Skip to main content

Cerebellar Mutants in the Laboratory Mouse

  • Chapter
Neural Transplantation in Cerebellar Ataxia

Part of the book series: Neuroscience Intelligence Unit ((NIU.LANDES))

  • 74 Accesses

Abstract

Mutant mice with discrete cerebellar lesions1–3 provide invaluable experimental models of hereditary cerebellar disorders by helping us better understand developmental mechanisms of cortical histogenesis, the formation of synaptic connections and neurodegenerative processes.4–9

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sidman RL, Green MC, Appel SH. Catalog of the Neurological Mutants of the Mouse. Cambridge, MA: Harvard University Press, 1965.

    Google Scholar 

  2. Lyon MF, Searle AG, eds. Genetic Variants and Strains of the Laboratory Mouse. 2nd ed. Oxford, Stuttgart: Oxford University Press, Gustav Fischer Verlag, 1989.

    Google Scholar 

  3. Catalog of Neurological Mouse Models Available from the Jackson Laboratory. Bar Harbor, ME, November 1995.

    Google Scholar 

  4. Sidman RL. Development of interneuronal connections in brains of mutant mice. In: Carlson FD, ed. Physiological and Biochemical Aspects of Nervous Integration. Englewood Cliffs, NJ: Prentice Hall, 1968: 163–193.

    Google Scholar 

  5. Caviness VS, Rakic P. Mechanisms of cortical development: A view from mutations in mice. Ann Rev Neurosci 1978; 1: 297–326.

    PubMed  Google Scholar 

  6. Landis DMD, Landis SC. Several mutations in mice that affect the cerebellum. Adv Neurol 1978; 21: 85–105.

    PubMed  CAS  Google Scholar 

  7. Sotelo C. Mutant mice and the formation of cerebellar circuitry. Trends Neurosci 1980; 3: 33–36.

    Google Scholar 

  8. Sidman RL. Mutations affecting the central nervous system in the mouse. In: Schmitt FO, Bird SJ, Bloom FE, eds. Molecular Genetic Neuroscience. New York: Raven Press, 1982: 389–400.

    Google Scholar 

  9. Goldowitz D, Eisenman LM. Genetic mutations affecting murine cerebellar structure and function. In: Driscoll P, ed. Genetically Defined Animal Models of Neurobehavioral Dysfunctions. BostonBasel-Berlin: Birkhäuser, 1992: 66–88.

    Google Scholar 

  10. Mullen RJ. Genetic dissection of the CNS with mutant-normal mouse and rat chimeras. In Cowan WM, Ferrendelli JA, eds. Society for Neuroscience Symposia, Vol II: Approaches to the Cell Biology of Neurons. Bethesda: Society for Neuroscience, 1977: 47–65.

    Google Scholar 

  11. Mullen RJ. Mosaicism in the central nervous system of mouse chimeras. In: Subtelny S, Sussex IM, eds. The Clonal Basis of Development. New York: Academic Press, 1978: 83–101.

    Google Scholar 

  12. Mullen RJ, Herrup K. Chimeric analysis of mouse cerebellar mutants. In: Breakfield XO, ed. Neurogenetics: Genetic Approaches to the Nervous System. Amsterdam: Elsevier/North-Holland, 1979: 173–196.

    Google Scholar 

  13. Phillips RJS. “Lurcher”, a new gene in linkage group XI of the house mouse. J Genet 1960; 57:35–42.

    Google Scholar 

  14. Caddy KWT, Biscoe TJ. Preliminary observations on the cerebellum in the mutant mouse Lurcher. Brain Res 1975; 91: 276–280.

    PubMed  CAS  Google Scholar 

  15. Norman DJ, Fletcher C, Heintz N. Genetic mapping of the Lurcher locus on mouse chromosome 6 using an intersubspecific backcross. Genomics 1991; 9: 147–153.

    PubMed  CAS  Google Scholar 

  16. Caddy KWT, Biscoe TJ. Structural and quantitative studies on the normal C3H and Lurcher mutant mouse. Phil Trans Roy Soc Lond (Biol) 1979; 287: 167–201.

    CAS  Google Scholar 

  17. Swisher DA, Wilson DB. Cerebellar histogenesis in the Lurcher (Lc) mutant mouse. J Comp Neurol 1977; 173: 205–218.

    PubMed  CAS  Google Scholar 

  18. Caddy KWT, Biscoe TJ. The number of Purkinje cells and olive neurones in the normal and Lurcher mutant mouse. Brain Res 1976; 111: 396–398.

    PubMed  CAS  Google Scholar 

  19. Dumesnil-Bousez N, Sotelo C. Early development of the Lurcher cerebellum: Purkinje cell alterations and impairment of synaptogenesis. J Neurocytol 1992; 21: 506–529.

    PubMed  CAS  Google Scholar 

  20. Landis SC. Ultrastructural changes in the mitochondria of cerebellar Purkinje cells of nervous mutant mice. J Cell Biol 1973; 57: 782–797.

    PubMed  CAS  Google Scholar 

  21. Doughty ML, Patterson L, Caddy KWT. Cerebellar Purkinje cells from the Lurcher mutant and wild-type mouse grown in vitro: A light and electron microscope study. J Comp Neurol 1995; 357: 161–179.

    PubMed  CAS  Google Scholar 

  22. Wilson DB. Histological defects in the cerebellum of adult Lurcher (Lc) mice. J Neuropathol Exp Neurol 1976; 35: 40–45.

    PubMed  CAS  Google Scholar 

  23. Rabacchi SA, Bailly Y, Delhaye-Bouchaud N et al. Role of the target in synapse elimination: Studies in cerebellum of developing Lurcher mutants and adult chimeric mice. J Neurosci 1992; 12: 4712–4720.

    PubMed  CAS  Google Scholar 

  24. Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. I. Qualitative studies. J Embryol Exp Morphol 1982; 68: 87–98.

    PubMed  CAS  Google Scholar 

  25. Wetts R, Herrup K. Cerebellar Purkinje cells are descended from a small number of progenitors committed during early development: Quantitative analysis of Lurcher chimeric mice. J Neurosci 1982; 2: 1494–1498.

    PubMed  CAS  Google Scholar 

  26. Wetts R, Herrup K. Interaction of granule, Purkinje and inferior olivary neurons in Lurcher chimeric mice. II. Granule cell death. Brain Res 1982; 250: 358–362.

    PubMed  CAS  Google Scholar 

  27. Wetts R, Herrup K. Direct correlation between Purkinje and granule cell number in the cerebella of Lurcher chimeras and wild-type mice. Dev Brain Res 1983; 10: 41–47.

    Google Scholar 

  28. Soha JM, Herrup K. Stunted morphologies of cerebellar Purkinje cells in Lurcher and staggerer mice are cell-intrinsic effects of the mutant genes. J Comp Neurol 1995; 357: 65–75.

    PubMed  CAS  Google Scholar 

  29. Caddy KWT, Herrup K. Studies of the dendritic tree of wild-type cerebellar Purkinje cells in Lurcher chimeric mice. J Comp Neurol 1990; 297: 121–131.

    PubMed  CAS  Google Scholar 

  30. Caddy KWT, Herrup K. The fine structure of the Purkinje cell and its afferents in Lurcher chimeric mice. J Comp Neurol 1991; 305: 421–434.

    PubMed  CAS  Google Scholar 

  31. Lidov HGW, Byers TJ, Kunkel LM. The distribution of dystrophin in the murine central nervous system: An immunocytochemical study. Neuroscience 1993; 54: 167–187.

    PubMed  CAS  Google Scholar 

  32. Vig PJS, Desaiah D, Joshi P et al. Decreased insulin-like growth factor I-mediated protein tyrosine phosphorylation in human olivopontocerebellar atrophy and Lurcher mutant mouse. J Neurol Sci 1994; 124: 38–44.

    PubMed  CAS  Google Scholar 

  33. Norman DJ, Feng L, Cheng SS et al. The Lurcher gene induces apoptotic death in cerebellar Purkinje cells. Development 1995; 121: 1183–1193.

    PubMed  CAS  Google Scholar 

  34. Sidman RL, Green MC. Nervous, a new mutant mouse with cerebellar disease. In: Sabourdy M, ed. Les mutants pathologiques chez l’ animal. Paris: Éditions du Centre National de la Recherche Scientifique, 1970: 69–79.

    Google Scholar 

  35. Berrebi AS, Mugnaini E. Effects of the murine mutation `nervous’ on neurons in cerebellum and dorsal cochlear nucleus. J Neurocytol 1988; 17: 465–484.

    PubMed  CAS  Google Scholar 

  36. Mullen RJ, LaVail MM. Two new types of retinal degeneration in cerebellar mutant mice. Nature (Lond) 1975; 258: 528–530.

    CAS  Google Scholar 

  37. Campbell DB, Hess EJ. Chromosome localization of the neurological mouse mutations tottering (tg), Purkinje cell degeneration (pcd), and nervous (nr). Soc Neurosci Abstr 1995; 21: 2110.

    Google Scholar 

  38. Landis SC. Histochemical demonstration of mitochondrial dehydrogenases in developing normal and nervous mutant mouse Purkinje cells. J Histochem Cytochem 1975; 23: 136–143.

    PubMed  CAS  Google Scholar 

  39. Wassef M, Sotelo C, Cholley B, Brehier A, Thomasset M. Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev Biol 1987; 124: 379–389.

    PubMed  CAS  Google Scholar 

  40. Mallet J, Huchet M, Pougeois R et al. Anatomical, physiological and biochemical studies on the cerebellum from mutant mice. III. Protein differences associated with the weaver, staggerer and nervous mutations. Brain Res 1976; 103: 291–312.

    PubMed  CAS  Google Scholar 

  41. Sotelo C, Triller A. Fate of presynaptic afferents to Purkinje cells in the adult nervous mutant mouse: A model to study presynaptic stabilization. Brain Res 1979; 175: 11–36.

    PubMed  CAS  Google Scholar 

  42. Brion JP, Guilleminot J, Nunez J. Dendritic and axonal distribution of the microtubule-associated proteins MAP2 and tau in the cerebellum of the nervous mutant mouse. Dev Brain Res 1988; 44: 221–232.

    CAS  Google Scholar 

  43. Angelatou F, Mitsacos A, Gouras V et al. L-aspartate and L-glutamate binding sites in developing normal and `nervous’ mutant mouse cerebellum. Int J Dev Neurosci 1987; 5: 373–381.

    PubMed  CAS  Google Scholar 

  44. LaVail MM, White MP, Gorrin GM et al. Retinal degeneration in the nervous mutant mouse. I. Light microscopic cytopathology and changes in the interphotoreceptor matrix. J Comp Neurol 1993; 333: 168–181.

    PubMed  CAS  Google Scholar 

  45. White MP, Gorrin GM, Mullen RJ et al. Retinal degeneration in the nervous mutant mouse. II. Electron microscopic analysis. J Comp Neurol 1993; 333: 182–198.

    PubMed  CAS  Google Scholar 

  46. Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci USA 1976; 73: 208–212.

    PubMed  CAS  Google Scholar 

  47. Landis SC, Mullen RJ. The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol 1978; 177: 125–144.

    PubMed  CAS  Google Scholar 

  48. Nordquist DT, Kozak CA, Orr HT. cDNA cloning and characterization of three genes uniquely expressed in cerebellum by Purkinje neurons. J Neurosci 1988; 8: 4780–4789.

    PubMed  CAS  Google Scholar 

  49. Mullen RJ. Site of pcd gene action and Purkinje cell mosaicism in the cerebella of chimeric mice. Nature (Lond) 1977; 270: 245–247.

    CAS  Google Scholar 

  50. Goodlett CR, Hamre KM, West JR. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice. Behav Brain Res 1992; 47: 129–141.

    PubMed  CAS  Google Scholar 

  51. Chen L, Bao S, Kim JJ et al. Impaired classical eyeblink conditioning in Purkinje cell degeneration (pcd) mutant mice. Soc Neurosci Abstr 1995; 21: 1221.

    Google Scholar 

  52. LaVail MM, Blanks JC, Mullen RJ. Retinal degeneration in the pcd cerebellar mutant mouse. I. Light microscopic and autoradio-graphic analysis. J Comp Neurol 1982; 212: 217–230.

    PubMed  CAS  Google Scholar 

  53. Blanks JC, Mullen RJ, LaVail MM. Retinal degeneration in the pcd cerebellar mutant mouse. II. Electron microscopic analysis. J Comp Neurol 1982; 212: 231–246.

    PubMed  CAS  Google Scholar 

  54. Blanks JC, Spee C. Retinal degeneration in the pcd/pcd mutant mouse: Accumulation of spherules in the interphotoreceptor space. Exp Eye Res 1992; 54: 637–644.

    PubMed  CAS  Google Scholar 

  55. Greer CA, Shepherd GM. Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (pcd). Brain Res 1982; 235: 156–161.

    PubMed  CAS  Google Scholar 

  56. O’Gorman S, Sidman RL. Degeneration of thalamic neurons in `Purkinje cell degeneration’ mutant mice. I. Distribution of neuron loss. J Comp Neurol 1985; 234: 277–297.

    PubMed  Google Scholar 

  57. O’Gorman S. Degeneration of thalamic neurons in `Purkinje cell degeneration’ mutant mice. II. Cytology of neuron loss. J Comp Neurol 1985; 234: 298–316.

    PubMed  Google Scholar 

  58. Sotelo C, Alvarado-Mallart RM. Cerebellar transplantations in adult mice with heredo-degenerative ataxia. Ann NY Acad Sci 1987; 495: 242–267.

    PubMed  CAS  Google Scholar 

  59. Chang AC, Triarhou LC, Alyea CJ et al. Developmental expression of polypeptide PEP-19 in cerebellar suspensions transplanted into the cerebellum of pcd mutant mice. Exp Brain Res 1989; 76: 639–645.

    PubMed  CAS  Google Scholar 

  60. Ghetti B, Triarhou LC. The Purkinje cell degeneration mutant: A model to study the consequences of neuronal degeneration. In: Plaitakis A, ed. Cerebellar Degenerations: Clinical Neurobiology. Boston: Kluwer Academic; 1992: 159–181.

    Google Scholar 

  61. Furuya S, Irie F, Hashikawa T et al. Ganglioside Gpi« in cerebellar Purkinje cells: Its specific absence in mouse mutants with Purkinje cell abnormality and altered immunoreactivity in response to conjunctive stimuli causing long term desensitization. J Biol Chem 1994; 269: 32418–32425.

    PubMed  CAS  Google Scholar 

  62. Zhang W, Lee W-H, Triarhou LC. Grafted cerebellar cells in a mouse model of hereditary ataxia express IGF-I system genes and partially restore behavioral function. Nature Med 1996; 2: 65–71.

    PubMed  CAS  Google Scholar 

  63. Triarhou LC, Norton J, Ghetti B. Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice. Exp Brain Res 1987; 66: 577–588.

    PubMed  CAS  Google Scholar 

  64. Bäurle J, Grover BG, Grüsser-Cornehls U. Plasticity of GABAergic terminals in Deiters’ nucleus of weaver mutant and normal mice: A quantitative light microscopic study. Brain Res 1992; 591: 305–318.

    PubMed  Google Scholar 

  65. Bäurle J, Grüsser-Cornehls U. Calbindin D-28k in the lateral vestibular nucleus of mutant mice as a tool to reveal Purkinje cell plasticity. Neurosci Lett 1994; 167: 85–88.

    PubMed  Google Scholar 

  66. Triarhou LC, Norton J, Ghetti B. Morphometric analysis of the inferior olivary complex in pcd mutant mice. Neurosci Lett 1986; [Suppl] 26: 111.

    Google Scholar 

  67. Triarhou LC, Ghetti B. Stabilisation of neurone number in the inferior olivary complex of aged `Purkinje cell degeneration’ mutant mice. Acta Neuropathol (Berl) 1991; 81: 597–602.

    CAS  Google Scholar 

  68. Rotter A, Frostholm A. Cerebellar benzodiazepine receptor distribution: An autoradiographic study of the normal C57BL/6J and Purkinje cell degeneration mutant mouse. Neurosci Lett 1986; 71: 66–71.

    PubMed  CAS  Google Scholar 

  69. Rotter A, Frostholm A. Cerebellar benzodiazepine receptors: Cellular localization and consequences of neurological mutations in mice. Brain Res 1988; 444: 133–146.

    PubMed  CAS  Google Scholar 

  70. Rotter A, Gorenstein C, Frostholm A. The localization of GABAA receptors in mice with mutations affecting the structure and connectivity of the cerebellum. Brain Res 1988; 439: 236–248.

    PubMed  CAS  Google Scholar 

  71. Kahle G, Kaulen P, Bruning G et al. Autoradiographic analysis of benzodiazepine receptors in mutant mice with cerebellar defects. J Chem Neuroanat 1990; 3: 261–270.

    PubMed  CAS  Google Scholar 

  72. Luntz-Leybman V, Frostholm A, Fernando L et al. GABAA/benzodiazepine receptor y2 subunit gene expression in developing normal and mutant mouse cerebellum. Mol Brain Res 1993; 19: 9–21.

    PubMed  CAS  Google Scholar 

  73. Vaccarino FM, Ghetti B, Nurnberger JI. Residual benzodiazepine binding in the cortex of pcd mutant cerebella and qualitative binding in the deep cerebellar nuclei of control and mutant mice: An autoradiographic study. Brain Res 1985; 343: 70–78.

    PubMed  CAS  Google Scholar 

  74. Gambarana C, Loria CJ, Siegel RE. GABAA receptor messenger RNA expression in the deep cerebellar nuclei of Purkinje cell degeneration mutants is maintained following the loss of innervating Purkinje neurons. Neuroscience 1993; 52: 63–71.

    PubMed  CAS  Google Scholar 

  75. Stasi K, Mitsacos A, Triarhou LC et al. Functional integration of transplanted Purkinje cells into the atrophic cerebellum: I. Excitatory amino acid receptors and afferent innervation. Abstr Am Soc Neural Transpl 1996; 3: 50.

    Google Scholar 

  76. Falconer DS. Two new mutants, “trembler” and “reeler”, with neurological actions in the house mouse. J Genet 1951; 50: 192–201.

    Google Scholar 

  77. Hamburgh M. Observations on the neuropathology of `reeler’, a neurological mutation in mice. Experientia (Basel) 1960; 16: 460–461.

    Google Scholar 

  78. Caviness VS, Sidman RL. Retrohippocampal, hippocampal, and related structures of the forebrain in the reeler mutant mouse. J Comp Neurol 1973; 147: 235–254.

    PubMed  Google Scholar 

  79. Mariani J, Crepel F, Mikoshiba K et al. Anatomical, physiological and biochemical studies of the cerebellum from reeler mutant mouse. Phil Trans Roy Soc Lond (Biol) 1977; 281: 1–28.

    CAS  Google Scholar 

  80. Goffinet AM. Abnormal development of the facial nerve nucleus in reeler mutant mice. J Anat 1984; 138: 207–215.

    PubMed  Google Scholar 

  81. Green-Johnson JM, Zalcman S, Vriend CY et al. Suppressed T cell and macrophage function in the `reeler’ (rl/rl) mutant, a murine strain with elevated cerebellar norepinephrine concentration. Brain Behav Immun 1995; 9: 47–60.

    PubMed  CAS  Google Scholar 

  82. Goffinet AM. The embryonic development of the cerebellum in normal and reeler mutant mice. Anat Embryol (Berl) 1983; 168: 73–86.

    CAS  Google Scholar 

  83. Goffinet AM, So KF, Yamamoto M et al. Architectonic and hodological organization of the cerebellum in reeler mutant mice. Dev Brain Res 1984; 16: 263–276.

    Google Scholar 

  84. Heckroth JA, Goldowitz D, Eisenman LM. Purkinje cell reduction in the reeler mutant mouse: A quantitative immunohistochemical study. J Comp Neurol 1989; 279: 546–555.

    PubMed  CAS  Google Scholar 

  85. Edwards MA, Leclerc N, Crandall JE et al. Purkinje cell compartments in the reeler mutant mouse as revealed by Zebrin II and 90acetylated glycolipid antigen expression. Anat Embryol (Berl) 1994; 190: 417–428.

    CAS  Google Scholar 

  86. Terashima T, Inoue K, Inoue Y et al. Observations on Golgi epithelial cells and granule cells in the cerebellum of the reeler mutant mouse. Dev Brain Res 1985; 18: 103–112.

    Google Scholar 

  87. Nagata I, Terashima T. Migration behaviour of granule cells on laminin in cerebellar microexplant cultures from early postnatal reeler mutant mice. Int J Dev Neurosci 1994; 12: 387–395.

    PubMed  CAS  Google Scholar 

  88. Sangameswaran L, Hempstead J, Morgan JI. Molecular cloning of a neuron-specific transcript and its regulation during normal and aberrant cerebellar development. Proc Natl Acad Sci USA 1989; 86: 5651–5655.

    PubMed  CAS  Google Scholar 

  89. Smeyne RJ, Oberdick J, Schilling K et al. Dynamic organization of developing Purkinje cells revealed by transgene expression. Science 1991; 254: 719–721.

    PubMed  CAS  Google Scholar 

  90. Kambouris M, Sangameswaran L, Dlouhy SR et al. Cellular distribution of the RNA transcripts of a newly discovered gene in the brain of normal, weaver, Purkinje cell degeneration and reeler mutant mice as evidenced by in situ hybridization histochemistry. Mol Brain Res 1993; 18: 321–328.

    PubMed  CAS  Google Scholar 

  91. Matsokis N, Valcana T. [3H]GABA binding in the cerebellum of the reeler murine mutant. Neurochem Int 1985; 7: 37–44.

    PubMed  CAS  Google Scholar 

  92. Frostholm A, Zdilar D, Chang A et al. Stability of GABAA/benzodiazepine receptor al subunit mRNA expression in reeler mouse cerebellar Purkinje cells during postnatal development. Dev Brain Res 1991; 64: 121–128.

    CAS  Google Scholar 

  93. Watanabe M, Nakagawa S, Takayama C et al. Cerebellum of the adult reeler mutant mouse contains two Purkinje cell populations with respect to gene expression for the N-methyl-D-aspartate receptor channel. Neurosci Res 1995; 22: 335–345.

    PubMed  CAS  Google Scholar 

  94. Goffinet AM. The embryonic development of the inferior olivary complex in normal and reeler (rlORL) mutant mice. J Comp Neurol 1983; 219: 10–24.

    PubMed  CAS  Google Scholar 

  95. Terashima T, Inoue K, Inoue Y et al. Observations on the cerebellum of normal H reeler mutant mouse chimera. J Comp Neurol 1986; 252: 264–278.

    PubMed  CAS  Google Scholar 

  96. Godfraind C, Schachner M, Goffinet AM. Immunohistological localization of cell adhesion molecules L1, J1, N-CAM and their common carbohydrate L2 in the embryonic cortex of normal and reeler mice. Dev Brain Res 1988; 42: 99–111.

    CAS  Google Scholar 

  97. Steindler DA, Faissner A, Harrington KL. A unique mosaic in the visual cortex of the reeler mutant mouse. Cerebral Cortex 1994; 4: 129–137.

    PubMed  CAS  Google Scholar 

  98. Ishida A, Shimazaki K, Terashima T et al. An electrophysiological and immunohistochemical study of the hippocampus of the reeler mutant mouse. Brain Res 1994; 662: 60–68.

    PubMed  CAS  Google Scholar 

  99. Miao GG, Smeyne RJ, D’Arcangelo G et al. Isolation of an allele of reeler by insertional mutagenesis. Proc Natl Acad Sci USA 1994; 91: 11050–11054.

    PubMed  CAS  Google Scholar 

  100. D’Arcangelo G, Miao GG, Chen S-C et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature (Lond) 1995; 374: 719–723.

    Google Scholar 

  101. Goffinet AM. The reeler gene: A clue to brain development and evolution. Int J Dev Biol 1992; 36: 101–107.

    PubMed  CAS  Google Scholar 

  102. Shojaeian H, Delhaye-Bouchaud N, Mariani J. Decreased number of cells in the inferior olivary nucleus of the adult mouse (+Isg) heterozygous for the staggerer gene. Neuroscience 1987; 22: 91–97.

    PubMed  CAS  Google Scholar 

  103. Bakalian A, Kopmels B, Messer A et al. Peripheral macrophage abnormalities in mutant mice with spinocerebellar degeneration. Res Immunol 1992; 143: 129–139.

    PubMed  CAS  Google Scholar 

  104. Gatti RA, Berkel I, Boder E et al. Localization of an ataxiatelangiectasia gene to chromosome 11g22–23. Nature (Lond) 1988; 336: 577–580.

    CAS  Google Scholar 

  105. Sidman RL, Lane PW, Dickie MM. Staggerer, a new mutation in the mouse affecting the cerebellum. Science 1962; 137: 610–612.

    PubMed  CAS  Google Scholar 

  106. Sax DS, Hirano A, Shofer RJ. Staggerer, a neurological murine mutant: An electron microscopic study of the cerebellar cortex in the adult. Neurology 1968; 18: 1093–1100.

    PubMed  CAS  Google Scholar 

  107. Yoon CH. Developmental mechanism for changes in cerebellum of `staggerer’ mouse, a neurological mutant of genetic origin. Neurology 1972; 22: 743–754.

    PubMed  CAS  Google Scholar 

  108. Sotelo C, Changeux J-P. Transsynaptic degeneration `en cascade’ in the cerebellar cortex of staggerer mutant mice. Brain Res 1974; 67: 519–526.

    PubMed  CAS  Google Scholar 

  109. Hirano A, Dembitzer HM. The fine structure of staggerer cerebellum. J Neuropathol Exp Neurol 1975; 34: 1–11.

    PubMed  CAS  Google Scholar 

  110. Sotelo C. Dendritic abnormalities of Purkinje cells in the cerebellum of neurologic mutant mice (weaver and staggerer). Adv Neurol 1975; 12: 335–351.

    PubMed  CAS  Google Scholar 

  111. Yoon CH. Pleiotropic effect of the staggerer gene. Brain Res 1976; 109: 206–215.

    PubMed  CAS  Google Scholar 

  112. Landis DMD, Reese TS. Structure of the Purkinje cell membrane in staggerer and weaver mutant mice. J Comp Neurol 1977; 171: 247–260.

    PubMed  CAS  Google Scholar 

  113. Landis DMD, Sidman RL. Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice. J Comp Neurol 1978; 179: 831–863.

    PubMed  CAS  Google Scholar 

  114. Bradley P, Berry M. The Purkinje cell dendritic tree in mutant mouse cerebellum: A quantitative Golgi study of weaver and staggerer mice. Brain Res 1978; 142: 135–141.

    PubMed  CAS  Google Scholar 

  115. Ryo Y, Miyawaki A, Furuichi T et al. Expression of the metabotropic glutamate receptor mGluRl alpha and the ionotropic glutamate receptor G1uR1 in the brain during the postnatal development of normal mouse and in the cerebellum from mutant mice. J Neurosci Res 1993; 36: 19–32.

    PubMed  CAS  Google Scholar 

  116. Wiestler OD, Trenkner E, Walter G. Progressive loss of neuronal src protein in postnatal weaver and staggerer cerebellum. Exp Cell Biol 1988; 56: 190–195.

    PubMed  CAS  Google Scholar 

  117. Kouvelas ED, Mitsacos A, Angelatou F et al. Glutamate receptors in mammalian cerebellum: Alterations in human ataxic disorders and cerebellar mutant mice. In: Plaitakis A, ed. Cerebellar Degenerations: Clinical Neurobiology. Boston: Kluwer Academic Publishers, 1992: 123–137.

    Google Scholar 

  118. Crepel F, Mariani J. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. I. Electrophysiological analysis of cerebellar cortical neurons in the staggerer mouse. Brain Res 1975; 98: 135–147.

    PubMed  CAS  Google Scholar 

  119. Mariani J. Extent of multiple innervation of Purkinje cells by climbing fibers in the olivocerebellar system of weaver, reeler, and staggerer mutant mice. J Neurobiol 1982; 13: 119–126.

    PubMed  CAS  Google Scholar 

  120. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex in the adult staggerer mutant mouse. J Neurogenet 1985; 2: 51–66.

    PubMed  CAS  Google Scholar 

  121. Shojaeian H, Delhaye-Bouchaud N, Mariani J. Decreased number of cells in the inferior olivary nucleus of the developing staggerer mouse. Dev Brain Res 1985; 21: 141–146.

    Google Scholar 

  122. Shojaeian-Zanjani H, Herrup K, Guastavino JM et al. Developmental studies of the inferior olivary nucleus in staggerer mutant mice. Dev Brain Res 1994; 82: 18–28.

    Google Scholar 

  123. Edelman GM, Chuong CM. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci USA 1982; 79: 7036–7040.

    PubMed  CAS  Google Scholar 

  124. D’Eustachio P, Davisson MT. Resolution of the staggerer (sg) mutation from the neural cell adhesion molecule locus (Ncam) on mouse Chromosome 9. Mamm Genome 1993; 4: 278–280.

    PubMed  Google Scholar 

  125. Karagogeos D, Kyriakopoulou K, Delhaye-Bouchaud N et al. Cerebellar granule cell differentiation in mutant and X-irradiated rodents as revealed by the neural adhesion molecule TAG-1. Soc Neurosci Abstr 1995; 21: 1036.

    Google Scholar 

  126. Heinlein UAO, Ruppert C, Wille W. Staggerer-specific protein SP47: A unique species among age-and genotype-dependent cerebellar proteins. Neurochem Res 1987; 12: 53–60.

    PubMed  CAS  Google Scholar 

  127. Brugg B, Dubreuil YL, Huber G et al. Inflammatory processes induce ß-amyloid precursor protein changes in mouse brain. Proc Natl Acad Sci USA 1995; 92: 3032–3035.

    PubMed  CAS  Google Scholar 

  128. Trenkner E, Hoffmann MK. Defective development of the thymus and immunological abnormalities in the neurological mouse mutation `staggerer’. J Neurosci 1986; 6: 1733–1737.

    PubMed  CAS  Google Scholar 

  129. Hamilton BA, Frankel WN, Kerrebrock AW et al. Disruption of the nuclear hormone receptor RORa in staggerer mice. Nature (Lond) 1996; 379: 736–739.

    CAS  Google Scholar 

  130. Lane PW. Mouse News Lett 1964; 30: 32.

    Google Scholar 

  131. Lane JD, Nadi NS, McBride WJ et al. Contents of serotonin, norepinephrine and dopamine in the cerebrum of the `staggerer’, `weaver’ and `nervous’ neurologically mutant mice. J Neurochem 1977; 29: 349–350.

    PubMed  CAS  Google Scholar 

  132. Triarhou LC. Weaver gene expression in central nervous system. In: Conn PM, ed. Gene Expression in Neural Tissues. San Diego: Academic Press, 1992: 209–227.

    Google Scholar 

  133. Rezai Z, Yoon CH. Abnormal rate of granule cell migration in the cerebellum of `weaver’ mutant mice. Dev Biol 1972; 29: 17–26.

    PubMed  CAS  Google Scholar 

  134. Smeyne RJ, Goldowitz D. Purkinje cell loss is due to a direct action of the weaver gene in Purkinje cells: Evidence from chimeric mice. Dev Brain Res 1990; 52: 211–218.

    CAS  Google Scholar 

  135. Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 1973; 152: 103–132.

    PubMed  CAS  Google Scholar 

  136. Smeyne RJ, Goldowitz D. Development and death of external granular layer cells in the weaver mouse cerebellum: A quantitative study. J Neurosci 1989; 9: 1608–1620.

    PubMed  CAS  Google Scholar 

  137. Smeyne RJ, Goldowitz D. Postnatal development of the wild-type and weaver cerebellum after embryonic administration of propylthiouracil (PTU). Dev Brain Res 1990; 54: 282–286.

    CAS  Google Scholar 

  138. Mourre C, Widmann C, Lazdunski M. Sulfonylurea binding sites associated with ATP-regulated K* channels in the central nervous system: Autoradiographic analysis of their distribution and ontogenesis, and of their localization in mutant mice cerebellum. Brain Res 1990; 519: 29–43.

    PubMed  CAS  Google Scholar 

  139. Fischer-Bovenkerk C, Kish PE, Ueda T. ATP-dependent glutamate uptake into synaptic vesicles from cerebellar mutant mice. J Neurochem 1988; 51: 1054–1059.

    PubMed  CAS  Google Scholar 

  140. Brugge JS, Lustig A, Messer A. Changes in the pattern of expression of pp60c-’rc in cerebellar mutants of mice. J Neurosci Res 1987; 18: 532–538.

    PubMed  CAS  Google Scholar 

  141. Mourre C, Widmann C, Lazdunski M. Saxitoxin-sensitive Na+ channels: Presynaptic localization in cerebellum and hippocampus of neurological mutant mice. Brain Res 1990; 533: 196–202.

    PubMed  CAS  Google Scholar 

  142. Maeda N, Wada K, Yuzaki M et al. Autoradiographic visualization of a calcium channel antagonist, [125I]w-conotoxin GVIA, binding site in the brains of normal and cerebellar mutant mice (pcd and weaver). Brain Res 1989; 489: 21–30.

    PubMed  CAS  Google Scholar 

  143. Leung T, How BE, Manser E et al. Cerebellar 132-chimaerin, a GTPase-activating protein for p21 Ras-related Rac is specifically expressed in granule cells and has a unique N-terminal SH2 domain. J Biol Chem 1994; 269: 12888–12892.

    PubMed  CAS  Google Scholar 

  144. Schweitz H, Heurteaux C, Bois P et al. Calcicludine, a venom peptide of the Kunitz-type protease inhibitor family, is a potent blocker of high-threshold Ca2+ channels with a high affinity for L-type channels in cerebellar granule neurons. Proc Natl Acad Sci USA 1994; 91: 878–882.

    PubMed  CAS  Google Scholar 

  145. Salinas PC, Copeland NG, Jenkins NA et al. Maintenance of Wnt-3 expression in Purkinje cells of the mouse cerebellum depends on interactions with granule cells. Development 1994; 120: 1277–1286.

    PubMed  CAS  Google Scholar 

  146. Solà C, Mengod G, Palacios JM et al. GAP-43 and MAP2 expression in normal and weaver cerebellum: Immunohistochemical and in situ hybridization studies. Brain Pathol 1994; 4: 395.

    Google Scholar 

  147. Solà C, Mengod G, Ghetti B et al. Regional distribution of the alternatively spliced isoforms of ßAPP RNA transcript in the brain of normal, heterozygous and homozygous weaver mutant mice as revealed by in situ hybridization histochemistry. Mol Brain Res 1993; 17: 340–346.

    PubMed  Google Scholar 

  148. Blatt GJ, Eisenman LM. A qualitative and quantitative light microscopic study of the inferior olivary complex of normal, reeler, and weaver mutant mice. J Comp Neurol 1985; 232: 117–128.

    PubMed  CAS  Google Scholar 

  149. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152: 133–162.

    PubMed  CAS  Google Scholar 

  150. Sotelo C. Purkinje cell ontogeny: Formation and maintenance of spines. Prog Brain Res 1978; 48: 149–170.

    PubMed  CAS  Google Scholar 

  151. Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res 1975; 94: 19–44.

    Google Scholar 

  152. Hirano A, Dembitzer HM. Cerebellar alterations in the weaver mouse. J Cell Biol 1973; 56: 478–486.

    PubMed  CAS  Google Scholar 

  153. Hanna RB, Hirano A, Pappas GD. Membrane specializations of dendritic spines and glia in the weaver mouse cerebellum: A freeze-fracture study. J Cell Biol 1976; 68: 403–410.

    PubMed  CAS  Google Scholar 

  154. Crepel F, Mariani J. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the weaver mutant mouse. J Neurobiol 1976; 7: 579–582.

    PubMed  CAS  Google Scholar 

  155. Puro DG, Woodward DJ. The climbing fiber system in the weaver mutant. Brain Res 1977; 129: 141–146.

    PubMed  CAS  Google Scholar 

  156. Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 1988; 70: 256–265.

    PubMed  CAS  Google Scholar 

  157. Bayer SA, Wills KV, Triarhou LC et al. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad Sci USA 1995; 92: 9137–9140.

    PubMed  CAS  Google Scholar 

  158. Schmidt MJ, Sawyer BD, Perry KW et al. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982; 2: 376–380.

    PubMed  CAS  Google Scholar 

  159. Roffler-Tarlov S, Graybiel AM. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and non-limbic striatum. Nature (Lond) 1984; 307: 62–66.

    CAS  Google Scholar 

  160. Doucet G, Brundin P, Seth S et al. Degeneration and graft-induced restoration of dopamine innervation in the weaver mouse neostriatum: A quantitative radioautographic study of [3H]dopamine uptake. Exp Brain Res 1989; 77: 552–568.

    PubMed  CAS  Google Scholar 

  161. Triarhou LC, Norton J, Ghetti B. Synaptic connectivity of tyrosine hydroxylase immunoreactive nerve terminals in the striatum of normal, heterozygous and homozygous weaver mutant mice. J Neurocytol 1988; 17: 221–232.

    PubMed  CAS  Google Scholar 

  162. Triarhou LC. Definition of the Mesostriatal Dopamine Deficit in the Weaver Mutant Mouse and Reconstruction of the Damaged Pathway by Means of Neural Transplantation. Ann Arbor, MI: University Microfilms International, 1987.

    Google Scholar 

  163. Triarhou LC, Ghetti B. The dendritic dopamine projection of the substantia nigra: Phenotypic denominator of weaver gene action in hetero-and homozygosity. Brain Res 1989; 501: 373–381.

    PubMed  CAS  Google Scholar 

  164. Triarhou LC, Ghetti B. Further characterization of the dopaminergic dendrite deficit in substantia nigra pars reticulata of

    Google Scholar 

  165. heterozygous and homozygous weaver mutant mice: Golgi, MAP2 and synaptic connectivity studies. Soc Neurosci Abstr 1991; 17: 159.

    Google Scholar 

  166. Triarhou LC, Ghetti B. Neuroanatomical substrate of behavioural impairment in weaver mutant mice. Exp Brain Res 1987; 68: 434–435.

    PubMed  CAS  Google Scholar 

  167. Seyfried TN. Convulsive disorders. In: Foster HL, Small JD, Fox JG, eds. The Mouse in Biomedical Research. New York: Academic Press, 1982; 4: 97: 124.

    Google Scholar 

  168. Eisenberg B, Messer A. Tonic/clonic seizures in a mouse mutant carrying the weaver gene. Neurosci Lett 1989; 96: 168–172.

    PubMed  CAS  Google Scholar 

  169. Lindvall O, Ingvar M, Gage FH. Short term status epilepticus in rats causes specific behavioral impairments related to substantia nigra necrosis. Exp Brain Res 1986; 64: 143–148.

    PubMed  CAS  Google Scholar 

  170. La Grutta V, Sabatino M. Substantia nigra-mediated anticonvulsant action: A possible role of a dopaminergic component. Brain Res 1990; 515: 87–93.

    PubMed  Google Scholar 

  171. Goldowitz D, Mullen RJ. Granule cell as a site of gene action in the weaver mouse cerebellum: Evidence from heterozygous mutant chimeras. J Neurosci 1982; 2: 1474–1485.

    PubMed  CAS  Google Scholar 

  172. Goldowitz D. The weaver granuloprival phenotype is due to intrinsic action of the mutant locus in granule cells: Evidence from homozygous weaver chimeras. Neuron 1989; 2: 1565–1575.

    PubMed  CAS  Google Scholar 

  173. Lane PW, Sweet HO. Mouse News Lett 1979; 60: 46, 50.

    Google Scholar 

  174. Mjaatvedt AE, Citron MP, Reeves RH. High-resolution mapping of D16Led-1, Gart, Gas-4, Cbr, Pcp-4, and Erg on distal mouse chromosome 16. Genomics 1993; 17: 382–386.

    PubMed  CAS  Google Scholar 

  175. Reeves RH, Crowley MR, Lorenzon N et al. The mouse neurological mutant weaver maps within the region of chromosome 16 that is homologous to human chromosome 21. Genomics 1989; 5: 522–526.

    PubMed  CAS  Google Scholar 

  176. Patil N, Cox DR, Bhat D et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genet 1995; 11: 126–129.

    PubMed  CAS  Google Scholar 

  177. Tsaur M-L, Menzel S, Lai F-P et al. Isolation of a cDNA clone encoding a KATP channel-like protein expressed in insulin-secreting cells, localization of the human gene to chromosome band 21822.1, and linkage studies with NIDDM. Diabetes 1995; 44: 592–596.

    PubMed  CAS  Google Scholar 

  178. Mjaatvedt AE, Cabin DE, Cole SE et al. Assessment of a mutation in the H5 domain of Girk2 as a candidate for the weaver mutation. Genome Res 1995; 5: 453–463.

    PubMed  CAS  Google Scholar 

  179. Slesinger PA, Patil N, Liao J et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K. channels. Neuron 1996; 16: 321–331.

    PubMed  CAS  Google Scholar 

  180. Murtomaki S, Trenkner E, Wright JM et al. Increased proteolytic activity of the granule neurons may contribute to neuronal death in the weaver mouse cerebellum. Dev Biol 1995; 168: 635–648.

    PubMed  CAS  Google Scholar 

  181. Sekiguchi M, Shimai K, Guo H et al. Cytoarchitectonic abnormalities in hippocampal formation and cerebellum of dreher mutant mouse. Dev Brain Res 1992; 67: 105–112.

    CAS  Google Scholar 

  182. Sekiguchi M, Nowakowski RS, Shimai K et al. Abnormal distribution of acetylcholinesterase activity in the hippocampal formation of the dreher mutant mouse. Brain Res 1993; 622: 203–210.

    PubMed  CAS  Google Scholar 

  183. Sekiguchi M, Abe H, Shimai K et al. Disruption of neuronal migration in the neocortex of the dreher mutant mouse. Dev Brain Res 1994; 77: 37–43.

    CAS  Google Scholar 

  184. Duchen LW, Strich SJ, Falconer DS. Clinical and pathological studies of an hereditary neuropathy in mice (dystonia musculorum). Brain 1964; 87: 367–378.

    PubMed  CAS  Google Scholar 

  185. Janota I. Ultrastructural studies of an hereditary sensory neuropathy in mice (dystonia musculorum). Brain 1972; 95: 529–536.

    PubMed  CAS  Google Scholar 

  186. Duchen LW. Dystonia musculorum-an inherited disease of the nervous system in the mouse. Adv Neurol 1976; 14: 353–365.

    PubMed  CAS  Google Scholar 

  187. Ebendal T, Lundin L-G. Nerve growth factor in three neurologically deficient mouse mutants. Neurosci Lett 1984; 50: 121–126.

    PubMed  CAS  Google Scholar 

  188. Sotelo C, Guenet JL. Pathologic changes in the CNS of dystonia musculorum mutant mouse: An animal model for human spino-cerebellar ataxia. Neuroscience 1988; 27: 403–424.

    PubMed  CAS  Google Scholar 

  189. Guastavino JM, Sotelo C, Damez-Kinselle I. Hot-foot murine mutation: behavioral effects and neuroanatomical alterations. Brain Res 1990; 523: 199–210.

    PubMed  CAS  Google Scholar 

  190. Guenet JL, Sotelo C, Mariani J. Hyperspiny Purkinje cell, a new neurological mutation in the mouse. J Hered 1983; 74: 105–108.

    PubMed  CAS  Google Scholar 

  191. Sotelo C. Axonal abnormalities in cerebellar Purkinje cells of the `hyperspiny Purkinje cell’ mutant mouse. J Neurocytol 1990; 19: 737–755.

    PubMed  CAS  Google Scholar 

  192. Frederic F, Hainaut F, Thomasset M et al. Cell counts of Purkinje and inferior olivary neurons in the `hyperspiny Purkinje cell’ mutant mouse. Eur J Neurosci 1992; 4: 127–135.

    PubMed  Google Scholar 

  193. Ross ME, Fletcher C, Mason CA et al. Meander tail reveals a discrete developmental unit in the mouse cerebellum. Proc Natl Acad Sci USA 1990; 87: 4189–4192.

    PubMed  CAS  Google Scholar 

  194. Fletcher C, Norman DJ, Heintz N. Genetic mapping of meander tail, a mouse mutation affecting cerebellar development. Genomics 1991; 9: 647–655.

    PubMed  CAS  Google Scholar 

  195. Eisenman LM, Arlinghaus LE. Spinocerebellar projection in the meander tail mutant mouse: Organization in the granular posterior lobe and the agranular anterior lobe. Brain Res 1991; 558: 149–152.

    PubMed  CAS  Google Scholar 

  196. Eisenman LM, Pruett JR. Expression of the Purkinje cell specific zebrin antigens in the cerebellum of the meander tail mutant mouse. Brain Res 1992; 589: 135–138.

    PubMed  CAS  Google Scholar 

  197. Napieralski JA, Eisenman LM. Developmental analysis of the external granular layer in the meander tail mutant mouse: Do cerebellar microneurons have independent progenitors? Dev Dynamics 1993; 197: 244–254.

    CAS  Google Scholar 

  198. Bock GR, Frank MP. Brainstem responses in the quivering mutant mouse. Acta Otolaryngol 1984; 98: 193–198.

    PubMed  CAS  Google Scholar 

  199. Horner KC, Bock GR. Single unit responses in the cochlear nucleus of the deaf quivering mouse. Hearing Res 1984; 13: 63–72.

    CAS  Google Scholar 

  200. Horner KC, Bock GR. Combined electrophysiological and autoradiographic delimitation of retrocochlear dysfunction in a mouse mutant. Brain Res 1985; 331: 217–223.

    PubMed  CAS  Google Scholar 

  201. Tong J, Potts JF, Rochelle JM et al. A single B-1 subunit mapped to mouse chromosome 7 may be a common component of Na channel isoforms from brain, skeletal muscle and heart. Biochem Biophys Res Commun 1993; 195: 679–685.

    PubMed  CAS  Google Scholar 

  202. Lane PW, Bronson RT, Spencer CA. Rostral cerebellar malformation, (rcm): A new recessive mutation on chromosome 3 of the mouse. J Hered 1992; 83: 315–318.

    PubMed  CAS  Google Scholar 

  203. Caddy KWT, Sidman RL. Purkinje cells and granule cells in the cerebellum of the stumbler mutant mouse. Dev Brain Res 1981; 1: 221–236.

    Google Scholar 

  204. Caddy KWT, Patterson DL, Biscoe TJ. Use of the UCHT1 monoclonal antibody to explore mouse mutants and development. Nature (Lond) 1982; 300: 441–443.

    CAS  Google Scholar 

  205. Turgeon SM, Albin RL. Pharmacology, distribution, cellular localization, and development of GABAB binding in rodent cerebellum. Neuroscience 1993; 55: 311–323.

    PubMed  CAS  Google Scholar 

  206. Thomas KR, Musci TS, Neumann PE et al. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 1991; 67: 969–976.

    PubMed  CAS  Google Scholar 

  207. Rossi F, Jankovski A, Sotelo C. Target neuron controls the integrity of afferent axon phenotype: A study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J Neurosci 1995; 15: 2040–2056.

    PubMed  CAS  Google Scholar 

  208. Feddersen RM, Ehlenfeldt R, Yunis WS et al. Disrupted cerebellar cortical development and progressive degeneration of Purkinje cells in SV40 T antigen transgenic mice. Neuron 1992; 9: 955–966.

    PubMed  CAS  Google Scholar 

  209. Luo L, Hensch TK, Ackerman L et al. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature (Lond) 1996; 379: 837–840.

    CAS  Google Scholar 

  210. Koike T, Tanaka S, Ito E. Neuronal development and apoptosis. Human Cell 1994; 7: 13–19.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Triarhou, L.C. (1997). Cerebellar Mutants in the Laboratory Mouse. In: Neural Transplantation in Cerebellar Ataxia. Neuroscience Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22213-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22213-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22215-7

  • Online ISBN: 978-3-662-22213-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics