

    CAS  Google Scholar 

  51. Poltorak M, Freed WJ, Sternberger LA et al. A comparison of intraventricular and intraparenchymal cerebellar allografts in rat brain: evidence for normal phosphorylation of neurofilaments. J Neuroimmunol 1988; 20: 63–72.

    Article  PubMed  CAS  Google Scholar 

  52. Perlow MJ, Nilaver G, Beinfeld MC et al. Host-graft interactions following cerebellar transplantation in rat. Soc Neurosci Abstr 1984; 10: 663.

    Google Scholar 

  53. Wenthold RJ, Yokotani N, Doi K et al. Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies: Evidence for a hetero-oligomeric structure in rat brain. J Biol Chem 1992; 267: 501–507.

    PubMed  CAS  Google Scholar 

  54. Triarhou LC, Zhang W, Lee W-H. Graft-induced restoration of function in hereditary cerebellar ataxia. Neuroreport 1995; 6: 1827–1832.

    Article  PubMed  CAS  Google Scholar 

  55. Triarhou LC, Zhang W, Lee W-H. Amelioration of the behavioral phenotype in genetically ataxic mice through bilateral intracerebellar grafting of fetal Purkinje cells. Cell Transpl 1996; 5: 269–277.

    Article  CAS  Google Scholar 

  56. Stasi K, Mitsacos A, Triarhou LC, Kouvelas ED. Functional integration of transplanted Purkinje cells into the atrophic cerebellum: I. Excitatory amino acid receptors and afferent innervation. Abstr Am Soc Neural Transpl 1996; 3: 50.

    Google Scholar 

  57. Zhang W, Lee W-H, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nature Med 1996; 2: 65–71.

    Article  PubMed  CAS  Google Scholar 

  58. Hoffer BJ, Seiger A, Ljungberg T et al. Electrophysiological studies of brain homografts in the anterior chamber of the eye: Maturation of cerebellar cortex in oculo. Brain Res 1974; 79: 165–184.

    Article  PubMed  CAS  Google Scholar 

  59. Björklund H, Bickford P, Dahl D et al. Intracranial cerebellar grafts: Intermediate filament immunohistochemistry and electrophysiology. Exp Brain Res 1984; 55: 372–385.

    Article  PubMed  Google Scholar 

  60. Björklund H, Bickford P, Dahl D et al. Morphological and functional properties of intracranial cerebellar grafts. In: Björklund A, Stenevi U, eds. Neural Grafting in the Mammalian CNS. Amsterdam: Elsevier, 1985: 191–203.

    Google Scholar 

  61. Kawamura K, Nanami T, Kikuchi Y et al. Grafted granule and Purkinje cells can migrate into the mature cerebellum of normal adult rats. Exp Brain Res 1988; 70: 477–484.

    Article  PubMed  CAS  Google Scholar 

  62. Rossi F, Borsello T, Strata P. Embryonic Purkinje cells grafted on the surface of the cerebellar cortex integrate in the adult unlesioned cerebellum. Eur J Neurosci 1992; 4: 589–594.

    Article  PubMed  Google Scholar 

  63. Rossi F, Borsello T. Ectopic Purkinje cells in the adult rat: Olivary innervation and different capabilities of migration and development after grafting. J Comp Neurol 1993; 337: 70–82.

    Article  PubMed  CAS  Google Scholar 

  64. Mugnaini E, Morgan JI. The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain. Proc Natl Acad Sci USA 1987; 84: 8692–8696.

    Article  PubMed  CAS  Google Scholar 

  65. Alvarez-Otero R, Sotelo C, Alvarado-Mallart RM. Chick/quail chimeras with partial cerebellar grafts: An analysis of the origin and migration of cerebellar cells. J Comp Neurol 1993; 333: 597–615.

    Article  PubMed  CAS  Google Scholar 

  66. Jacque C, Suard I, Collins P et al. Migration patterns of donor astrocytes after reciprocal striatum-cerebellum transplantation into newborn hosts. J Neurosci Res 1991; 29: 421–428.

    Article  PubMed  CAS  Google Scholar 

  67. Jacque C, Tchelingerian JL, Collins P et al. In situ transformation of striatal glia into cerebellar-like glia after brain transplantation. Neurosci Lett 1992; 136: 181–184.

    Article  PubMed  CAS  Google Scholar 

  68. Chang AC, Ghetti B. Embryonic cerebellar graft development during acute phase of gliosis in the cerebellum of pcd mutant mice. Chin J Physiol (Taipei) 1993; 36: 141–149.

    CAS  Google Scholar 

  69. Sotelo C, Alvarado-Mallart RM, Frain M et al. Molecular plasticity of adult Bergmann fibers is associated with radial migration of grafted Purkinje cells. J Neurosci 1994; 14: 124–133.

    PubMed  CAS  Google Scholar 

  70. Seil FJ. Persistence of heterotypical synapses in transplanted cerebellar cultures in the absence of functional glia. Int J Dev Neurosci 1994; 12: 411–421.

    Article  PubMed  CAS  Google Scholar 

  71. Hoffer BJ, Olson L, Seiger A et al. Formation of a functional adrenergic input to intraocular cerebellar grafts: Ingrowth of sympathetic fibers and inhibition of Purkinje cell activity by adrenergic input. J Neurobiol 1975; 6: 565–586.

    Article  PubMed  CAS  Google Scholar 

  72. Armengol JA, Sotelo C, Angaut P et al. Organization of host afferents to cerebellar grafts implanted into kainate lesioned cerebellum of adult rats: Hodological evidence for the specificity of host-graft interactions. Eur J Neurosci 1989; 1: 75–93.

    Article  PubMed  Google Scholar 

  73. Rossi F, Borsello T, Strata P. Embryonic Purkinje cells grafted on the surface of the adult uninjured rat cerebellum migrate in the host parenchyma and induce sprouting of intact climbing fibres. Eur J Neurosci 1994; 6: 121–136.

    Article  PubMed  CAS  Google Scholar 

  74. Kawamura K, Murase S, Yuasa S et al. Transplantation of embryonic olive in the climbing-fiber-deprived adult rat cerebellum: Synaptogenesis on host Purkinje dendritic spines by donor climbing fibers. Neurosci Res [Suppl] 1990; 13: S61 - S64.

    Article  CAS  Google Scholar 

  75. Nan LZ. Experimental study on embryo cerebellar tissue transplantation in repairing transection injury of spinal cord. Chin J Surg (Beijing) 1989; 27: 247–249.

    CAS  Google Scholar 

  76. Himes BT, Goldberger ME, Tessler A. Grafts of fetal central nervous system tissue rescue axotomized Clarke’s nucleus neurons in adult and neonatal operates. J Comp Neurol 1994; 339: 117–131.

    Article  PubMed  CAS  Google Scholar 

  77. Fujii M, Hayakashi T. Axons from the olfactory bulb transplanted into the cerebellum form synapses with dendrites in the granular layer, as demonstrated by mouse allelic form of Thy-1 and electron microscopy. Neurosci Res 1992; 14: 73–78.

    Article  PubMed  CAS  Google Scholar 

  78. Zwimpfer TJ, Aguayo A, Bray GM. Synapse formation and preferential distribution in the granule cell layer by regenerating retinal ganglion cell axons guided to the cerebellum of adult hamsters. J Neurosci 1992; 12: 1144–1159.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Triarhou, L.C. (1997). Basic Studies on Cerebellar Tissue Transplantation. In: Neural Transplantation in Cerebellar Ataxia. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22213-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22213-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22215-7

  • Online ISBN: 978-3-662-22213-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics