Skip to main content

Neurological Mutant Mice as Genetic Models for Neuronal Transplantation

  • Chapter
  • 71 Accesses

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

Abstract

There is a large number of mutations in the laboratory mouse that affect the development or maintenance of specific cell populations or regions of the nervous system.1,2 Such mutations provide useful experimental material for the study of cellular phenomena related to normal and aberrant development of the brain and the degeneration of nerve cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green MC, ed. Genetic Variants and Strains of the Laboratory Mouse. Stuttgart, New York: Gustav Fischer Verlag, 1981.

    Google Scholar 

  2. Lyon MF, Searle AG, eds. Genetic Variants and Strains of the Laboratory Mouse. 2nd ed. Oxford: Oxford University Press, 1989.

    Google Scholar 

  3. Mullen RJ, Herrup K. Chimeric analysis of mouse cerebellar mutants. In: Breakfield XO, ed. Neurogenetics: Genetic Approaches to the Nervous System. Amsterdam: Elsevier/North Holland, 1979: 173–196.

    Google Scholar 

  4. Björklund A, Brundin P, Isacson O. Neuronal replacement by intracerebral neural implants in animal models of neurodegenerative disease. Adv Neurol 1988; 47: 455–492.

    PubMed  Google Scholar 

  5. Mason AJ, Pitts SL, Nikolics K et al. The hypogonadal mouse: Reproductive functions restored by gene therapy. Science 1986; 234: 1372–1378.

    Article  PubMed  CAS  Google Scholar 

  6. Readhead C, Popko B, Takahashi N et al. Expression of a myelin basic protein gene in transgenic shiverer mice: Correction of the dysmyelinating phenotype. Cell 1987; 48: 703–712.

    Article  PubMed  CAS  Google Scholar 

  7. Popko B, Puckett C, Lai E et al. Myelin deficient mice: Expression of myelin basic protein and generation of mice with varying levels of myelin. Cell 1987; 48: 713–721.

    Article  PubMed  CAS  Google Scholar 

  8. Aguayo AJ, Attiwell M, Trecarten J et al. Abnormal myelination in transplanted trembler mouse Schwann cells. Nature (Lond) 1977; 265: 73–75.

    Article  CAS  Google Scholar 

  9. Gansmüller A, Lachapelle F, Baron Van Evercooren A et al. Transplantations of newborn CNS fragments into the brain of shiverer mutant mice: Extensive myelination by transplanted oligodendrocytes. II. Electron microscopic study. Dev Neurosci 1986; 8: 197–207.

    Article  PubMed  Google Scholar 

  10. Kohsaka S, Yoshida K, Inoue Yet al. Transplantation of bulk-separated oligodendrocytes into the brains of shiverer mutant mice: immunohistochemical and electron microscopic studies on the myelination. Brain Res 1986; 372: 137–142.

    Article  PubMed  CAS  Google Scholar 

  11. Friedman E, Nilaver G, Carmel P et al. Myelination by transplanted fetal and neonatal oligodendrocytes in a dysmyelinating mutant. Brain Res 1986; 378: 142–146.

    Article  PubMed  CAS  Google Scholar 

  12. Lubetzki C, Gansmüller A, Lachapelle F et al. Myelination by oligodendrocytes isolated from 4–6-week-old rat central nervous system and transplanted into newborn shiverer brain. J Neurol Sci 1988; 88: 161–175.

    Article  PubMed  CAS  Google Scholar 

  13. Chase HB, Chase EB. Studies on an anophthalmic strain of mice. I. Embryology of the eye region. J Morphol 1941; 68: 279–301.

    Article  Google Scholar 

  14. Beck SL. The anophthalmic mutant of the mouse. I. Genetic contribution of the anophthalmic phenotype. J Hered 1963; 54: 39–44.

    PubMed  CAS  Google Scholar 

  15. Salaün J. Differentiation of the optic cups from an anophthalmic murine strain, in culture and in intrafoetal grafts. J Embryol Exp Morphol 1982; 67: 71–80.

    PubMed  Google Scholar 

  16. Hankin MH, Lund RD. Induction of target-directed optic axon outgrowth: Effect of retinae transplanted to anophthalmic mice. Dev Biol 1990; 138: 136–146.

    Article  PubMed  CAS  Google Scholar 

  17. Bruckner R. Spaltlampenmikroskopie and Ophthalmoskopie am Auge von Ratte and Maus. Doc Ophthalmol 1951; 5–6: 452–554.

    Article  Google Scholar 

  18. Tansley K. An inherited retinal degeneration in the mouse. J Hered 1954; 45: 123–127.

    Google Scholar 

  19. Caley DW, Johnson C, Liebelt RA. The postnatal development of the retina in the normal and rodless CBA mouse: A light and electron microscopic study. Am J Anat 1972; 133: 179–212.

