Molecular Basis of Genetic Disorders of the Heart

  • Paul J. R. Barton
  • Kenneth R. Boheler
  • Nigel J. Brand
  • Penny S. Thomas
Part of the Medical Intelligence Unit book series (MIU.LANDES)


In recent years, advances in the methodology of molecular biology have provided an extraordinarily sophisticated set of tools with which to determine the molecular basis of inherited genetic disorders.1,2 In many cases this has led to the development of improved diagnostic techniques and the design of experiments that hold promise for the eventual treatment of genetic diseases. The application of reverse genetics (positional cloning) and “candidate gene” deduction has led to the identification of the disease loci or, in some cases, the affected genes, including: cystic fibrosis (CF), Duchenne muscular dystrophy (DMD), Huntington’s disease and some inherited cardiac disorders such as familial hypertrophic cardiomyopathy (FHC), Marfan syndrome (MFS) and DiGeorge syndrome.


Duchenne Muscular Dystrophy Myosin Heavy Chain Hypertrophic Cardiomyopathy Marfan Syndrome Duchenne Muscular Dystrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McKusick VA. Current trends in mapping human genes. FASEB J 1991; 5:12–20.PubMedGoogle Scholar
  2. 2.
    Rossiter BJF, Caskey CT. Molecular studies of human genetic disease. FASEB J 1991; 5:21–7.PubMedGoogle Scholar
  3. 3.
    Menon AG, Klanke CA, Su YR. Identification of disease genes by positional cloning. Trends Cardiovasc Med 1994; 4:97–102.PubMedCrossRefGoogle Scholar
  4. 4.
    Weatherall DJ. The New Genetics and Clinical Practice, Oxford: Oxford University Press, 1991:1–376.Google Scholar
  5. 5.
    The Huntington’s disease collaborative research group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72:971–83.CrossRefGoogle Scholar
  6. 6.
    Colledge WH. Cystic fibrosis gene therapy. Curr Op Genet Develop 1994; 4:466–71.PubMedCrossRefGoogle Scholar
  7. 7.
    Lee B, Godfrey M, Vitale E et al. Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 1991; 352:330–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Maslen CL, Corson GM, Maddox BK et al. Partial sequence of a candidate gene for the Marfan syndrome. Nature 1991; 352:334–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Dietz HC, Pyeritz RE, Hall BD et al. The Marfan syndrome locus: confirmation of assignment to chromosome 15 and identification of tightly linked markers at 15q15-q21.3. Genomics 1991; 9:355–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Dietz HC, Cutting GR, Pyeritz RE et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 1991; 352:337–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Collins FS. Positional cloning moves from perditional to traditional. Nature Genet 1995; 9:347–50.PubMedCrossRefGoogle Scholar
  12. 12.
    Williamson R. Molecular genetics and the transformation of clinical chemistry. Clin Chem 1989; 35:2165–8.PubMedGoogle Scholar
  13. 13.
    Erlich HA, Bugawan TL. HLA DNA typing. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds): PCR Protocols. San Diego: Academic Press, 1990: 261–271.Google Scholar
  14. 14.
    Erlich H, Arnheim N. Genetic analysis using the polymerase chain reaction. Annu Rev Genet 1992; 26:479–506.PubMedCrossRefGoogle Scholar
  15. 15.
    Brand NJ. Principles and applications of the polymerase chain reaction. In: Latchman DS (ed): PCR Applications in Pathology. Oxford: Oxford University Press, 1995: 1–16.Google Scholar
  16. 16.
    Higuchi R, von Beroldingen CH, Sensabaugh SA et al. DNA typing from single hairs. Nature 1988; 332:543–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Li H, Gyllensten UB, Cui X et al. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 1988; 335:414–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Arnheim N, Li H, Cui X. PCR analysis of DNA sequences in single cells: single sperm gene mapping and genetic disease diagnosis. Genomics 1990; 8:415–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Coutelle C, Williams C, Handyside A et al. Genetic analysis of DNA from single human oocytes: a model for preimplantation diagnosis of cystic fibrosis. British Medical Journal 1989; 299:22–4.PubMedCrossRefGoogle Scholar
  20. 20.
    Jeffreys AJ, Wilson V, Thein SL. Hypervariable ‘minisatellite’ regions in human DNA. Nature 1985; 314:67–73.PubMedCrossRefGoogle Scholar
  21. 21.
    Hayashi K. PCR-SSCP: a simple and sensitive method for the detection of mutations in the genomic DNA. PCR Meths Applications 1991; 1:34–8.CrossRefGoogle Scholar
  22. 22.
    Saiki RK, Walsh PS, Levenson CH et al. Genetic analysis of amplified DNA with immobilized sequence-specific oligonucleotide probes. Proc Natl Acad Sci USA 1989; 86:6230–4.PubMedCrossRefGoogle Scholar
  23. 23.
    van Mansfeld ADM, Bos JL. PCR-based approaches for detection of mutated ras genes. PCR Meths Applications 1992; 1:211–6.CrossRefGoogle Scholar
  24. 24.
    Bugawan TL, Saiki RK, Levenson CH et al. The use of non-radioactive oligonucleotide probes to analyze enzymatically amplified DNA for prenatal diagnosis and forensic HLA typing. Biotechnology 1988; 6:943–7.CrossRefGoogle Scholar
  25. 25.
    WHO/IFSC Task Force. Report: Definition and classification of cardiomyopathies. Br Heart J 1980; 44:672–3.CrossRefGoogle Scholar
  26. 26.
    Codd MB, Sugrue DD, Gersh BJ et al. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. Circulation 1989; 80:564–72.PubMedCrossRefGoogle Scholar
  27. 27.
    Schwartz K, Carrier L, Guicheney P et al. Molecular basis of familial cardiomyopathies. Circulation 1995; 91:532–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Davies MJ. The current status of myocardial disarray in hypertrophic cardiomyopathy. Br Heart J 1984; 51:361–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Ferrans VJ, Morrow AG, Roberts WC. Myocardial ultrastructure in idiopathic hypertrophic subaortic stenosis. Circulation 1972; XLV:769–92.CrossRefGoogle Scholar
  30. 30.
    Maron BJ, Bonow RO, Cannon RO et al. Hypertrophie cardiomyopathy. Interrelations of clinical manifestations, pathophysiology, and therapy (2). N Engl J Med 1987; 316:844–52.PubMedCrossRefGoogle Scholar
  31. 31.
    Maron BJ, Gottdiener JS, Epstein SE. Patterns and significance of distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy. A wide angle, two dimensional echocardiographic study of 125 patients. Am J Cardiol 1981; 48:418–28.PubMedCrossRefGoogle Scholar
  32. 32.
    McKenna WJ, Stewart JT, Nihoyannopoulos P et al. Hypertrophie cardiomyopathy without hypertrophy: two families with myocardial disarray in the absence of increased myocardial mass. Br Heart J 1990; 63:287–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Wigle ED, Sasson Z, Henderson MA et al. Hypertrophie cardiomyopathy: the importance of the site and extent of hypertrophy. A review. Prog Cardiovasc Dis 1985; 28:1–83.PubMedCrossRefGoogle Scholar
  34. 34.
    McKenna WJ, Camm AJ. Sudden death in hypertrophic cardiomyopathy: assessment of patients at high risk. Circulation 1989; 80:1489–92.PubMedCrossRefGoogle Scholar
  35. 35.
    Hecht GM, Klues HG, Roberts WC et al. Coexistence of sudden cardiac death and end-stage heart failure in familial hypertrophic cardiomyopathy. J Am Coll Cardiol 1993; 22:489–97.PubMedCrossRefGoogle Scholar
  36. 36.
    Levy D, Garrison RJ, Savage DD et al. Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. New Eng J Med 1990; 322:1561–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Watkins H, Thierfelder L, Hwang DS et al. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J Clin Invest 1992; 90:1666–71.PubMedCrossRefGoogle Scholar
  38. 38.
    Jarcho JA, McKenna W, Pare JA et al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N Engl J Med 1989; 321:1372–8.PubMedCrossRefGoogle Scholar
  39. 39.
    Solomon SD, Geisterfer-Lowrance AA, Vosberg HP et al. A locus for familial hypertrophic cardiomyopathy is closely linked to the cardiac myosin heavy chain genes, CRI-L436, and CRI-L329 on chromosome 14 at q11-q12. Am J Hum Genet 1990; 47:389–94.PubMedGoogle Scholar
  40. 40.
    Geisterfer-Lowrance AA, Kass S, Tanigawa G et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 1990; 62:999–1006.PubMedCrossRefGoogle Scholar
  41. 41.
    Tanigawa G, Jarcho JA, Kass S et al. A molecular basis for familial hypertrophic cardiomyopathy: an alpha/beta cardiac myosin heavy chain hybrid gene. Cell 1990; 62:991–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Jaenicke T, Diederich KW, Haas W et al. The complete sequence of the human beta-myosin heavy chain gene and a comparative analysis of its product. Genomics 1990; 8:194–206.PubMedCrossRefGoogle Scholar
  43. 43.
    Warrick HM, Spudich JA. Myosin structure and function in cell motility. Annu Rev Cell Biol 1987; 3:379–421.PubMedCrossRefGoogle Scholar
  44. 44.
    Cuda G, Sellers J, Epstein ND, et al. In vitro motility activity of β cardiac myosin heavy chain mutation in hypertrophic cardiomyopathy. Circulation 1993; 88:1–343.Google Scholar
  45. 45.
    Straceski AJ, Geisterfer-Lowrance A, Seidman CE et al. Functional analysis of myosin missense mutations in familial hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 1994; 91:589–93.PubMedCrossRefGoogle Scholar
  46. 46.
    Anan R, Greve G, Thierfelder L et al. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest 1994; 93:280–5.PubMedCrossRefGoogle Scholar
  47. 47.
    Epstein ND, Cohn GM, Cyran F et al. Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the beta-myosin heavy chain gene. A 908Leu→Val mutation and a 403Arg→Gln mutation. Circulation 1992; 86:345–52.PubMedCrossRefGoogle Scholar
  48. 48.
    Dausse E, Komajada M, Dubourg O et al. Familial hypertrophic cardiomyopathy: microsatellite haplotyping and identification of a hotspot for mutations in the β-myosin heavy chain gene. J Clin Invest 1993; 92:2807–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Fananapazir L, Dalakas MD, Cyran F et al. Missense mutations in the β myosin heavy chain gene cause central core disease in hypertrophic cardiomyopathy. Proc Natl Acad Sci U S A 1993; 90:3993–7.PubMedCrossRefGoogle Scholar
  50. 50.
    Fananapazir L, Epstein ND. Genotype-phenotype correlations in hypertrophic cardiomyopathy: insights provided by comparisons of kindreds with distinct and identical β-myosin heavy chain mutations. Circulation 1994; 89:22–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Schwartz K, Beckmann J, Dufour C et al. Exclusion of myosin heavy chain and cardiac actin gene involvement in hypertrophic cardiomyopathy of several French families. Circ Res 1992; 71:3–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Watkins H, MacRae C, Thierfelder L et al. A disease locus for familial hypertrophic cardiomyopathy maps to chromosome 1q3. Nat Gen 1993; 3:333–57.CrossRefGoogle Scholar
  53. 53.
    Weissenbach J, Gyapay G, Dib C et al. A second-generation linkage map of the human genome. Nature 1992; 359:794–801.PubMedCrossRefGoogle Scholar
  54. 54.
    Carrier L, Hengstenberg C, Beckmann JS et al. Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nat Gen 1993; 4:311–3.CrossRefGoogle Scholar
  55. 55.
    Thierfelder L, MacRae C, Watkins H et al. A familial hypertrophic cardiomyopathy locus maps to chromosome 15q2. Proc Natl Acad Sci U S A 1993; 90:6270–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Hengstenberg C, Schwartz K. Molecular genetics of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol 1994; 26:3–10.PubMedCrossRefGoogle Scholar
  57. 57.
    Thierfelder L, Watkins H, MacRae C et al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 1994; 77:701–12.PubMedCrossRefGoogle Scholar
  58. 58.
    Kainulainen K, Peltonen L. Marfan syndrome: molecular pathogenesis. Adv Genome Biol 1993; 2:113–33.Google Scholar
  59. 59.
    McKusick VA. The defect in Marfan syndrome. Nature 1991; 352:279–81.PubMedCrossRefGoogle Scholar
  60. 60.
    Francke U, Furthmayr H. Genes and gene products involved in Marfan Syndrome. Semin Thorac Cardiovasc Surgery 1993; 5:3–10.Google Scholar
  61. 61.
    Pulkkinen L, Kainulainen K, Krusius T et al. Deficient expression of the gene coding for decorin in a lethal form of Marfan syndrome. J Biol Chem 1990; 265:17780–5.PubMedGoogle Scholar
  62. 62.
    Kainulainen K, Pulkkinen L, Savolainen A et al. Location on chromosome 15 of the gene defect causing Marfan syndrome. New Eng J Med 1990; 323:935–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Tsipouras P, Sarfarazi M, Devi A et al. Marfan syndrome is closely linked to a marker on chromosome 15q1.5→q2.1. Proc Natl Acad Sci USA 1991; 88:4486–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Sakai LY, Keene DR, Engvall E. Fibrillin, a new 350-kDa glycoprotein, is a component of extracellular microfibrils. J Cell Biol 1986; 103:2499–509.PubMedCrossRefGoogle Scholar
  65. 65.
    Hollister DW, Godfrey M, Sakai LY et al. Immunohistologic abnormalities of the microfibrillar-fiber system in the Marfan syndrome. New Eng J Med 1990; 323:152–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Sakai LY, Keene DR, Glanville RW et al. Purification and partial characterization of fibrillin, a cysteine-rich structural component of connective tissue microfibrils. J Biol Chem 1991; 266:14763–70.PubMedGoogle Scholar
  67. 67.
    Kainulainen K, Karttunen L, Puhakka L et al. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nature Genet 1994; 6:64–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Corson GM, Chalberg SC, Dietz HC. Fibrillin binds calcium and is coded by cDNAs that reveal a multidomain structure and alternatively spliced exons at the 5′ end. Genomics 1993; 17:476–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Dietz HC III, Pyeritz RE. Molecular genetic approaches to the study of human cardiovascular disease. Annu Rev Physiol 1994; 56:763–96.PubMedCrossRefGoogle Scholar
  70. 70.
    Magenis RE, Maslen CL, Smith L et al. Localization of the fibrillin gene to chromosome 15, band 15q21.1. Genomics 1991; 11:346–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Dietz HC, McIntosh I, Sakai LY. Four novel FBN1 mutations: significance for mutant transcript level and EGF-like domain calcium binding in the pathogenesis of Marfan Syndrome. Genomics 1993; 17:468–75.PubMedCrossRefGoogle Scholar
  72. 72.
    Kainulainen K, Sakai L, Child A et al. Two unique mutations in Marfan syndrome resulting in truncated fibrillin polypeptides. Proc Natl Acad Sci USA 1992; 89:5917–21.PubMedCrossRefGoogle Scholar
  73. 73.
    Kainulainen K, Peltonen L. Marfan Syndrome: Molecular Pathogenesis. Advances in Genomic Biology 1993; 2:113–133.Google Scholar
  74. 74.
    Arnheim N, Erlich H. Polymerase chain reaction strategy. Annu Rev Biochem 1992; 61:131–56.PubMedCrossRefGoogle Scholar
  75. 75.
    Scambler P. A genetic aetiology for DiGeorge syndrome, velo-cardio-facial syndrome and familial congenital heart defect. In: Yacoub M, Pepper J (eds): Annual of Cardiac Surgery, 6th edition. London: Current Science Limited, 1993:5–12.Google Scholar
  76. 76.
    Driscoll DA, Budarf ML, Emanuel B. A genetic etiology for DiGeorge syndrome: consistent deletions and microdeletions of 22q11. Am J Hum Genet 1992; 50:924–33.PubMedGoogle Scholar
  77. 77.
    Chisaka O, Capecchi MR. Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 1991; 350:473–9.PubMedCrossRefGoogle Scholar
  78. 78.
    Bass BL, Weintraub H. An unwinding activity that covalently modifies its double-stranded RNA substrate. Cell 1988; 55:1089–98.PubMedCrossRefGoogle Scholar
  79. 79.
    Simons M, Edelman ER, DeKeyser J et al. Antisense c-myb oligonucleotides inhibit intimai arterial smooth muscle cell accumulation in vivo. Nature 1992; 359:67–70.PubMedCrossRefGoogle Scholar
  80. 80.
    Gerard RD, Meidell RS. Adenovirus-mediated gene transfer. Trends Cardiovasc Med 1993; 3:171–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Barr E, Leiden JM. Somatic gene therapy for cardiovascular disease. Trends Cardiovasc Med 1994; 4:57–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Chang MW, Barr E, Seltzer J et al. Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995; 267:518–22.PubMedCrossRefGoogle Scholar
  83. 83.
    Zhu N, Liggitt D, Liu Y et al. Systemic gene expression after intravenous DNA delivery into adult mice. Science 1993; 261:209–11.PubMedCrossRefGoogle Scholar
  84. 84.
    Yaffe D, Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 1977; 270:725–7.PubMedCrossRefGoogle Scholar
  85. 85.
    Koh GY, Klug MG, Soonpaa MH et al. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 1993; 92:1548–54.PubMedCrossRefGoogle Scholar
  86. 86.
    Zibaitis A, Greentree D, Ma F et al. Myocardial regeneration with satellite cell implantation. Transp Proc 1994; 26:3294.Google Scholar
  87. 87.
    Law PK, Goodwin TG, Fang Q et al. Feasibility, safety, and efficacy of myoblast transfer therapy on Duchenne muscular dystrophy boys. Cell Transplant 1992; 1:235–44.PubMedGoogle Scholar
  88. 88.
    Barr E, Leiden JM. Systemic delivery of recombinant proteins by genetically modified myoblasts. Science 1991; 254:1507–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Dhawan J, Pan LC, Pavlath GK et al. Systemic delivery of human growth hormone by injection of genetically engineered myoblasts. Science 1991; 254:1509–12.PubMedCrossRefGoogle Scholar
  90. 90.
    Soonpaa MH, Koh GY, Klug MG et al. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 1994; 264:98–101.PubMedCrossRefGoogle Scholar
  91. 91.
    Nowak R. New cell transplants may mend a broken heart. Science 1994; 264:31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • Paul J. R. Barton
    • 1
  • Kenneth R. Boheler
    • 1
  • Nigel J. Brand
    • 1
  • Penny S. Thomas
    • 1
  1. 1.Molecular Biology Group Department of Cardiothoracic SurgeryNational Heart and Lung InstituteLondonUK

Personalised recommendations