    Article  PubMed  CAS  Google Scholar 

  20. LaVail MM, Sidman RL. C57BL/6J mice with inherited retinal degeneration. Arch Ophthalmol 1974; 91: 394–400.

    Article  PubMed  CAS  Google Scholar 

  21. Blanks JC, Bok D. An autoradiographic analysis of postnatal cell proliferation in the normal and degenerative mouse retina. J Comp Neurol 1977; 174: 317–328.

    Article  PubMed  CAS  Google Scholar 

  22. Grafstein B, Murray M, Ingoglia NA. Protein synthesis and axonal transport in retinal ganglion cells of mice lacking visual receptors. Brain Res 1972; 44: 37–48.

    Article  PubMed  CAS  Google Scholar 

  23. Carter-Dawson LD, LaVail MM, Sidman RL. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci 1978; 17: 489–498.

    PubMed  CAS  Google Scholar 

  24. LaVail MM, Mullen RJ. Role of the pigment epithelium in inherited retinal degeneration analyzed with experimental mouse chimeras. Exp Eye Res 1976; 23: 227–245.

    Article  PubMed  CAS  Google Scholar 

  25. del Cerro M. Retinal transplants. Prog Retinal Res 1990; 9: 229–272.

    Article  Google Scholar 

  26. Jiang L-Q, del Cerro M. Reciprocal retinal transplantation: A tool for the study of an inherited retinal degeneration. Exp Neurol 1992; 115: 325–334.

    Article  PubMed  CAS  Google Scholar 

  27. Gouras P, Du J, Kjeldbye H et al. Long-term photoreceptor transplants in dystrophic and normal mouse retina. Invest Ophthalmol Vis Sci 1994; 35: 3145–3153.

    PubMed  CAS  Google Scholar 

  28. Bennett J, Tanabe T, Sun D et al. Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy. Nature Med 1996; 2: 649–654.

    Article  PubMed  CAS  Google Scholar 

  29. Cattanach BM, Iddon CA, Charlton HM et al. Gonadotropin-releasing hormone deficiency in a mutant mouse with hypogonadism. Nature (Lond) 1977; 269: 338–340.

    Article  CAS  Google Scholar 

  30. Krieger DT, Perlow MJ, Gibson MJ et al. Brain grafts reverse hypogonadism of gonadotropin-releasing hormone deficiency. Nature (Lond) 1982; 298: 1–3.

    Article  Google Scholar 

  31. Gibson MJ, Krieger DT, Charlton HM et al. Mating and pregnancy can occur in genetically hypogonadal mice with preoptic area brain grafts. Science 1984; 225: 949–951.

    Article  PubMed  CAS  Google Scholar 

  32. Silverman A-J, Zimmerman EA, Gibson MJ et al. Implantation of normal fetal preoptic area into hypogonadal (hpg) mutant mice: Temporal relationships of the growth of GnRH neurons and the development of the pituitary/testicular axis. Neuroscience 1985; 16: 69–84.

    Article  PubMed  CAS  Google Scholar 

  33. Gibson MJ, Krieger DT. Neuroendocrine brain grafts in mutant mice. Trends Neurosci 1985; 8: 331–334.

    Article  Google Scholar 

  34. Silverman A-J, Zimmerman EA, Kokoris GJ et al. Ultrastructure of gonadotropin-releasing hormone neuronal structures derived from normal fetal preoptic area and transplanted into hypogonadal (hpg) mice. J Neurosci 1986; 6: 2090–2096.

    PubMed  CAS  Google Scholar 

  35. Gibson MJ, Moscovitz HC, Kokoris GJ et al. Plasma LH rises rapidly following mating in hypogonadal female mice with preoptic area (POA) brain grafts. Brain Res 1987; 424: 133–138.

    Article  PubMed  CAS  Google Scholar 

  36. Silverman A-J, Kokoris GJ, Gibson MJ. Quantitative analysis of synaptic input to gonadotropin-releasing hormone neurons in normal mice and hpg mice with preoptic area grafts. Brain Res 1988; 443: 367–372.

    Article  PubMed  CAS  Google Scholar 

  37. Kokoris GJ, Lam NY, Ferin M et al. Transplanted gonadotropinreleasing hormone neurons promote pulsatile luteinizing hormone secretion in congenitally hypogonadal (hpg) male mice. Neuroendocrinology 1988; 48: 45–52.

    Article  PubMed  CAS  Google Scholar 

  38. Silverman RC, Silverman A-J, Gibson MJ. Identification of gonadotropin releasing hormone (GnRH) neurons projecting to the median eminence from third ventricular preoptic area grafts in hypogonadal mice. Brain Res 1989; 501: 260–268.

    Article  PubMed  CAS  Google Scholar 

  39. Broadwell RD, Charlton HM, Ganong WF et al. Allografts of CNS tissue possess a blood-brain barrier. I. Grafts of medial preoptic area in hypogonadal mice. Exp Neurol 1989; 105: 135–151.

    Article  PubMed  CAS  Google Scholar 

  40. Gibson MJ, Silverman RC, Silverman A-J. Current progress in studies of GnRH cell-containing brain grafts in hypogonadal mice. Prog Brain Res 1990; 82: 169–178.

    Article  PubMed  CAS  Google Scholar 

  41. Silverman RC, Gibson MJ, Silverman A-J. Relationship of glia to GnRH axonal outgrowth from third ventricular grafts in hpg hosts. Exp Neurol 1991; 114: 259–274.

    Article  PubMed  CAS  Google Scholar 

  42. Livne I, Gibson MJ, Silverman A-J. Brain grafts of migratory GnRH cells induce gonadal recovery in hypogonadal (hpg) mice. Dev Brain Res 1992; 69: 117–123.

    Article  CAS  Google Scholar 

  43. Silverman A-J, Roberts JL, Dong KW et al. Intrahypothalamic injection of a cell line secreting gonadotropin-releasing hormone results in cellular differentiation and reversal of hypogonadism in mutant mice. Proc Natl Acad Sci USA 1992; 89: 10668–10672.

    Article  PubMed  CAS  Google Scholar 

  44. Gibson MJ, Friedrich VL, Elder G et al. Human midsized neurofilament expression in transgenic mouse-derived grafts facilitates study of graft-host interactions in hypogonadal mice. Cell Transpl 1993; 2: 223–227.

    Google Scholar 

  45. Miller GM, Silverman A-J, Roberts JL et al. Functional assessment of intrahypothalamic implants of immortalized gonadotropin-releasing hormone-secreting cells in female hypogonadal mice. Cell Transpl 1993; 2: 251–257.

    Google Scholar 

  46. Gibson MJ, Silverman A-J. Neuroendocrine brain grafts. Semin Neurosci 1993; 5: 423–430.

    Article  Google Scholar 

  47. Miller GM, Silverman A-J, Rogers MC et al. Neuromodulation of transplanted gonadotropin-releasing hormone neurons in male and female hypogonadal mice with preoptic area brain grafts. Biol Reprod 1995; 52: 572–583.

    Article  PubMed  CAS  Google Scholar 

  48. Falconer DS. Two new mutants, “trembler” and “reeler”, with neurological actions in the house mouse. J Genet 1951; 50: 192–201.

    Article  Google Scholar 

  49. Sidman RL. Development of interneuronal connections in brains of mutant mice. In: Carlson FD, ed. Physiological and Biochemical Aspects of Nervous Integration. Englewood Cliffs, NJ: Prentice-Hall, 1968: 163–193.

    Google Scholar 

  50. Caviness VS. Time of neuron origin in the hippocampus and dentate gyrus of normal and reeler mutant mice: An autoradiographic analysis. J Comp Neurol 1973; 151: 113–120.

    Article  PubMed  Google Scholar 

  51. Caviness VS, Sidman RL. Retrohippocampal, hippocampal and related structures of the forebrain in the reeler mutant mouse. J Comp Neurol 1973; 147: 235–254.

    Article  PubMed  Google Scholar 

  52. Stanfield BB, Caviness VS, Cowan WM. The organization of certain afferents to the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 1979; 185: 461–484.

    Article  PubMed  CAS  Google Scholar 

  53. Errington ML, Bliss TVP. Hippocampal transplants in normal and reeler mice. Neurosci Lett 1984; 45: 291–296.

    Article  PubMed  CAS  Google Scholar 

  54. Lane JD, Nadi NS, McBride WJ et al. Contents of serotonin, norepinephrine and dopamine in the cerebrum of the `staggerer’, `weaver’ and `nervous’ neurologically mutant mice. J Neurochem 1977; 29: 349–350.

    Article  PubMed  CAS  Google Scholar 

  55. Schmidt MJ, Sawyer BD, Perry KW et al. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982; 2: 376–380.

    PubMed  CAS  Google Scholar 

  56. Triarhou LC, Norton J, Ghetti B. Synaptic connectivity of tyrosine hydroxylase immunoreactive nerve terminals in the striatum of normal, heterozygous and homozygous weaver mutant mice. J Neurocytol 1988; 17: 221–232.

    Article  PubMed  CAS  Google Scholar 

  57. Triarhou LC, Low WC, Ghetti B. Transplantation of ventral mes-encephalic anlagen to hosts with genetic nigrostriatal dopamine deficiency. Proc Natl Acad Sci USA 1986; 83: 8789–8793.

    Article  PubMed  CAS  Google Scholar 

  58. Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 1988; 70: 256–265.

    Article  PubMed  CAS  Google Scholar 

  59. Sinden JD, Patel SN, Hodges H. Neural transplantation: Problems and prospects for therapeutic application. Curr Opin Neurol Neurosurg 1992; 5: 902–908.

    PubMed  CAS  Google Scholar 

  60. Triarhou LC, Low WC, Doucet G et al. The weaver mutant mouse as a model for intrastriatal grafting of fetal dopamine neurons. In: Hefti F, Weiner WJ, eds. Progress in Parkinson’s Disease Research-2. Mount Kisco, NY: Futura Publishing, 1992: 389–400.

    Google Scholar 

  61. Bankiewicz K, Mandel RJ, Sofroniew M. Trophism, transplantation, and animal models of Parkinson’s disease. Exp Neurol 1993; 124: 140–149.

    Article  PubMed  CAS  Google Scholar 

  62. Brundin P, Duan W-M, Sauer H. Functional effects of mesencephalic dopamine neurons and adrenal chromaffin cells grafted to the rodent striatum. In: Dunnett SB, Björldund A, eds. Functional Neural Transplantation. New York: Raven Press, 1994: 9–46.

    Google Scholar 

  63. Triarhou LC, Low WC, Ghetti B. Synaptic investment of striatal cellular domains by grafted dopamine neurons in weaver mutant mice. Naturwissenschaften 1987; 74: 591–593.

    Article  PubMed  CAS  Google Scholar 

  64. Low WC, Triarhou LC, Kaseda Y et al. Functional innervation of the striatum by ventral mesencephalic grafts in mice with inherited nigrostriatal dopamine deficiency. Brain Res 1987; 435: 315–321.

    Article  PubMed  CAS  Google Scholar 

  65. Triarhou LC, Low WC, Norton J et al. Reinstatement of synaptic connectivity in the striatum of weaver mutant mice following transplantation of ventral mesencephalic anlagen. J Neurocytol 1988; 17: 233–243.

    Article  PubMed  CAS  Google Scholar 

  66. Doucet G, Brundin P, Seth S et al. Degeneration and graft-induced restoration of dopamine innervation in the weaver mouse neostriatum: a quantitative radioautographic study of [3H]dopamine uptake. Exp Brain Res 1989; 77: 552–568.

    Article  PubMed  CAS  Google Scholar 

  67. Triarhou LC, Brundin P, Doucet G et al. Intrastriatal implants of mesencephalic cell suspensions in weaver mutant mice: ultrastructural relationships of dopaminergic dendrites and axons issued from the graft. Exp Brain Res 1990; 79: 3–17.

    Article  PubMed  CAS  Google Scholar 

  68. Triarhou LC, Norton J, Hingtgen JN. Amelioration of the behavioral phenotype in weaver mutant mice through bilateral intrastriatal grafting of fetal dopamine cells. Exp Brain Res 1995; 104: 191–198.

    Article  PubMed  CAS  Google Scholar 

  69. Witt TC, Triarhou LC. Transplantation of mesencephalic cell suspensions from wild-type and heterozygous weaver mice into the denervated striatum: Assessing the role of graft-derived dopaminergic dendrites in the recovery of function. Cell Transpl 1995; 4: 323–333.

    Article  CAS  Google Scholar 

  70. Triarhou LC, Stotz EH, Low WC et al. Studies on the striatal dopamine uptake system of weaver mutant mice and effects of ventral mesencephalic grafts. Neurochem Res 1994; 19: 1349–1358.

    Article  PubMed  CAS  Google Scholar 

  71. Solà C, Mengod G, Low WC et al. Regional distribution of amyloid 13-protein precursor, growth-associated phosphoprotein-43 and microtubule-associated protein 2 mRNAs in the nigrostriatal system of normal and weaver mutant mice and effects of ventral mes-encephalic grafts. Eur J Neurosci 1993; 5: 1442–1454.

    Article  PubMed  Google Scholar 

  72. Triarhou LC, Solà C, Mengod G et al. Ventral mesencephalic grafts in the neostriatum of the weaver mutant mouse: Structural molecule and receptor studies. Cell Transpl 1995; 4: 39–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Triarhou, L.C. (1997). Neurological Mutant Mice as Genetic Models for Neuronal Transplantation. In: Neural Transplantation in Cerebellar Ataxia. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22213-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22213-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22215-7

  • Online ISBN: 978-3-662-22213-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics