Skip to main content

Abstract

The major histocompatibility complex (MHC) is a region of highly polymorphic genes 1 whose products are expressed on a variety of cells. Due to the history of discoveries, human MHC molecules are also designated as human leukocyte antigens (HLA) based on their recognition with alloantisera on human leukocytes. The MHC genes are functionally, structurally and evolutionary related to each other. The two major gene families, class I and class II, encode two different types of MHC molecules, which are functionally specialized in displaying antigenic peptides either to CD8+ (MHC class I) or to CD4+ (MHC class II) T-lymphocytes. This dichotomy of antigen presentation reflects an attractive logic, in that the almost ubiquitous expression of MHC class I molecules corresponds to the need to eliminate cells of any lineage harbouring intracellular pathogens, a task performed by CD8+ cytotoxic T cells (CTL). This is in contrast to the restricted distribution of MHC class II molecules to certain antigen-presenting cell types (APC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klein J. Natural History of the Major Histocompatibility Complex. New York: J. Wiley and Sons; 1986.

    Google Scholar 

  2. Klein J. Of HLA, tryps, and selection: an essay on coevolution of MHC and parasites. Hum Immunol 1991; 30: 247–58.

    Article  PubMed  CAS  Google Scholar 

  3. Darden AG, Streilein JW. Syrian hamsters express two monomorphic class I major histocompatibility complex molecules. Immunogenetics 1984; 20: 603–22.

    Article  PubMed  CAS  Google Scholar 

  4. Yunis JJ. Mid-prophase human chromosomes. The attainment of 2000 bands. Hum Genet 1981; 56: 293–8.

    Article  PubMed  CAS  Google Scholar 

  5. Campbell RD, Trowsdale J. Map of the human MHC. Immunol Today 1997; 18.

    Google Scholar 

  6. Dunham I, Sargent CA, Kendall E et al. Characterization of the class III region in different MHC haplotypes by pulsed-field gel electrophoresis. Immunogenetics 1990; 32: 175–82.

    Article  PubMed  CAS  Google Scholar 

  7. Hardy DA, Bell JI, Long EO et al. Mapping of the class II region of the human major histocompatibility complex by pulsed-field gel electrophoresis. Nature 1986; 323: 453–5.

    Article  PubMed  CAS  Google Scholar 

  8. Sargent CA, Dunham I, Campbell RD. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III region. EMBO J 1989; 8: 2305–12.

    PubMed  CAS  Google Scholar 

  9. Spies T, Bresnahan M, Strominger JL. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc Natl Acad Sci U S A 1989; 86: 8955–8.

    Article  PubMed  CAS  Google Scholar 

  10. Spies T, Blanck G, Bresnahan M et al. A new cluster of genes within the human major histocompatibility complex. Science 1989; 243: 214–7.

    Article  PubMed  CAS  Google Scholar 

  11. Versluis LF, Verduyn W, van der Zwan A et al. A complete exon 2 sequence of the HLA-DPA1*02012 allele. Tissue Antigens 1995; 46: 206–7.

    Article  PubMed  CAS  Google Scholar 

  12. Bodmer JG, Marsh SG, Albert ED et al. Nomenclature for factors of the HLA system, 1990. Tissue Antigens 1991; 37: 97–104.

    Article  PubMed  CAS  Google Scholar 

  13. Bodmer JG, Marsh SG, Albert ED et al. Nomenclature for factors of the HLA system, 1991. WHO Nomenclature Committee for factors of the HLA system. Tissue Antigens 1992; 39: 161–73.

    Article  PubMed  CAS  Google Scholar 

  14. Bodmer JG, Marsh SG, Albert ED et al. Nomenclature for factors of the HLA system, 1994. Tissue Antigens 1994; 44: 1–18.

    Article  PubMed  CAS  Google Scholar 

  15. Bodmer JG, Marsh SG, Albert ED et al. Nomenclature for factors of the HLA system, 1995. Tissue Antigens 1995; 46: 1–18.

    Article  PubMed  CAS  Google Scholar 

  16. Klein J, Bontrop RE, Dawkins RL et al. Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 1990; 31: 217–9.

    PubMed  CAS  Google Scholar 

  17. Bodmer JG, Marsh SGE, Albert ED et al. Nomenclature for factors of the HLA system, 1996. Tissue Antigens 1997; 49 (Part 2): 297–321.

    Article  PubMed  CAS  Google Scholar 

  18. Girdlestone J. Nucleotide sequence of an HLA-A1 gene. Nucleic Acids Res 1990; 18: 6701

    Article  PubMed  CAS  Google Scholar 

  19. Parham P, Lomen CE, Lawlor DA et al. Nature of polymorphism in HLA-A, -B, and -C molecules. Proc Natl Acad Sci U S A 1988; 85: 4005–9.

    Article  PubMed  CAS  Google Scholar 

  20. Browning MJ, Madrigal JA, Krausa P et al. The HLA-A,B,C genotype of the class I negative cell line Daudi reveals novel HLA-A and -B alleles. Tissue Antigens 1995; 45: 177–87.

    Article  PubMed  CAS  Google Scholar 

  21. Cianetti L, Testa U, Scotto L et al. Three new class I HLA alleles: structure of mRNAs and alternative mechanisms of processing. Immunogenetics 1989; 29: 80–91.

    Article  PubMed  CAS  Google Scholar 

  22. Ennis PD, Zemmour J, Salter RD et al. Rapid cloning of HLA-A,B cDNA by using the polymerase chain reaction: frequency and nature of errors produced in amplification. Proc Natl Acad Sci U S A 1990; 87: 2833–7.

    Article  PubMed  CAS  Google Scholar 

  23. Koller BH, Orr HT. Cloning and complete sequence of an HLA-A2 gene: analysis of two HLA-A alleles at the nucleotide level. J Immunol 1985; 134: 2727–33.

    PubMed  CAS  Google Scholar 

  24. Belich MP, Madrigal JA, Hildebrand WH et al. Unusual HLA-B alleles in two tribes of Brazilian Indians. Nature 1992; 357: 326–9.

    Article  PubMed  CAS  Google Scholar 

  25. Krangel MS. Unusual RNA splicing generates a secreted form of HLA-A2 in a mutagenized B lymphoblastoid cell line. EMBO J 1985; 4: 1205–10.

    PubMed  CAS  Google Scholar 

  26. Mattson DH, Handy DE, Bradley DA et al. DNA sequences of the genes that encode the CTL-defined HLA-A2 variants M7 and DK1. Immunogenetics 1987; 26: 190–2.

    Article  PubMed  CAS  Google Scholar 

  27. Holmes N, Ennis P, Wan AM et al. Multiple genetic mechanisms have contributed to the generation of the HLA-A2/ A28 family of class I MHC molecules. J Immunol 1987; 139: 936–41.

    PubMed  CAS  Google Scholar 

  28. Castano AR, Lopez de Castro JA. Structure of the HLA-A*0204 antigen, found in South American Indians. Spatial clustering of HLA-A2 subtype polymorphism. Immunogenetics 1991; 34: 281–5.

    Article  PubMed  CAS  Google Scholar 

  29. Watkins DI, McAdam SN, Liu X et al. New recombinant HLA-B alleles in a tribe of South American Amerindians indicate rapid evolution of MHC class I loci. Nature 1992; 357: 329–33.

    Article  PubMed  CAS  Google Scholar 

  30. Ezquerra A, Doménech N, van der Poel J et al. Molecular analysis of an HLA-A2 functional variant CLA defined by cytolytic T lymphocytes. J Immunol 1986; 137: 1642–9.

    PubMed  CAS  Google Scholar 

  31. Parham P, Lawlor DA, Lomen CE et al. Diversity and diversification of HLAA,B,C alleles. J Immunol 1989; 142: 3937–50.

    PubMed  CAS  Google Scholar 

  32. Doménech N, Ezquerra A, Castano R et al. Structural analysis of HLA-A2.4 functional variant KNE. Implications for the mapping of HLA-A2-specific T-cell epitopes. Immunogenetics 1988; 27: 196–202.

    Article  PubMed  Google Scholar 

  33. Doménech N, Castano R, Goulmy E et al. Molecular analysis of HLA-A2.4 functional variant KLO: close structural and evolutionary relatedness to the HLA-A2.2 subtype. Immunogenetics 1988; 28: 143–52.

    Article  PubMed  Google Scholar 

  34. Castano R, Ezquerra A, Doménech N et al. An HLA-A2 population variant with structural polymorphism in the alpha 3 region. Immunogenetics 1988; 27: 345–55.

    Article  PubMed  CAS  Google Scholar 

  35. Epstein H, Kennedy LJ, Holmes N. An Oriental HLA-A2 subtype is closely related to a subset of Caucasoid HLA-A2 alleles. Immunogenetics 1989; 29: 112–6.

    Article  PubMed  CAS  Google Scholar 

  36. Castano AR, Lopez de Castro JA. Structure of the HLA-A*0211 (A2.5) subtype: further evidence for selection-driven diversification of HLA-A2 antigens. Immunogenetics 1992; 35: 344–6.

    Article  PubMed  CAS  Google Scholar 

  37. Barber DF, Fernandez JM, Guttridge MG et al. Primary structure of a new HLAA2 subtype: HLA-A*0213. Immunogenetics 1994; 39: 378.

    Article  PubMed  CAS  Google Scholar 

  38. Krausa P, Barouch D, Bodmer JG et al. Characterization of a novel HLA-A2 variant, A*0214, by ARMS-PCR and DNA sequencing. Immunogenetics 1995; 41: 50.

    Article  PubMed  CAS  Google Scholar 

  39. Ishikawa Y, Tokunaga K, Tanaka H et al. HLA-A null allele with a stop codon, HLA-A*0215N, identified in a homozygous state in a healthy adult. Immunogenetics 1996; 43: 1–5.

    PubMed  CAS  Google Scholar 

  40. Barouch D, Krausa P, Bodmer J et al. Identification of a novel HLA-A2 subtype, HLA-A*0216. Immunogenetics 1995; 41: 388.

    Article  PubMed  CAS  Google Scholar 

  41. Selvakumar A, Granja CB, Salazar M et al. A novel subtype of A2 (A*0217) isolated from the South American Indian B-cell line AMALA. Tissue Antigens 1995; 45: 343–7.

    Article  PubMed  CAS  Google Scholar 

  42. Dale Y, Kimura A, Sasazuki T. DNA typing of the HLA-A gene: population study and identification of four new alleles in Japanese. Tissue Antigens 1996; 47: 93–101.

    Article  Google Scholar 

  43. Kashiwase K, Ishikawa Y, Tokunaga K et al. Sequence of a new HLA-A allele (A*0218) encoding a serological variant, HLA-A2K, observed in Japanese. Tissue Antigens 1996; 48: 329–30.

    Article  PubMed  CAS  Google Scholar 

  44. Fleischhauer K, Zino E, Mazzi B et al. HLA-A*02 tissue distribution in caucasians from northern Italy: identification of A*0220. Tissue Antigens 1996; 48: 673–9.

    Article  PubMed  CAS  Google Scholar 

  45. Szmania S, Gasque-Carter P, Baxter-Lowe L. Nucleotide sequence for A*0221 which encodes a novel HLA class I polymorphic residue. Tissue Antigens 1996; 48: 720–4.

    Article  PubMed  CAS  Google Scholar 

  46. Strachan T, Sodoyer R, Damotte M et al. Complete nucleotide sequence of a functional class I HLA gene, HLA-A3: implications for the evolution of HLA genes. EMBO J 1984; 3: 887–94.

    PubMed  CAS  Google Scholar 

  47. Cowan EP, Jordan BR, Coligan JE. Molecular cloning and DNA sequence analysis of genes encoding cytotoxic T lymphocyte-defined HLA-A3 subtypes: the El subtype. J Immunol 1985; 135: 2835–41.

    PubMed  CAS  Google Scholar 

  48. Lienert K, Russ G, Lester S et al. Stable inheritance of an HLA-A “BLANK” phenotype associated with a structural mutation on the HLA-A*0301 gene. Tissue Antigens 1996; 48: 187–91.

    Article  PubMed  CAS  Google Scholar 

  49. Cowan EP, Jelachich ML, Biddison WE et al. DNA sequence of HLA-A11: remarkable homology with HLA-A3 allows identification of residues involved in epitopes recognized by antibodies and T cells. Immunogenetics 1987; 25: 241–50.

    Article  PubMed  CAS  Google Scholar 

  50. Mayer WE, Jonker M, Klein D et al. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J 1988; 7: 2765–74.

    PubMed  CAS  Google Scholar 

  51. Lin L, Tokunaga K, Ishikawa Y et al. Sequence analysis of serological HLA-All split antigents, A11.1 and A11.2. Tissue Antigens 1994; 43: 78–82.

    Article  PubMed  CAS  Google Scholar 

  52. Bettinotti MP, Mitsuishi Y, Lau M et al. HLA-A*1104: a new allele found in a Laotian family. Tissue Antigens 1996; 48: 717–9.

    Article  PubMed  CAS  Google Scholar 

  53. Little AM, Madrigal JA, Parham P. Molecular definition of an elusive third HLA-A9 molecule: HLA-A9.3. Immunogenetics 1992; 35: 41–5.

    Article  PubMed  CAS  Google Scholar 

  54. N’Guyen C, Sodoyer R, Trucy J et al. The HLA-AW24 gene: sequence, surroundings and comparison with the HLA-A2 and HLA-A3 genes. Immunogenetics 1985; 21: 479–89.

    Article  PubMed  Google Scholar 

  55. Kashiwase K, Tokunaga K, Ishikawa Y et al. A new HLA-A9 subtype lacking the Bw4 epitope. Ancestral or revertant allele? Hum Immunol 1995; 42: 221–6.

    Article  PubMed  CAS  Google Scholar 

  56. Blasczyk R, Wehling J, Kubens BS et al. A novel HLA-A24 allele (A*2405) identified by single-strand conformation polymorphism analysis and confirmed by solid-phase sequencing and isoelectric focusing. Tissue Antigens 1995; 46: 54–8.

    Article  PubMed  CAS  Google Scholar 

  57. Kashiwase K, Tokunaga K, Ishikawa Y et al. A new A9 sequence HLA-A9HH from Japanese. MHC 1996; 3: 9–14.

    Google Scholar 

  58. Gao X, Matheson B. A novel HLA-A*24 (A*2410) allele identified in a Javanese population. Tissue Antigens 1996; 48: 711–3.

    Article  PubMed  CAS  Google Scholar 

  59. Zinszner H, Masset M, Bourge JF et al. Nucleotide sequence of the HLA-A26 class I gene: identification of specific residues and molecular mapping of public HLA class I epitopes. Hum Immunol 1990; 27: 155–66.

    Article  PubMed  CAS  Google Scholar 

  60. Madrigal JA, Hildebrand WH, Belich MP et al. Structural diversity in the HLA-A10 family of alleles: correlations with serology. Tissue Antigens 1993; 41: 72–80.

    Article  PubMed  CAS  Google Scholar 

  61. Ishikawa Y, Tokunaga K, Lin L et al. Sequences of four splits of HLA-A10 group. Implications for serologic crossreactivities and their evolution. Hum Immunol 1994; 39: 220–4.

    Article  PubMed  CAS  Google Scholar 

  62. Maruya E, Ishikawa Y, Lin Y et al. Allele typing of HLA-A10 group by nestedPCR-low ionic strength single stranded conformational polymorphism and a novel A26 allele (A26KY, A*2605). Hum Immunol 1996; 50: 140–7.

    Article  PubMed  CAS  Google Scholar 

  63. Arnett KL, Moses JM, Williams F et al. HLA-A*2607: Sequence of a novel A*26 subtype predicted by DNA typing which shares the MA2.1 epitope with A*02, B*57 and B*58. Tissue Antigens 1996; 47: 422–5.

    Article  PubMed  CAS  Google Scholar 

  64. Szmania S, Baxter-Lowe LA. Nucleotide sequence of a novel HLA-A26 gene encoding glutamine at codon 156. Tissue Antigens 1996; 48: 210–2.

    Article  PubMed  CAS  Google Scholar 

  65. Trapani JA, Mizuno S, Kang SH et al. Molecular mapping of a new public HLA class I epitope shared by all HLA-B and HLA-C antigens and defined by a monoclonal antibody. Immunogenetics 1989; 29: 25–32.

    Article  PubMed  CAS  Google Scholar 

  66. Tabary T, Prochnicka Chalufour A, Cornillet P et al. HLA-A29 sub-types and “Birdshot” choroido-retinopathy susceptibility: a possible “resistance motif’ in the HLA-A29.1 molecule. C R Acad Sci III 1991; 313: 599–605.

    Google Scholar 

  67. Kato K, Trapani JA, Allopenna J et al. Molecular analysis of the serologically defined HLA-Aw19 antigens. A genetically distinct family of HLA-A antigens comprising A29, A31, A32, and Aw33, but probably not A30. J Immunol 1989; 143: 3371–8.

    PubMed  CAS  Google Scholar 

  68. Olerup O, Daniels T, Baxter-Lowe LA. Correct sequence of the A*3001 allele obtained by PCR-SSP typing and automated nucleotide sequencing. Tissue Antigens 1994; 44: 265–7.

    Article  PubMed  CAS  Google Scholar 

  69. Madrigal JA, Belich MP, Benjamin RJ et al. Molecular definition of a polymorphic antigen (LA45) of free HLA-A and -B heavy chains found on the surfaces of activated B and T cells. J Exp Med 1991; 174: 1085–95.

    Article  PubMed  CAS  Google Scholar 

  70. Choo SY, Starling GC, Anasetti C et al. Selection of an unrelated donor for marrow transplantation facilitated by the molecular characterization of a novel HLA-A allele. Hum Immunol 1993; 36: 20–6.

    Article  PubMed  CAS  Google Scholar 

  71. Blasczyk R, Wehling J, Passler M et al. A novel HLA-A30 allele (A*3004) identified by single-strand conformation polymorphism analysis and confirmed by solid-phase sequencing. Tissue Antigens 1995; 46: 322–6.

    Article  PubMed  CAS  Google Scholar 

  72. Krausa P, Carcassi C, Orru S et al. Defining the allelic variants of HLA-A30 in the Sardinian population using amplification refractory mutation system-polymerase chain reaction. Hum Immunol 1995; 44: 35–42.

    Article  PubMed  CAS  Google Scholar 

  73. Arnett KL, Adams EJ, Parham P. On the sequence of A*3101. Tissue Antigens 1996; 47: 428–30.

    Article  PubMed  CAS  Google Scholar 

  74. Wan AM, Ennis P, Parham P et al. The primary structure of HLA-A32 suggests a region involved in formation of the Bw4/Bw6 epitopes. J Immunol 1986; 137: 3671–4.

    PubMed  CAS  Google Scholar 

  75. Zino E, Severini GM, Mazzi B et al. Sequencing of a new subtype of HLA-A*32. Immunogenetics 1996; 45: 76–7.

    Article  PubMed  CAS  Google Scholar 

  76. Blasczyk R, Wehling J, Hahn U et al. Identification of a novel HLA-A33 subtype (A*3303) and correction of the A*3301 sequence. Tissue Antigens 1995; 45: 348–52.

    Article  PubMed  CAS  Google Scholar 

  77. Kato N, Kikuchi A, Kano K et al. Molecular analysis of a novel HLA-A33 subtype associated with HLA-B44. Tissue Antigens 1993; 41: 211–3.

    Article  PubMed  CAS  Google Scholar 

  78. Balas A, Garcia-Sanchez F, Vicario JL. Molecular characterization of a novel HLA-A33 allele (A*3303). Tissue Antigens 1995; 45: 73–6.

    Article  PubMed  CAS  Google Scholar 

  79. Madrigal JA, Belich MP, Hildebrand WH et al. Distinctive HLA-A,B antigens of black populations formed by interallelic conversion. J Immunol 1992; 149: 34115.

    Google Scholar 

  80. Schnabl E, Stockinger H, Majdic O et al. Activated human T lymphocytes express MHC class I heavy chains not associated with beta 2-microglobulin. J Exp Med 1990; 171: 1431–42.

    Article  PubMed  CAS  Google Scholar 

  81. Binder T, Wehling J, Huhn D, Blasczyk R. Increased diversity within the HLAA*66 group: Implications for matching in unrelated bone marrow transplantation. [In Press] Tissue Antigens 1997.

    Google Scholar 

  82. Holmes N, Parham P. Exon shuffling in vivo can generate novel HLA class I molecules. EMBO J 1985; 4: 2849–54.

    PubMed  CAS  Google Scholar 

  83. Blasczyk R, Wehling J, Önaldi-Mohr D et al. Structural definition of the A*74 group: Implications for matching in bone marrow transplantation with alternative donors. Tissue Antigens 1996; 48: 205–9.

    Article  PubMed  CAS  Google Scholar 

  84. Starling GC, Witkowski JA, Speerbrecher LS et al. A novel HLA-A*8001 allele identified in an African-American population. Hum Immunol 1994; 39: 163–8.

    Article  PubMed  CAS  Google Scholar 

  85. Wagner AG, Hughes AL, randoli ML et al. HLA-A*8001 is a member of a newly discovered ancient family of HLA-A alleles. Tissue Antigens 1993; 42: 522–9.

    Article  PubMed  CAS  Google Scholar 

  86. Domena JD, Hildebrand WH, Bias WB et al. A sixth family of HLA-A alleles defined by HLA-A*8001. Tissue Antigens 1993; 42: 156–9.

    Article  PubMed  CAS  Google Scholar 

  87. Balas A, Garcia-Sanchez F, Gomez-Reino F et al. Characterization of a new and highly distinguishable HLA-A allele in a Spanish family. Immunogenetics 1994; 39: 452.

    Article  PubMed  CAS  Google Scholar 

  88. Taketani S, Krangel MS, Spits H et al. Structural analysis of an HLA-B7 antigen variant detected by cytotoxic T lymphocytes. J Immunol 1984; 133: 816–21.

    PubMed  CAS  Google Scholar 

  89. Orr HT, Lopez de Castro JA, Lancet D et al. Complete amino acid sequence of a papain-solubilized human histocompatibility antigen, HLA-B7. 2. Sequence determination and search for homologies. Biochemistry 1979; 18: 5711–20.

    CAS  Google Scholar 

  90. Fukumaki Y, Collins F, Kole R et al. Sequences of human repetitive DNA, nonalpha-globin genes, and major histocompatibility locus genes. Cold Spring Harb Symp Quant Biol 1983; 47 Pt 2: 1079–86.

    Google Scholar 

  91. Bergmans AM, Tijssen H, Lardy N et al. Complete nucleotide sequence of HLAB*0703, a B7 variant (BPOT). Hum Immunol 1993; 38: 159–62.

    Article  PubMed  CAS  Google Scholar 

  92. Smith KD, Epperson DF, Lutz CT. Alloreactive cytotoxic T-lymphocyte-defined HLA-B7 subtypes differ in peptide antigen presentation. Immunogenetics 1996; 43: 27–37.

    PubMed  CAS  Google Scholar 

  93. Kubens BS, Arnett KL, Adams EJ et al. Definition of a new HLA-B7 subtype (B*0704) by isoelectric focusing, family studies and DNA sequence analysis. Tissue Antigens 1995; 45: 322–7.

    Article  PubMed  CAS  Google Scholar 

  94. Arnett KL, Adams EJ, Domena JD et al. Structure of a novel subtype of B7 (B*0705) isolated from a Chinese individual. Tissue Antigens 1994; 44: 318–21.

    Article  PubMed  CAS  Google Scholar 

  95. Petersdorf EW, Hansen JA. A comprehensive approach for typing the alleles of the HLA-B locus by automated sequencing. Tissue Antigens 1995; 46: 73–85.

    Article  PubMed  CAS  Google Scholar 

  96. Sanz L, Vilches C, de Pablo R et al. Haplotypic association of two new HLA class I alleles: Cw*15052 and B*0706: evolutionary relationships of HLA-Cw*15 alleles. Tissue Antigens 1996; 47: 329–32.

    Article  PubMed  CAS  Google Scholar 

  97. Grundschober C, Rufer N, Adami N et al. Sequence of a new HLA-B7 variant, B*0707, that differs from the common B*0 702 allele by one single residue in the peptide binding groove. Tissue Antigens 1997; 49: 508–11.

    Article  PubMed  CAS  Google Scholar 

  98. Bronson SK, Pei J, Taillon-Miller P et al. Isolation and characterization of yeast artificial chromosome clones linking the HLA-B and HLA-C loci. Proc Natl Acad Sci U S A 1991; 88: 1676–80.

    Article  PubMed  CAS  Google Scholar 

  99. Pohla H, Kuon W, Tabaczewski P et al. Allelic variation in HLA-B and HLA-C sequences and the evolution of the HLAB alleles. Immunogenetics 1989; 29: 297–307.

    Article  PubMed  CAS  Google Scholar 

  100. Arnett KL, Adams EJ, Gumperz JE et al. Expression of an unusual Bw4 epitope by a subtype of HLA-B8 [B*0802]. Tissue Antigens 1995; 46: 316–21.

    Article  PubMed  CAS  Google Scholar 

  101. Eberle M, Lorentzen D, Iwanaga KK, Hennes LF, Watkins DI. Identification of a new HLA-B*08 variant, HLA-B*0804. [In Press] Tissue Antigens 1997.

    Google Scholar 

  102. Kato K, Dupont B, Yang SY. Localization of nucleotide sequence which determines Mongoloid subtype of HLA-B13. Immunogenetics 1989; 29: 117–20.

    Article  PubMed  CAS  Google Scholar 

  103. Lin L, Tokunaga K, Nakajima F et al. Both HLA-B*1301 and B*1302 exist in Asian populations and are associated with different haplotypes. Hum Immunol 1995; 43: 51–6.

    Article  PubMed  CAS  Google Scholar 

  104. Zemmour J, Ennis PD, Parham P et al. Comparison of the structure of HLABw47 to HLA-B13 and its relationship to 21-hydroxylase deficiency [published erratum appears in Immunogenetics 1989; 29:224]. Immunogenetics 1988; 27: 281–7.

    Article  PubMed  CAS  Google Scholar 

  105. Batas A, Garcia-Sanchez F, Vicario JL. HLA-B*1303: a new example of poor correlation between serology and structure. Hum Immunol 1996; 45: 32–6.

    Article  Google Scholar 

  106. Domena JD, Azumi K, Bias WB et al. B*1401 encodes the B64 antigen: the B64 and B65 splits of B14 differ only at residue 11, a buried amino acid. Tissue Antigens 1993; 41: 110–1.

    Article  PubMed  CAS  Google Scholar 

  107. Choo SY, Fan LA, Hansen JA. Allelic variations clustered in the antigen binding sites of HLA-Bw62 molecules Immunogenetics 1993; 37: 108–13.

    CAS  Google Scholar 

  108. Hildebrand WH, Domena JD, Shen SY et al. HLA-B15: a widespread and diverse family of HLA-B alleles. Tissue Antigens 1994; 43: 209–18.

    Article  PubMed  CAS  Google Scholar 

  109. Domena JD, Little AM, Arnett KL et al. A small test of a sequence-based typing method: definition of the B*1520 allele. Tissue Antigens 1994; 44: 217–24.

    Article  PubMed  CAS  Google Scholar 

  110. Lin L, Tokunaga K, Tanaka H et al. Further molecular diversity in the HLA-B15 group. Tissue Antigens 1996; 47: 265–74.

    Article  PubMed  CAS  Google Scholar 

  111. Little AM, Parham P. The HLA-Bw75 subtype of B15: molecular characterization and comparison with crossreacting antigens. Tissue Antigens 1991; 38: 186–90.

    Article  PubMed  CAS  Google Scholar 

  112. Domena JD, Little AM, Madrigal AJ et al. Structural heterogeneity in HLA-B70, a high-frequency antigen of black populations. Tissue Antigens 1993; 42: 509–17.

    Article  PubMed  CAS  Google Scholar 

  113. Rodriguez SG, Johnson AH, Hurley CK. Molecular characterization of HLA-B71 from an African American individual. Hum Immunol 1993; 37: 192–4.

    Article  PubMed  CAS  Google Scholar 

  114. Hurley CK, Steiner NK, Hoyer RJ et al. Novel HLA-B alleles, B*8201, B*3515 and B*5106, add to the complexity of serologic identification of HLA types. Tissue Antigens 1996; 47: 179–87.

    Article  PubMed  CAS  Google Scholar 

  115. Choo SY, Fan LA, Hansen JA. A novel HLA-B27 allele maps B27 allospecificity to the region around position 70 in the alpha 1 domain. J Immunol 1991; 147: 174–80.

    PubMed  CAS  Google Scholar 

  116. Lienert K, McCluskey J, Bennett G et al. HLA class I variation in Australian aborigines: characterization of allele B*1521. Tissue Antigens 1995; 45: 12–7.

    Article  PubMed  CAS  Google Scholar 

  117. Garber TL, Butler LM, Trachtenberg EA et al. HLA-B alleles of the Cayapa of Ecuador: new B39 and B15 alleles [published erratum appears in Immunogenetics 1995; 42:308]. Immunogenetics 1995; 42: 19–27.

    Article  PubMed  CAS  Google Scholar 

  118. Martinez-Laso J, Layrisse Z, GomezCasade E et al. A new HLA-B15 allele (B*1522) found in Bari-Motilones Amerindians in Venezuela: comparison of its intron 2 sequence with those of B*1501 and B*3504. Immunogenetics 1996; 43: 108–9.

    PubMed  CAS  Google Scholar 

  119. Cereb N, Kim C, Hughes AL et al. Molecular analysis of HLA-B35 alleles and their relationship to HLA-B15 alleles. Tissue Antigens 1997; 49: 389–396.

    Article  PubMed  CAS  Google Scholar 

  120. Lin L, Tokunaga K, Ishikawa Y et al. A new B18 sequence (B*1802) from Asian individuals. Hum Immunol 1995; 42: 23–6.

    Article  PubMed  CAS  Google Scholar 

  121. Curran MD, Williams F, Middleton D. A novel HLA-B allele, HLA-B*1803. Tissue Antigens 1996; 48: 708–10.

    Google Scholar 

  122. Rojo S, Aparicio P, Choo SY et al. Structural analysis of an HLA-B27 population variant, B27f. Multiple patterns of amino acid changes within a single polypeptide segment generate polymorphism in HLAB27. J Immunol 1987; 139: 831–6.

    PubMed  CAS  Google Scholar 

  123. Seemann GH, Rein RS, Brown CS et al. Gene conversion-like mechanisms may generate polymorphism in human class I genes. EMBO J 1986; 5: 547–52.

    PubMed  CAS  Google Scholar 

  124. Moses JH, Marsh SG, Arnett KL et al. On the nucleotide sequences of B*2702 and B*2705. Tissue Antigens 1995; 46: 50–3.

    Article  PubMed  CAS  Google Scholar 

  125. Choo SY, St. John T, Orr HT et al. Molecular analysis of the variant alloantigen HLA-B27d (HLA-B*2703) identifies a unique single amino acid substitution. Hum Immunol 1988; 21: 209–19.

    Article  PubMed  CAS  Google Scholar 

  126. Rojo S, Aparicio P, Hansen JA et al. Structural analysis of an HLA-B27 functional variant, B27d, detected in American blacks. J Immunol 1987; 139: 3396–401.

    PubMed  CAS  Google Scholar 

  127. Vega MA, Wallace L, Rojo S et al. Delineation of functional sites in HLA-B27 antigens. Molecular analysis of HLA-B27 variant Wewak I defined by cytolytic T lymphocytes. J Immunol 1985; 135: 3323–32.

    PubMed  CAS  Google Scholar 

  128. Rudwaleit M, Bowness P, Wordsworth P. The nucleotide sequence of HLA-B*2704 reveals a new amino acid substitution in exon 4 is also present in HLA-B*2706. Immunogenetics 1996; 43: 160–2.

    Article  PubMed  CAS  Google Scholar 

  129. Weiss EH, Kuon W, Dorner C et al. Organization, sequence and expression of the HLA-B27 gene: a molecular approach to analyze HLA and disease associations. Immunobiology 1985; 170: 367–80.

    Article  PubMed  CAS  Google Scholar 

  130. Coppin HL, McDevitt HO. Absence of polymorphism between HLA-B27 genomic exon sequences isolated from normal donors and ankylosing spondylitis patients. J Immunol 1986; 137: 2168–72.

    PubMed  CAS  Google Scholar 

  131. Szots H, Riethmüller G, Weiss E et al. Complete sequence of HLA-B27 cDNA identified through the characterization of structural markers unique to the HLA-A, -B, and -C allelic series. Proc Natl Acad Sci USA 1986; 83: 1428–32.

    Article  PubMed  CAS  Google Scholar 

  132. Vega MA, Bragado R, Ivanyi P et al. Molecular analysis of a functional subtype of HLA-B27. A possible evolutionary pathway for HLA-B27 polymorphism. J Immunol 1986; 137: 3557–65.

    PubMed  CAS  Google Scholar 

  133. Vilches C, de Pablo R, Kreisler M. Nucleotide sequence of HLA-B*2706. Immunogenetics 1996; 43: 114.

    PubMed  CAS  Google Scholar 

  134. Hildebrand WH, Domena JD, Shen SY et al. The HLA-B7Qui antigen is encoded by a new subtype of HLA-B27 (B*2708). Tissue Antigens 1994; 44: 47–51.

    Article  PubMed  CAS  Google Scholar 

  135. Del Porto P, D’Amato M, Fiorillo MT et al. Identification of a novel HLA-B27 subtype by restriction analysis of a cytotoxic gamma delta T cell clone. J Immunol 1994; 153: 3093–100.

    PubMed  Google Scholar 

  136. Hasegawa T, Ogawa A, Sugahara Y et al. Novel HLA-B27 allele (B*2711) encoding an antigen reacting with both B27 and B40 specific antisera. [In Press] Tissue Antigens 1997.

    Google Scholar 

  137. Ooba T, Hayashi H, Karaki S et al. The structure of HLA-B35 suggests that it is derived from HLA-Bw58 by two genetic mechanisms. Immunogenetics 1989; 30: 76–80.

    Article  PubMed  CAS  Google Scholar 

  138. Chertkoff LP, Herrera M, Fainboim L et al. Complete nucleotide sequence of a genomic clone encoding HLA-B35 isolated from a Caucasian individual of Hispanic origin. Identification of a new variant of HLA-B35. Hum Immunol 1991; 31: 153–8.

    Article  PubMed  CAS  Google Scholar 

  139. Zemmour J, Little AM, Schendel DJ et al. The HLA-A,B “negative” mutant cell line C1R expresses a novel HLA-B35 allele, which also has a point mutation in the translation initiation codon. J Immunol 1992; 148: 1941–8.

    PubMed  CAS  Google Scholar 

  140. Theiler G, Pando M, Delfino JM et al. Isolation and characterization of two new functional subtypes of HLA-B35. Tissue Antigens 1993; 41: 143–7.

    Article  PubMed  CAS  Google Scholar 

  141. Steinle A, Reinhardt C, Nossner E et al. Microheterogeneity in HLA-B35 alleles influences peptide-dependent allorecognition by cytotoxic T cells but not binding of a peptide-restricted monoclonal antibody. Hum Immunol 1993; 38: 261–9.

    Article  PubMed  CAS  Google Scholar 

  142. Gomez-Casado E, Montoya F, Martinez-Laso J et al. A new HLA-B35 allele (B*3510) found in isolated Jaidukama South American Indians. Immunogenetics 1995; 42: 231–2.

    Article  PubMed  CAS  Google Scholar 

  143. Adams EJ, Little A, Arnett KL et al. Three new HLA-B alleles found in Mexican-Americans. Tissue Antigens 1995; 46: 414–6.

    Article  PubMed  CAS  Google Scholar 

  144. Curran MD, Williams F, Middleton D. Long range PCR amplification as an alternative strategy to characterising novel HLA-B alleles. Eur J Immunogenetics 1996; 23: 297–309.

    Article  CAS  Google Scholar 

  145. Vargas-Alarcon G, Martinez-Laso J, Granados J et al. Description of a novel HLA-B35 (B*3514) allele found in a Mexican family of Nahua Aztec descent. Hum Immunol 1996; 45: 148–51.

    Article  PubMed  CAS  Google Scholar 

  146. Vargas-Alarcon G, Alvarez M, Martinez-Laso J et al. A new HLA-B35 (B*3516) allele found in a Mexican of Nahua (Aztec) descent. Immunogenetics 1996; 43: 244–5.

    Article  PubMed  CAS  Google Scholar 

  147. Vargas-Alarcon G, Martinez-Laso J, Gomez-Casado E et al. A novel HLA-B35 (B*3517) allele found in a Mexican of Otomi ascent. Tissue Antigens 1996; 47: 547–50.

    Article  PubMed  CAS  Google Scholar 

  148. Santos S, Vicario JL, Merino JL et al. Characterization of a new HLA-B allele (B*3702) generated by an intronic recombination event. Immunogenetics 1996; 43: 171–2.

    Article  PubMed  CAS  Google Scholar 

  149. Müller CA, Engler-Blum G, Gekeler V et al. Genetic and serological heterogeneity of the supertypic HLA-B locus specificities Bw4 and Bw6. Immunogenetics 1989; 30: 200–7.

    Article  PubMed  Google Scholar 

  150. Adams EJ, Martinez-Naves E, Arnett KL et al. HLA-B16 antigens: sequence of the ST-16 antigen, further definition of two B38 subtypes and evidence for convergent evolution of B*3902. Tissue Antigens 1995; 45: 18–26.

    Article  PubMed  CAS  Google Scholar 

  151. Little AM, Domena JD, Hildebrand WH et al. HLA-B67: a member of the HLA-B16 family that expresses the MEl epitope. Tissue Antigens 1994; 43: 38–43.

    Article  PubMed  CAS  Google Scholar 

  152. Kato N, Karaki S, Kashiwase K et al. Molecular analysis of HLA-B39 subtypes. Immunogenetics 1993; 37: 212–6.

    Article  PubMed  CAS  Google Scholar 

  153. Ogawa A, Tokunaga K, Nakajima F et al. Identification of the gene encoding a novel HLA-B39 subtype. Two amino acid substitutions on the beta-sheet out of the peptide-binding floor form a novel serological epitope. Hum Immunol 1994; 41: 241–7.

    Article  PubMed  CAS  Google Scholar 

  154. Zhao W, Fernandez-Vina MA, Lazaro AM et al. Full cDNA of a novel HLAB39 subtype, B*39061. Tissue Antigens 1996; 47: 435–7.

    Article  PubMed  CAS  Google Scholar 

  155. Garber TL, McAdam SN, Butler LM et al. HLA-B alleles of the Navajo: no evidence for rapid evolution in the Nadene. Tissue Antigens 1996; 47: 143–6.

    Article  PubMed  CAS  Google Scholar 

  156. Ramos M, Postigo JM, Vilches C et al. Primary structure of a novel HLA-B39 allele (B*3909) from the Sarao Indians of Venezuela. Further evidence for local HLA-B diversification in South America. Tissue Antigens 1995; 46: 401–64.

    Article  PubMed  CAS  Google Scholar 

  157. Wells RS, Parham P. A novel recombinant HLA-B*39 allele (B*3910) in a South African Zulu. Tissue Antigens 1996; 48: 595–7.

    Article  PubMed  CAS  Google Scholar 

  158. Vilches C, Bunce M, de Pablo R et al. A novel HLA-Cw*1802-B*5703 haplotype detected in the Bubi population from Equatorial Guinea. [In Press] Tissue Antigens 1997.

    Google Scholar 

  159. Ways JP, Lawlor DA, Wan AM et al. A transposable epitope of HLA-B7, B40 molecules. Immunogenetics 1987; 25: 323–8.

    Article  PubMed  CAS  Google Scholar 

  160. Lopez de Castro J, Bragado R, Strong DM et al. Primary structure of papainsolubilized human histocompatibility antigen HLA-B40 (-Bw60). An outline of alloantigenic determinants. Biochemistry 1983; 22: 3961–9.

    Article  PubMed  CAS  Google Scholar 

  161. Kawaguchi G, Kato N, Kashiwase K et al. Structural analysis of HLA-B40 epitopes. Hum Immunol 1993; 36: 193–8.

    Article  PubMed  CAS  Google Scholar 

  162. Domena JD, Johnston-Dow L, Parham P. The B*4002 allele encodes the B61 antigen: B40* is identical to B61. Tissue Antigens 1992; 40: 254–6.

    Article  PubMed  CAS  Google Scholar 

  163. Ling L, Watanabe Y, Tokunaga K et al. A common Japanese haplotype HLAA26-Cw3-B61–DR9-DQ3 carries HLAB*4002. Tissue Antigens 1992; 40: 257–60.

    Article  PubMed  CAS  Google Scholar 

  164. Hildebrand WH, Madrigal JA, Belich MP et al. Serologic cross-reactivities poorly reflect allelic relationships in the HLAB12 and HLA-B21 groups. Dominant epitopes of the alpha 2 helix. J Immunol 1992; 149: 3563–8.

    PubMed  CAS  Google Scholar 

  165. Lin L, Tokunaga K, Ishikawa Y et al. A new member of the HLA-B40 family of alleles, B*4007, coding for B’FU’ serological specificity. Tissue Antigens 1995; 45: 276–9.

    Article  PubMed  CAS  Google Scholar 

  166. Adams EJ, Little AM, Arnett KL et al.Identification of a novel HLA-B40 allele (B*4008) in a patient with leukemia. Tissue Antigens 1995; 46: 204–5.

    Article  PubMed  CAS  Google Scholar 

  167. Rufer N, Roosnek E, Kressig R et al. Sequencing of a new HLA-B41 subtype (B*4102) that occurs with a high frequency in the Caucasoid population. Immunogenetics 1995; 41: 333.

    Article  PubMed  CAS  Google Scholar 

  168. Ando H, Mizuku N, Ohno S et al. Identification of a novel HLA-B allele (B*4202) in a Saudi Arabian family with Behcet’s disease. Tissue Antigens 1997; 49: 526–8.

    Article  PubMed  CAS  Google Scholar 

  169. Kottmann AH, Seemann GH, Guessow HD et al. DNA sequence of the coding region of the HLA-B44 gene. Immunogenetics 1986; 23: 396–400.

    Article  PubMed  CAS  Google Scholar 

  170. Fleischhauer K, Kernan NA, Dupont B et al. The two major subtypes of HLAB44 differ for a single amino acid in codon 156. Tissue Antigens 1991; 37: 133–7.

    Article  PubMed  CAS  Google Scholar 

  171. Gauchat-Feiss D, Breur Vriesendorp BS, Rufer N et al. Sequencing of a novel functional HLA-B44 subtype differing in two residues in the alpha 2 domain. Tissue Antigens 1994; 44: 261–4.

    Article  PubMed  CAS  Google Scholar 

  172. Yao Z, Keller E, Scholz S et al. Identification of two major HLA-B44 subtypes and a novel B44 sequence (B*4404). Oligotyping and solid phase sequencing of polymerase chain reaction products. Hum Immunol 1995; 42: 54–60.

    Article  PubMed  CAS  Google Scholar 

  173. Yao Z, Volgger A, Scholz S et al. Nucleotide sequence of a novel HLA-B44 subtype B*4405. Immunogenetics 1994; 40: 310.

    Article  PubMed  CAS  Google Scholar 

  174. Petersdorf EW, Setoda T, Smith AG et al. Analysis of HLA-B*44 alleles encoded on extended HLA haplotypes by direct automated sequencing. Tissue Antigens 1994; 44: 211–6.

    Article  PubMed  CAS  Google Scholar 

  175. Yao Z, Lattermann A, Volgger A et al. A new HLA-B44 subtype, B*4406, differing in exon 2. Immunogenetics 1995; 41: 387.

    Article  PubMed  CAS  Google Scholar 

  176. Zhao W, Fernandez-Vina MA, Lazaro AM et al. Complete cDNA sequence of B*4406, an HLA-B allele containing sequences of B*5101 and B*4402. Tissue Antigens 1996; 47: 431–4.

    Article  PubMed  CAS  Google Scholar 

  177. Vilches C, Sanz L, de Pablo R et al. Molecular characterisation of the new alleles HLA-B*8101 and B*4407. Tissue Antigens 1996; 47: 139–42.

    Article  PubMed  CAS  Google Scholar 

  178. Fischer GF, Broer F, Fae I et al. Nucleotide sequence analysis of an HLA-B47 variant (HLA-B*4702). [In Press] Tissue Antigens 1997.

    Google Scholar 

  179. Hayashi H, Ennis PD, Ariga H et al. HLA-B51 and HLA-Bw52 differ by only two amino acids which are in the helical region of the alpha 1 domain. J Immunol 1989; 142: 306–11.

    PubMed  CAS  Google Scholar 

  180. Steinle A, Schendel DJ. HLA class I alleles of LCL 721 and 174 x CEM.T2 (T2). Tissue Antigens 1994; 44: 268–70.

    Article  PubMed  CAS  Google Scholar 

  181. Kawaguchi G, Hildebrand WH, Hiraiwa M et al. Two subtypes of HLA-B51 differing by substitution at position 171 of the alpha 2 helix. Immunogenetics 1992; 37: 57–63.

    Article  PubMed  CAS  Google Scholar 

  182. Prilliman KR, Steiner N, Ellexson ME et al. Novel alleles HLA-B*7802 and B*51022: evidence for convergency in the HLA-B5 family. Tissue Antigens 1996; 47: 49–57.

    Article  PubMed  CAS  Google Scholar 

  183. Kawaguchi G, Nakayama S, Nagao T et al. A single amino acid substitution at residue 167 forms a novel HLA-B51 subtype. Tissue Antigens 1993; 42: 39–41.

    Article  PubMed  CAS  Google Scholar 

  184. Cereb N, Choi JW, Riu KZ et al. HLA-B*5105, a newly identified B51 IEF variant. Tissue Antigens 1994; 44: 271–3.

    Article  PubMed  CAS  Google Scholar 

  185. Curran MD, Williams F, Rima BK et al. A new HLA-B51 allele, B*5107 in RCE55 detected and characterised by PCR-SSOP, cloning and nucleotide sequence determination. Tissue Antigens 1996; 48: 228–30.

    Article  PubMed  CAS  Google Scholar 

  186. Parham P, Arnett KL, Adams EJ et al. The HLA-B73 antigen has a most unusual structure that defines a second lineage of HLA-B alleles. Tissue Antigens 1994; 43: 302–13.

    Article  PubMed  CAS  Google Scholar 

  187. Allsopp CE, Hill AV, Kwiatkowski D et al. Sequence analysis of HLA-Bw53, a common West African allele, suggests an origin by gene conversion of HLA-B35. Hum Immunol 1991; 30: 105–9.

    Article  PubMed  CAS  Google Scholar 

  188. Hayashi H, Ooba T, Nakayama S et al. Allospecificities between HLA-Bw53 and HLA-B35 are generated by substitution of the residues associated with HLABw4/Bw6 public epitopes. Immunogenetics 1990; 32: 195–9.

    Article  PubMed  CAS  Google Scholar 

  189. Hildebrand WH, Madrigal JA, Little AM et al. HLA-Bw22: a family of molecules with identity to HLA-B7 in the alpha 1-helix. J Immunol 1992; 148: 1155–62.

    PubMed  CAS  Google Scholar 

  190. Williams F, Curran MD, Vaughan RW et al. Identification of a new HLA-B*55 allele, HLA-B*5503. Tissue Antigens 1996; 48: 598–9.

    Article  PubMed  CAS  Google Scholar 

  191. Bannai M, Tokunaga K, Tanaka H et al. Five HLA-B22 group alleles in Japanese. Tissue Antigens 1997; 49: 376–82.

    Article  PubMed  CAS  Google Scholar 

  192. Szmania S, Seurynck K, Baxter-Lowe LA. Nucleotide sequence of HLA-B*5505 which expresses a unique HLA class I polymorphism. [In Press] Tissue Antigens 1997.

    Google Scholar 

  193. Barnardo MCNM, Bunce M, Lord CJ et al. HLA-B*5603: Sequence of a novel hybrid allele comprising B*56 and B*4601. Tissue Antigens 1997; 49: 496–8.

    Google Scholar 

  194. Ways JP, Coppin HL, Parham P. The complete primary structure of HLABw58. J Biol Chem 1985; 260: 11924–33.

    PubMed  CAS  Google Scholar 

  195. Hildebrand WH, Domena JD, Parham P. Primary structure shows HLA-B59 to be a hybrid of HLA-B55 and HLA-B51, and not a subtype of HLA-B8. Tissue Antigens 1993; 41: 190–5.

    Article  PubMed  CAS  Google Scholar 

  196. Vilches C, de Pablo R, Herrero MJ et al. HLA-B73: an atypical HLA-B molecule carrying a Bw6-epitope motif variant and a B pocket identical to HLA-B27. Immunogenetics 1994; 40: 166.

    PubMed  CAS  Google Scholar 

  197. Hoffmann HJ, Kristensen TJ, Jensen TG et al. Antigenic characteristics and cDNA sequences of HLA-B73. Eur J Immunogenet 1995; 22: 231–40.

    Article  PubMed  CAS  Google Scholar 

  198. Sekimata M, Hiraiwa M, Andrien M et al. Allodeterminants and evolution of a novel HLA-B5 CREG antigen, HLA-B DNA. J Immunol 1990; 144: 3228–33.

    PubMed  CAS  Google Scholar 

  199. Andrien M, Defleur V, De Canck I et al. B*78022, a new caucasian member within the B78 family. Tissue Antigens 1997; 49: 79–83.

    Article  PubMed  CAS  Google Scholar 

  200. Ellexson M, Stewart D, Chretien P et al. A modified sequencing strategy for the molecular characterisation of HLA-B *8201. Tissue Antigens 1996; 47: 438–41.

    Article  PubMed  CAS  Google Scholar 

  201. Gussow D, Rein RS, Meijer I et al. Isolation, expression, and the primary structure of HLA-Cwl and HLA-Cw2 genes: evolutionary aspects [published erratum appears in Immunogenetics 1988; 27: 158]. Immunogenetics 1987; 25: 313–22.

    CAS  Google Scholar 

  202. Zemmour J, Gumperz JE, Hildebrand WH et al. The molecular basis for reactivity of anti-Cwl and anti-Cw3 alloantisera with HLA-B46 haplotypes. Tissue Antigens 1992; 39: 249–57.

    Article  PubMed  CAS  Google Scholar 

  203. Wang H, Tokunaga K, Akaza T et al. Identification of HLA-C alleles using PCR-single stranded-conformation polymorphism and direct sequencing. Tissue Antigens 1997; 49: 134–40.

    Article  PubMed  CAS  Google Scholar 

  204. Lutz CT, Jensen DA, Schiffenbauer J et al. Multiple mechanisms produce diversity of HLA-C alleles. Hum Immunol 1990; 28: 27–31.

    Article  PubMed  CAS  Google Scholar 

  205. Sodoyer R, Damotte M, Delovitch TL et al. Complete nucleotide sequence of a gene encoding a functional human class I histocompatibility antigen (HLA-CW3). EMBO J 1984; 3: 879–85.

    PubMed  CAS  Google Scholar 

  206. Zarling A, Smith KD, Lutz CT et al. Correction of the HLA-Cw3 genomic sequence tentatively identifies it as HLA-Cw*0304. Immunogenetics 1996; 44: 82–3.

    PubMed  CAS  Google Scholar 

  207. Grassi F, Meneveri R, Gullberg M et al. Human immunodeficiency virus type 1 gp 120 mimics a hidden monomorphic epitope borne by class I major histocompatibility complex heavy chains. J Exp Med 1991; 174: 53–62.

    Article  PubMed  CAS  Google Scholar 

  208. Ellis SA, Strachan T, Palmer MS et al. Complete nucleotide sequence of a unique HLA class I C locus product expressed on the human choriocarcinoma cell line BeWo. J Immunol 1989; 142: 3281–5.

    PubMed  CAS  Google Scholar 

  209. Little A, Mason A, Marsh SGE et al. HLA-C typing of eleven Papua New Guineans: Identification of an HLA-Cw4/ Cwt hybrid allele. Tissue Antigens 1996; 48: 113–7.

    Article  PubMed  CAS  Google Scholar 

  210. Tibensky D, DeMars R, Holowachuk EW et al. Sequence and gene transfer analyses of HLA-CwBL18 (HLA-C blank) and HLA-Cw5 genes. Implications for the control of expression and immunogenicity of HLA-C antigens. J Immunol 1989; 143: 348–55.

    PubMed  CAS  Google Scholar 

  211. Petersdorf EW, Stanley JF, Martin PJ et al. Molecular diversity of the HLA-C locus in unrelated marrow transplantation. Tissue Antigens 1994; 44: 93–9.

    Article  PubMed  CAS  Google Scholar 

  212. Steinle A, Nossner E, Schendel DJ. Isolation and characterization of a genomic HLA-Cw6 clone. Tissue Antigens 1992; 39: 134–7.

    Article  PubMed  CAS  Google Scholar 

  213. Mizuno S, Kang SH, Lee HW et al. Isolation and expression of a cDNA clone encoding HLA-Cw6: unique characteristics of HLA-C encoded gene products. Immunogenetics 1989; 29: 323–30.

    Article  PubMed  CAS  Google Scholar 

  214. Vilches C, de Pablo R, Herrero MJ et al. Molecular cloning and polymerase chain reaction-sequence-specific oligonucleotide detection of the allele encoding the novel allospecificity HLA-Cw6.2 (Cw*1502) in Spanish gypsies. Hum Immunol 1993; 37: 259–63.

    Article  PubMed  CAS  Google Scholar 

  215. Srivastava R, Duceman BW, Biro PA et al. Molecular organization of the class I genes of human major histocompatibility complex. Immunol Rev 1985; 84: 93–121.

    Article  PubMed  CAS  Google Scholar 

  216. Davidson WF, Kress M, Khoury G et al. Comparison of HLA class I gene sequences. Derivation of locus-specific oligonucleotide probes specific for HLA-A, HLA-B, and HLA-C genes. J Biol Chem 1985; 260: 13414–23.

    PubMed  CAS  Google Scholar 

  217. Vilches C, Bunce M, de Pablo R et al. Anchored PCR cloning of the novel HLA-Cw*0704 allele detected by PCR-SSP. Tissue Antigens 1995; 46: 19–23.

    Article  PubMed  CAS  Google Scholar 

  218. Wang H, Tokunaga K, Ishikawa Y et al. Identification and DNA typing of two Cw7 alleles (Cw*0702 and Cw*0704) in Japanese, with the corrected sequence of Cw*0702. Hum Immunol 1996; 45: 52–8.

    Article  PubMed  CAS  Google Scholar 

  219. Vilches C, Bunce M, Sanz L et al. Molecular cloning of two new HLA-C alleles: Cw*1801 and Cw*0706. Tissue Antigens 1996; 48: 698–702.

    Article  PubMed  CAS  Google Scholar 

  220. Takata H, Inoko H, Ando A et al. Cloning and analysis of HLA class I cDNA encoding a new HLA-C specificity Cx52. Immunogenetics 1988; 28: 265–70.

    Article  PubMed  CAS  Google Scholar 

  221. Takiguchi M, Nishimura I, Hayashi H et al. The structure and expression of genes encoding serologically undetected HLAC locus antigens. J Immunol 1989; 143: 1372–8.

    PubMed  CAS  Google Scholar 

  222. Cereb N, Choi JW, Lee S et al. Identification of two new HLA-C alleles, Cw*1203 and Cw*1402, from the sequence analysis of seven HLA homozygous cell lines carrying HLA-C blank. Tissue Antigens 1994; 44: 193–5.

    Article  PubMed  CAS  Google Scholar 

  223. Wang H, Tokunaga K, Ogawa A et al. DNA typing of Cw14 alleles in Japanese and the corrected sequence of Cw*1402. Tissue Antigens 1996; 47: 442–6.

    Article  PubMed  CAS  Google Scholar 

  224. Wang H, Tokunaga K, Ishikawa Y et al. A new HLA-C allele, Cw*1403, associated with HLA-B44 in Japanese. Hum Immunol 1995; 43: 295–300.

    Article  PubMed  CAS  Google Scholar 

  225. de Pablo MR, Vilches C, Moreno ME et al. A novel HLA-C allele (Cw*1504) related to the Cw6.2 phenotype. Immunogenetics 1994; 39: 79.

    Article  PubMed  Google Scholar 

  226. Vilches C, de Pablo R, Herrero MJ et al. Cw*1505: a novel HLA-C allele isolated from a B*7301 haplotype. Immunogenetics 1994; 40: 313.

    PubMed  CAS  Google Scholar 

  227. Vilches C, Herrero MJ, de Pablo R et al. Molecular characterization of a novel, serologically detectable, HLA-C allele: Cw*1602. Hum Immunol 1994; 41: 167–70.

    Article  PubMed  CAS  Google Scholar 

  228. Cereb N, Hughes AL, Yang SY. Cw*1701, a new HLA-C allelic lineage with an unusual transmembrane domain. [In Press] Tissue Antigens 1997.

    Google Scholar 

  229. Herrero MJ, Vilches C, de Pablo R et al. The complete primary structure of Cw* 1701 reveals a highly divergent HLA class I molecule. Tissue Antigens 1997; 49: 267–70.

    Article  PubMed  CAS  Google Scholar 

  230. Wang H, Tokunaga K, Akaza T et al. A novel allele, Cw*1702 with serological Cw2 specificity. Tissue Antigens 1997; 49: 183–5.

    Article  PubMed  CAS  Google Scholar 

  231. Lee JS, Trowsdale J, Travers PJ et al. Sequence of an HLA-DR alpha-chain cDNA clone and intron-exon organization of the corresponding gene. Nature 1982; 299: 750–2.

    Article  PubMed  CAS  Google Scholar 

  232. Larhammar D, Gustafsson K, Claesson L et al. Alpha chain of HLA-DR transplantation antigens is a member of the same protein superfamily as the immunoglobulins. Cell 1982; 30: 153–61.

    Article  PubMed  CAS  Google Scholar 

  233. Das HK, Lawrance SK, Weissman SM. Structure and nucleotide sequence of the heavy chain gene of HLA-DR. Proc Natl Acad Sci USA 1983; 80: 3543–7.

    Article  PubMed  CAS  Google Scholar 

  234. Korman AJ, Auffray C, Schamboeck A et al. The amino acid sequence and gene organization of the heavy chain of the HLA-DR antigen: homology to immunoglobulins. Proc Natl Acad Sci USA 1982; 79: 6013–7.

    Article  PubMed  CAS  Google Scholar 

  235. Tonnelle C, DeMars R, Long EO. DO beta: a new beta chain gene in HLA-D with a distinct regulation of expression. EMBO J 1985; 4: 2839–47.

    PubMed  CAS  Google Scholar 

  236. Bell JI, Estess P, St. John T et al. DNA sequence and characterization of human class II major histocompatibility complex beta chains from the DR1 haplotype. Proc Natl Acad Sci U S A 1985; 82: 3405–9.

    Article  PubMed  CAS  Google Scholar 

  237. Hurley CK, Ziff BL, Silver J et al. Polymorphism of the HLA-DR1 haplotype in American blacks. Identification of a DR1 beta-chain determinant recognized in the mixed lymphocyte reaction. J Immunol 1988; 140: 4019–23.

    PubMed  CAS  Google Scholar 

  238. Merryman P, Gregersen PK, Lee S et al. Nucleotide sequence of a DRw10 beta chain cDNA clone. Identity of the third D region with that of the DRw53 allele of the beta 2 locus and as the probable site encoding a polymorphic MHC class II epitope. J Immunol 1988; 140: 2447–52.

    PubMed  CAS  Google Scholar 

  239. Coppin HL, Avoustin P, Fabron J et al. Evolution of the HLA-DR1 gene family. Structural and functional analysis of the new allele “DR-BON”. J Immunol 1990; 144: 984–9.

    PubMed  CAS  Google Scholar 

  240. Gregersen PK, Todd JA, Erlich HA et al. Immunobiology of HLA. 1989; First domain sequence diversity of DR and DQ subregion alleles. p. 1027–31.

    Google Scholar 

  241. Guignier F, Mercier B, Roz P et al. A novel HLA-DRB1*01 allele (DRBI*0104). Tissue Antigens 1993; 42: 42–4.

    Article  PubMed  CAS  Google Scholar 

  242. Bell JI, Denney D, Foster L et al. Allelic variation in the DR subregion of the human major histocompatibility complex. Proc Natl Acad Sci U S A 1987; 84: 6234–8.

    Article  PubMed  CAS  Google Scholar 

  243. Gorski J, Mach B. Polymorphism of human Ia antigens: gene conversion between two DR beta loci results in a new HLA-D/DR specificity. Nature 1986; 322: 67–70.

    Article  PubMed  CAS  Google Scholar 

  244. Gustafsson K, Wiman K, Emmoth E et al. Mutations and selection in the generation of class II histocompatibility antigen polymorphism. EMBO J 1984; 3: 1655–61.

    PubMed  CAS  Google Scholar 

  245. Horn GT, Bugawan TL, Long CM et al. Sequence analysis of HLA class II genes from insulin-dependent diabetic individuals. Hum Immunol 1988; 21: 249–63.

    Article  PubMed  CAS  Google Scholar 

  246. Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604.

    Article  PubMed  CAS  Google Scholar 

  247. Buyse I, Emonds MP, Bouillon R et al. Novel class II HLA-DRB4 and DPB1 alleles found in the Belgian population. Immunogenetics 1993; 38: 380.

    Article  PubMed  CAS  Google Scholar 

  248. Eberle M, Baxter-Lowe LA. A silent mutation in HLA-DRB1*0301 can affect oligotyping. Tissue Antigens 1992; 40: 150–2.

    PubMed  CAS  Google Scholar 

  249. Hurley CK, Gregersen PK, Gorski J et al. The DR3(w18), DQw4 haplotype differs from DR3(w17), DQw2 haplotypes at multiple class II loci. Hum Immunol 1989; 25: 37–50.

    Article  PubMed  CAS  Google Scholar 

  250. Ellis JM, Steiner N, Wang J et al. Diversity and evolution of the DRB1*03 family: Description of DRB1*03022, *0307, *0308. Tissue Antigens 1997; 49: 41–5.

    Article  PubMed  CAS  Google Scholar 

  251. Apple RJ, Erlich HA. Two new HLA DRB1 alleles found in African Americans: implications for balancing selection at positions 57 and 86. Tissue Antigens 1992; 40: 69–74.

    Article  PubMed  CAS  Google Scholar 

  252. Anholts JD, Verduyn W, Parlevliet A et al. Irregular polymerase chain reactionsequence-specific oligonucleotide hybridization patterns reveal seven new HLADRB1 alleles related to DR2, DR3, DR6, DR8, and DR1 1. Implications for sequence-specific priming. Hum Immunol 1995; 42: 15–22.

    Article  PubMed  CAS  Google Scholar 

  253. Asu U, Taylor M, Dunn D et al. A new DRBI allele: DRB1*03 new. Hum Immunol 1994; 40: 36.

    Article  Google Scholar 

  254. Fenske BA, Lemieux J, Hoar D et al. A novel DRBI*0306 allele identified by PCR-RFLP. Hum Immunol 1996; 46: 55–7.

    Article  PubMed  CAS  Google Scholar 

  255. Dufossé F, Guignier F, Cracco P et al. A novel HLA-DRB1 allele (DRB1*0309). [In Press] Tissue Antigens 1997.

    Google Scholar 

  256. Martinez-Quiles N, Martin-Villa JM, Matinez-Laso J et al. Description of two new DRB1 (DRB1*0310) and DRB3 (DRB3*01012) alleles found in a Spanish infant. [In Press] Tissue Antigens 1997.

    Google Scholar 

  257. Curtsinger JM, Hilden JM, Cairns JS et al. Evolutionary and genetic implications of sequence variation in two nonallelic HLA-DR beta-chain cDNA sequences. Proc Natl Acad Sci U S A 1987; 84: 209–13.

    Article  PubMed  CAS  Google Scholar 

  258. Spies T, Sorrentino R, Boss JM et al. Structural organization of the DR subregion of the human major histocompatibility complex. Proc Natl Acad Sci U S A 1985; 82: 5165–9.

    Article  PubMed  CAS  Google Scholar 

  259. Gregersen PK, Shen M, Song QL et al. Molecular diversity of HLA-DR4 haplotypes. Proc Natl Acad Sci U S A 1986; 83: 2642–6.

    Article  PubMed  CAS  Google Scholar 

  260. Thonnard J, Gervais T, Heusterpreute M et al. A new silent mutation at codon 35 in exon 2 yielding DRB1*04012 allele. Tissue Antigens 1997;49 Part 1: 274–6.

    Google Scholar 

  261. Gregersen PK, Goyert SM, Song QL et al. Microheterogeneity of HLA-DR4 haplotypes: DNA sequence analysis of LD “KT2” and LD “TAS” haplotypes. Hum Immunol 1987; 19: 287–92.

    Article  PubMed  CAS  Google Scholar 

  262. Cairns JS, Curtsinger JM, Dahl CA et al. Sequence polymorphism of HLA DR beta 1 alleles relating to T-cell-recognized determinants. Nature 1985; 317: 166–8.

    Article  PubMed  CAS  Google Scholar 

  263. Morales P, Martinez-Laso J, Martin-Villa JM et al. High frequency of the HLADRB1*0405-(Dw15)-DQw8 haplotype in Spaniards and its relationship to diabetes susceptibility. Hum Immunol 1991; 32: 170–5.

    Article  PubMed  CAS  Google Scholar 

  264. Moribe T, Kaneshige T, Hirakata et al. Identification of a DRBI*0405 variant (DRB1*04052) using the PCR-RFLP method. Tissue Antigens 1996; 47: 450–3.

    PubMed  CAS  Google Scholar 

  265. Lang B, Navarrete C, LoGalbo PR et al. Further DNA sequence microheterogeneity of the HLA-DR4/Dw13 haplotype group: importance of amino acid position 86 of the DR beta 1 chain for T-cell recognition. Hum Immunol 1990; 27: 378–89.

    Article  PubMed  CAS  Google Scholar 

  266. Lanchbury JS, Hall MA, Welsh KI et al. Sequence analysis of HLA-DR4B1 subtypes: additional first domain variability is detected by oligonucleotide hybridization and nucleotide sequencing. Hum Immunol 1990; 27: 136–44.

    Article  PubMed  CAS  Google Scholar 

  267. Lanchbury JS, Jaeger EE, Welsh KI et al. Nucleotide sequence of a novel HLADRB4B 1 allele, DRB 1 *0409. Immunogenetics 1991; 33: 210–2.

    Article  PubMed  CAS  Google Scholar 

  268. Gao X, Veale A, Serjeantson SW. HLA class II diversity in Australian aborigines: unusual HLA-DRBI alleles. Immunogenetics 1992; 36: 333–7.

    PubMed  CAS  Google Scholar 

  269. Petersdorf EW, Smith AG, Mickelson EM et al. Ten HLA-DR4 alleles defined by sequence polymorphisms within the DRB1 first domain. Immunogenetics 1991; 33: 267–75.

    Article  PubMed  CAS  Google Scholar 

  270. Petersdorf EW, Smith AG, Martin PJ et al. HLA-DRB1 first domain sequence for a novel DR4 allele designated DRB1* 0413. Tissue Antigens 1992; 40: 267–8.

    Article  PubMed  CAS  Google Scholar 

  271. Pile KD, Willcox N, Bell JI et al. A novel HLA-DR4 allele (DRB1*0414) in a patient with myasthenia gravis. Tissue Antigens 1992; 40: 264–6.

    Article  PubMed  CAS  Google Scholar 

  272. Tiercy JM, Gebührer L, Betuel H et al. A new HLA-DR4 allele with a DR11 alpha-helix sequence. Tissue Antigens 1993; 41: 97–101.

    Article  PubMed  CAS  Google Scholar 

  273. Middleton D, Hughes DJ, Trainor F et al. An HLA-DRB1*04 first domain sequence (DRB1*0416) which differs from HLA-DRBI*0401 at codon 59. Tissue Antigens 1994; 43: 44–6.

    Article  PubMed  CAS  Google Scholar 

  274. Zhang S, Fernandez-Vina M, Falco M et al. A novel HLA-DRBI allele (DRB1* 0417) in South American Indians. Immunogenetics 1993; 38: 463.

    Article  PubMed  CAS  Google Scholar 

  275. Mehra NK, Bouwens AG, Naipal A et al. Asian Indian HLA-DR2-, DR4-, and DR52-related DR-DQ genotypes analyzed by polymerase chain reaction based on nonradioactive oligonucleotide typing. 287. Unique haplotypes and a novel DR4 subtype. Hum Immunol 1994; 39: 202–10.

    Article  PubMed  CAS  Google Scholar 

  276. Smith AG, Petersdorf EW, Mickelson E et al. HLA-DRB1 first domain sequences of two new DR11 alleles and one novel DR4 allele. Tissue Antigens 1993; 42: 288. 533–5.

    Article  PubMed  CAS  Google Scholar 

  277. Cassidy S, Lester S, Humphreys I et al. A new HLA-DRBI*04 allele: DRB1*0420. Tissue Antigens 1995; 45: 353–5.

    Article  PubMed  CAS  Google Scholar 

  278. Keller E, Yao Z, Volgger A et al. A novel 289. variant of DR4 (DRB1*0421) identified in a patient with polychondritis. Immunogenetics 1995; 41: 171.

    Article  PubMed  CAS  Google Scholar 

  279. Gebührer L, Adami N, Javaux F et al. Sequence of a new HLA-DR4 allele with 290. an unusual residue at position 88 that does not seem to affect T-cell allo recognition. Hum Immunol 1996; 51: 60–2.

    Article  PubMed  Google Scholar 

  280. Guethlein LA, Bias WB, Schmeckpeper 291. BJ. Re-evaluation of DRB1*0702: evidence for only one allele, DRB1*0701, encoding the beta chain of the HLA-DR7 antigen. Tissue Antigens 1994; 43: 124–8.

    Article  PubMed  CAS  Google Scholar 

  281. Young JA, Wilkinson D, Bodmer WF et al. Sequence and evolution of HLA-DR7- and -DRw53-associated beta-chain genes. 292. Proc Natl Acad Sci U S A 1987; 84: 4929–33.

    Article  PubMed  CAS  Google Scholar 

  282. Karr RW, Gregersen PK, Obata F et al. Analysis of DR beta and DQ beta chain 293. cDNA clones from a DR7 haplotype. J Immunol 1986; 137: 2886–90.

    PubMed  CAS  Google Scholar 

  283. Gregersen PK, Moriuchi T, Karr RW et al. Polymorphism of HLA-DR beta chains in DR4, -7, and -9 haplotypes: 294. implications for the mechanisms of allelic variation. Proc Natl Acad Sci U S A 1986; 83: 9149–53.

    Article  PubMed  CAS  Google Scholar 

  284. Jonsson AK, Andersson L, Rask L. A cel- lular and functional split in the DRw8 295. haplotype is due to a single amino acid replacement (DR beta ser 57-asp 57). Immunogenetics 1989; 29: 308–16.

    Article  PubMed  CAS  Google Scholar 

  285. Gorski J. The HLA-DRw8 lineage was generated by a deletion in the DR B re- 296. gion followed by first domain diversification. J Immunol 1989; 142: 4041–5.

    PubMed  CAS  Google Scholar 

  286. Watanabe Y, Tokunaga K, Matsuki K et al. Direct sequencing of a HLA-DRB gene by polymerase chain reaction: sequence variation in DRw8 specificity. Jinrui Idengaku Zasshi 1990; 35: 151–7.

    Article  PubMed  CAS  Google Scholar 

  287. Abe A, Ito I, Ohkubo M et al. Two distinct subtypes of the HLA-DRw12 haplotypes in the Japanese population detected by nucleotide sequence analysis and oligonucleotide genotyping. Immunogenetics 1989; 30: 422–6.

    Article  PubMed  CAS  Google Scholar 

  288. O’Brien RM, Cram DS, Russ GR et al. Nucleotide sequences of the HLA-DRw12 and DRw8 B1 chains from an Australian aborigine. Hum Immunol 1992; 34: 147–51.

    Article  PubMed  Google Scholar 

  289. Hurley CK, Lee KW, Mickelson E et al. DRw8 microvariation: a new DRB1 allele identified in association with DQw7 in American blacks. Hum Immunol 1991; 31: 109–13.

    Article  PubMed  CAS  Google Scholar 

  290. Eberle M, Baxter-Lowe LA. Molecular analysis of HLA-DRBI*08/12 alleles. Identification of two additional alleles. Hum Immunol 1992; 34: 24–30.

    Article  PubMed  CAS  Google Scholar 

  291. Titus-Trachtenberg EA, Rickards O, De Stefano GF et al. Analysis of HLA class II haplotypes in the Cayapa Indians of Ecuador: a novel DRBI allele reveals evidence for convergent evolution and balancing selection at position Am J Hum Genet 1994; 55: 160–7.

    Google Scholar 

  292. Loeffler D, Woelpl A, Eiermann TH. Nucleotide sequence of a novel HLADRB1 allele, DRB1*0806. Immunogenetics 1995; 41: 56.

    Article  PubMed  CAS  Google Scholar 

  293. Benmamar D, Martinez-Laso J, Varela P et al. Evolutionary relationships of HLADR8 alleles and description of a new subtype (DRB1*0806) in the Algerian population. Hum Immunol 1993; 36: 172–8.

    Article  PubMed  CAS  Google Scholar 

  294. Smith AG, Mickelson EM, McKinney S et al. Analysis of HLA-DRB1 alleles among 23 Brazilian families reveals a new DR8 allele. Tissue Antigens 1996, in press.

    Google Scholar 

  295. Kashiwase K, Tokunaga K, Lin L et al. A new HLA-DR8 subtype showing unusual serological reaction and the confirmatory sequence of DRB1*0809. Tissue Antigens 1995; 46: 340–2.

    Article  PubMed  CAS  Google Scholar 

  296. She JX, Zhang LP, Scornik J et al. Nucleotide sequence of a novel HLA-DRB1 allele, DRB1*0810 [corrected] [published erratum appears in Immunogenetics 1994; 39:379]. Immunogenetics 1994; 39: 78.

    Article  PubMed  CAS  Google Scholar 

  297. Williams TM, Wu J, Foutz T et al. A new DRBI allele (DRBI*0811) identified in Native Americans. Immunogenetics 1994; 40: 314.

    Article  PubMed  CAS  Google Scholar 

  298. Versluis LF, Savelkoul PH, van der Zwan AW et al. Identification of the new HLADRB1*0812 allele detected by sequenced based typing. Immunogenetics 1996; 44: 84.

    Article  PubMed  CAS  Google Scholar 

  299. Smith AG, Nelson JL, Regen L et al. Six new DR52-associated DRB1 alleles, three DR8, two DR11, and one DR6 reflect a variety of mechanismms which generate polymorphism in the MHC. Tissue Antigens 1996; 48: 118–26.

    Article  PubMed  CAS  Google Scholar 

  300. Trejaut J, Greville W, Duncan N et al. A novel allele (DRB1*0815) defined in an Australian Aborigine. [In Press] Tissue Antigens 1997.

    Google Scholar 

  301. Naruse TK, Ando R, Nose Y et al. HLADRB4 genotyping by PCR-RFLP: diversity in the association between HLADRB4 and DRB1 alleles. Tissue Antigens 1997; 49: 152–9.

    Article  PubMed  CAS  Google Scholar 

  302. Tieber VL, Abruzzini LF, Didier DK et al. Complete characterization and sequence of an HLA class II DR beta chain cDNA from the DR5 haplotype. J Biol Chem 1986; 261: 2738–42.

    PubMed  CAS  Google Scholar 

  303. Lee KW, Johnson AH, Tang T et al. DRwll haplotypes: continuum of DRBI diversity augmented by unique DQ/ DRw52 associations [published erratum appears in Hum Immunol 1992; 34:75]. Hum Immunol 1991; 32: 150–5.

    Article  PubMed  CAS  Google Scholar 

  304. Murru MR, Costa GR, Muntoni F et al. A new allelic variant of HLA-DRBI*1101 (DRBI*11013) segregating in a Sardinian family. Tissue Antigens 1996; 48: 604–6.

    Article  PubMed  CAS  Google Scholar 

  305. Steimle V, Hinkkanen A, Schlesier M et al. A novel HLA-DR beta I sequence from the DRw11 haplotype. Immunogenetics 1988; 28: 208–10.

    Article  PubMed  CAS  Google Scholar 

  306. Numez-Roldan A, Gregersen PK, Winchester RJ et al. Analysis of class II genes from a DR5, DQW haplotype: Implications for haplotype evolution. Human Immunology 1991; 32: 150–5.

    Article  Google Scholar 

  307. Apple RJ, Bugawan TL, Griffith R et al. A new DRB1 allele and a novel DR4 haplotype found in a Filipino family. Tissue Antigens 1993; 41: 51–4.

    Article  PubMed  CAS  Google Scholar 

  308. Bannai M, Tokunaga K, Lin L et al. A new HLA-DR11 DRBI allele found in a Korean. Hum Immunol 1994; 39: 230–2.

    Article  PubMed  CAS  Google Scholar 

  309. Lin YN, Ren EC, Chan SH. A new DRI l allele in Singaporean Chinese. Tissue Antigens 1993; 41: 204–5.

    Article  PubMed  CAS  Google Scholar 

  310. Middleton D, Hughes DJ, Williams F et al. A new DRB1 allele DRB1*1107-a combination of DRBI*11 and DRB1*03. Tissue Antigens 1993; 42: 160–3.

    Article  PubMed  CAS  Google Scholar 

  311. Williams F, Hughes DJ, Middleton D. A new HLA-DRB1*11 allele (DRB1*1109) differing at codons 32, 34 and 37. Tissue Antigens 1994; 44: 63–4.

    Article  PubMed  CAS  Google Scholar 

  312. Eberle M, Szmania S, Baxter-Lowe LA. Molecular evolution of HLA: A continuum of diversity. J Immunol 1993; 150: 175.

    Google Scholar 

  313. Smith AG, Safirman C, Kelso C et al. Two new DR52-associated alleles, DRBI* 1111 and *1312, identified by PCR/SSOP and confirmed by DNA sequencing. Tissue Antigens 1994; 44: 52–6.

    Article  PubMed  CAS  Google Scholar 

  314. Rosenberg SM, Wollenzien TF, Johnson MM et al. A description of a new DR allele, DRB1*1113. Tissue Antigens 1995; 45: 125–8.

    Article  PubMed  CAS  Google Scholar 

  315. Heron SD, McKeen ME, Cizman BB et al. Identification of HLA-DRB1*1114 by oligonucleotide typing and DNA sequencing. Immunogenetics 1995; 42: 436–7.

    Article  PubMed  CAS  Google Scholar 

  316. Robbins F, Tang T, Yao H et al. Direct sequencing of SSP-PCR-amplified cDNA to identify new alleles in the DR52-associated DRB1 group: identification of DRB1*1115, DRBI*1117 and DRBI* 1319. Tissue Antigens 1995; 45: 302–8.

    Article  PubMed  CAS  Google Scholar 

  317. Fischer GF, Fae I, Petrasek M et al. An HLA-DR11 variant (HLA-DRBI*1115) segregating in a family of Turkish origin. Tissue Antigens 1995; 45: 143–4.

    Article  PubMed  CAS  Google Scholar 

  318. Thonnard J, Blaimond B, Heusterspreut M et al. A new HLA-DRBI*1116 allele sharing DR13 and DRII sequence motifs. Tissue Antigens 1995; 46: 124–7.

    Article  PubMed  CAS  Google Scholar 

  319. Nielsen J, Zhang G, Spalding T et al. Molecular cloning and automated sequencing of a new HLA-DRBI allele within the DRB1*14 family. Hum Immunol 1995; 44–1: 52.

    Google Scholar 

  320. Heine U, Mason JM, Begovich AB et al. Two novel DRB1 alleles, DRB1*1118 and DRBI*1119, detected by PCR-SSOP and confirmed by DNA sequencing. Tissue Antigens 1995; 46: 68–70.

    Article  PubMed  CAS  Google Scholar 

  321. Cizman BB, Kearns DJ, McKeen ME et al. New DRB1*1120 allele; another example of the transition between the DR11 and DR13 families of alleles. Tissue Antigens 1996; 48: 52–4. 333.

    Google Scholar 

  322. Verduyn W, Anholts JDH, Versluis LF et al. Six newly identified HLA-DRB alleles: DRB1*1121, *1419, *1420, *1421, DRB3*0203 and DR5*0103. Tissue Anti- 334. gens 1996; 48: 80–6.

    Article  CAS  Google Scholar 

  323. Adami N, Jeannet M, Tiercy J. Sequence of a new HLA-DR11 allele with a DR4specific first hypervariable region. Immunogenetics 1995; 42: 448–9.

    Article  PubMed  CAS  Google Scholar 

  324. Schranz P, Seelig R, Seidl C et al. Nude- 335. otide sequence of a new HLA-DRB1(*)11 allele (DRB1(*)1124). Immunogenetics 1996; 43: 242–3.

    PubMed  CAS  Google Scholar 

  325. Perrier P, Reveillere C, Schuhmacher A. A new DRB1 allele (DRB1*1125) shar- 336. ing DR11 and DR8 sequence motifs. Tissue Antigens 1997; 49: 84–7.

    Article  PubMed  CAS  Google Scholar 

  326. Knipper AJ, Enczmann J, Schuch B et al. A novel HLA-DRB1*11 allele (DRB1*1127). Tissue Antigens 1997; 337. 49: 414–6.

    Article  Google Scholar 

  327. Navarrete C, Seki T, Miranda A et al. DNA sequence analysis of the HLADRw12 allele. Hum Immunol 1989; 25: 5 1–8.

    Google Scholar 

  328. Behar E, Lin X, Grumet FC et al. A new DRB1*1202 allele (DRB1*12022) found in association with DQA1*0102 and DQB1*0602 in two black narcoleptic subjects. Immunogenetics 1995; 41: 52.

    Article  PubMed  CAS  Google Scholar 

  329. Rodriguez SG, Crevling CL, Steiner N et al. Identification of a new allele, DRB 1 * 1204, during routine PCR-SSOP typing of National Marrow Donor Program volunteers. Tissue Antigens 1996; 48: 221–3.

    Article  PubMed  CAS  Google Scholar 

  330. Tiercy JM, Gorski J, Betuel H et al. DNA typing of DRw6 subtypes: correlation with DRB1 and DRB3 allelic sequences by hybridization with oligonucleotide probes. Hum Immunol 1989; 24: 1–14.

    Article  PubMed  CAS  Google Scholar 

  331. Noreen HJ, Santamaria P, Davidson ML et al. Serology, restriction fragment length polymorphism, and sequence analysis of a unique HLA class II antigen, DR5x6. Hum Immunol 1991; 30: 168–73.

    Article  PubMed  CAS  Google Scholar 

  332. Corell A, Martin-Villa JM, Varela P et al. Exon 2 DNA sequence of the HLADRwl3b allele obtained from genomes of five different individuals [published erratum appears in Mol Immunol 1990; 27:471]. Mol Immunol 1990; 27: 313–6.

    Article  PubMed  CAS  Google Scholar 

  333. Lee KW, Johnson AH, Hurley CK. Two divergent routes of evolution gave rise to the DRw13 haplotypes. J Immunol 1990; 145: 3119–25.

    PubMed  CAS  Google Scholar 

  334. Tiercy JM, Jeannet M, Mach B. A new HLA-DRB1 allele within the DRw52 supertypic specificity (DRw13-DwHAG): sequencing and direct identification by oligonucleotide typing. Eur J Immunol 1990; 20: 237–41.

    Article  PubMed  CAS  Google Scholar 

  335. Petersdorf EW, Griffith RL, Erlich HA et al. Unique sequences for two HLA-DRB1 genes expressed on distinct DRw6 haplotypes. Immunogenetics 1990; 32: 96–103.

    Article  PubMed  CAS  Google Scholar 

  336. Tiercy JM, Gebührer L, Freidel C et al. Additional complexity within the HLAD region: sequence analysis of two new DRw13-DQw7 haplotypes. Hum Immunol 1991; 32: 95–101.

    Article  PubMed  CAS  Google Scholar 

  337. Petersdorf EW, Smith AG, Haase AM et al. Polymorphism of HLA-DRw52-associated DRB1 genes as defined by sequence-specific oligonucleotide probe hybridization and sequencing. Tissue Antigens 1991; 38: 169–77.

    Article  PubMed  CAS  Google Scholar 

  338. Kaneshige T, Hashimoto M, Matsumoto Y et al. Serologic and nucleotide sequencing analyses of a novel DR52-associated DRB1 allele with the DR `NJ25’ specificity, designated DRB1*1307. Hum Immunol 1994; 41: 151–9.

    Article  PubMed  CAS  Google Scholar 

  339. Lee KW. DR6 in Koreans. DR11 frequently acts as a recipient gene to create DR13 alleles. Hum Immunol 1993; 37: 229–36.

    Article  PubMed  CAS  Google Scholar 

  340. Home C, Goodfellow PJ, McDonald HL et al. A new HLA-DRB1 allele formed by an intraexonic interallelic crossover. Tissue Antigens 1993; 42: 141–3.

    Article  Google Scholar 

  341. Yunis JJ, Kineke E, Yunis EJ. Characterization of a new DRB1 allele, DRB1* 1309, by PCR-SSOP and sequencing. Tissue Antigens 1994; 43: 54–7.

    Article  PubMed  CAS  Google Scholar 

  342. Dufossé F, Cracco P, Becuwe D et al. A novel HLA DR52-associated DRB1 allele (DRB1*1311). Tissue Antigens 1994; 43: 271–3.

    Article  PubMed  Google Scholar 

  343. Blasczyk R, van Lessen A, Schwella N et al. A novel HLA-DR13 allele (DRB1* 1314) identified by single-strand conformation polymorphism analysis and confirmed by direct sequencing. Hum Immunol 1995; 43: 309–12.

    Article  PubMed  CAS  Google Scholar 

  344. Dinauer DM, Glumm R, Baxter-Lowe LA. DRB1*1316: evolutionary and functional implications of a novel polymorphism at codon 86. Hum Immunol 1996; 45: 37–41.

    Article  PubMed  CAS  Google Scholar 

  345. Cizman BB, Heron SD, McKeen ME et al. Identification of a DRB1 allele (DRB1*1316) with aspartate at position 86: Evolutionary considerations and functional implications. Tissue Antigens 1996; 47: 153–4.

    Article  PubMed  CAS  Google Scholar 

  346. Rosenberg SM, Wollenzien TF, Robbins FM et al. Yet another novel HLA-DRB1 allele (DRB1*1317) and its misidentification by PCR-SSP. Tissue Antigens 1995; 46: 128–30.

    Article  PubMed  CAS  Google Scholar 

  347. Dormoy A, Delbosc A, Galy-Floc’h M et al. A novel DRB1*13 allele (DRB1*1318) with a short DRB1*08 sequence. Immunogenetics 1996; 43: 240–1.

    PubMed  CAS  Google Scholar 

  348. Hashemi S, Couture C, Buyse I et al. Identification of a new DRBI*13 allele (DRBI*1320) and a novel DRB1*15 allele (DRBI*15012) with a silent mutation affecting oligotyping. Tissue Antigens 1996; 47: 147–9.

    Article  PubMed  CAS  Google Scholar 

  349. Poli F, Bianchi P, Crespiatico L et al. Identification of a new DRB1 allele (DRB1*1325) by PCR-SSP and DNA sequencing. Tissue Antigens 1996; 48: 714–6.

    Article  PubMed  CAS  Google Scholar 

  350. Voorter CEM, de Bruyn-Geraets D, Verduyn W et al. Identification of a new HLA-DRBI*13 allele (DRB1*1326) with a short DRB1*16 sequence. Tissue Antigens 1997; 49: 88–91.

    Article  PubMed  CAS  Google Scholar 

  351. Schaffer M, Olerup O. A novel DRB1*13 allele (DRB1*1327) on a DR17, DQ2 haplotype with a DRB1*0301 sequence motif in the second hyperpolymorphic region. Tissue Antigens 1997; 49: 186–8.

    Article  PubMed  CAS  Google Scholar 

  352. Gorski J. First domain sequence of the HLA-DRB1 chain from two HLA-DRw14 homozygous typing cell lines: TEM (Dw9) and AMALA (Dw16). Hum Immunol 1989; 24: 145–9.

    Article  PubMed  CAS  Google Scholar 

  353. Obata F, Abe A, Ohkubo M et al. Sequence analysis and oligonucleotide genotyping of HLA-DR“JX6”, a DR “blank” haplotype found in the Japanese population. Hum Immunol 1990; 27: 269–84.

    Article  PubMed  CAS  Google Scholar 

  354. McClure GR, Ruberti G, Fathman CG et al. DRBI*LY10-a new DRBI allele and its haplotypic association. Immunogenetics 1990; 32: 214–7.

    Article  PubMed  CAS  Google Scholar 

  355. Gorski J, Radka SF, Masewicz S et al. Mapping of distinct serologic and T cell recognition epitopes on an HLA-DR beta-chain. J Immunol 1990; 145: 2020–4.

    PubMed  CAS  Google Scholar 

  356. Obata F, Ito I, Ito K et al. Sequence analysis and HLA-DR genotyping of a novel HLA-DRw14 allele. Immunogenetics 1990; 32: 313–20.

    Article  PubMed  CAS  Google Scholar 

  357. Dong RP, Kimura A, Sasazuki T. Sequence analysis of three novel DRw14DRBI alleles. Immunogenetics 1992; 36: 130–3.

    Article  PubMed  CAS  Google Scholar 

  358. Laforet M, Urlacher A, Falkenrodt A et al. A new DR14 allele (DRBI*1411) containing a short DR11 sequence and its haplotypic association. Hum Immunol 1993; 36: 179–85.

    Article  PubMed  CAS  Google Scholar 

  359. Hashimoto M, Kaneshige T, Kinoshita T et al. A new DR14-related DRB1 allele, DRB1*1412, which differs from DRB1 *1403 only at codon 86. Tissue Antigens 1994; 43: 133–5.

    Article  PubMed  CAS  Google Scholar 

  360. Pando M, Theiler G, Melano R et al. A new HLA-DR6 allele (DRB1*1413) found in a tribe of Brazilian Indians. Immunogenetics 1994; 39: 377

    Article  PubMed  CAS  Google Scholar 

  361. Lester S, Cassidy S, Humphreys I et al. Evolution in HLA-DRB1 and major histocompatibility complex class II haplotypes of Australian aborigines. Definition of a new DRB1 allele and distribution of DRB1 gene frequencies. Hum Immunol 1995; 42: 154–60.

    Article  PubMed  CAS  Google Scholar 

  362. Fogdell A, Olerup O. A novel DRB1 allele (DRBI*1415) formed by interallelic crossing over between the DRB1*1404 and the DRB1*0802 or 0804 alleles. Tissue Antigens 1994; 43: 327–9.

    Article  PubMed  CAS  Google Scholar 

  363. Hashemi S, Aye MT, Zeibadawi A et al. A novel HLA-DRBI*14 allele (DRBI* 1417). Tissue Antigens 1994; 44: 189–92.

    Article  PubMed  CAS  Google Scholar 

  364. Adami N, Aubert V, Jeannet M et al. Sequencing of a new HLA-DR14 allele (DRB1*1422). Immunogenetics 1996; 43: 248–9.

    PubMed  CAS  Google Scholar 

  365. Lee BS, Rust NA, McMichael AJ et al. HLA-DR2 subtypes form an additional supertypic family of DR beta alleles. Proc Natl Acad Sci U S A 1987; 84: 4591–5.

    Article  PubMed  CAS  Google Scholar 

  366. Lock CB, So AK, Welsh KI et al. MHC class II sequences of an HLA-DR2 narcoleptic. Immunogenetics 1988; 27: 449–55.

    Article  PubMed  CAS  Google Scholar 

  367. Wu S, Saunders TL, Bach FH. Polymorphism of human Ia antigens generated by reciprocal intergenic exchange between two DR beta loci. Nature 1986; 324: 676–9.

    Article  PubMed  CAS  Google Scholar 

  368. Wu S, Yabe T, Madden M et al. cDNA cloning and sequencing reveals that the electrophoretically constant DR(32 molecules, as well as the variable 131 molecules, from HLA-DR2 subtypes have different amnio acid sequences including a hypervariable region for a functionally important epitope. J Immunol 1987; 138: 2953–9.

    PubMed  CAS  Google Scholar 

  369. Demopulos JT, Hodge TW, Wooten V et al. A novel DRB1 allele in DR2-positive American blacks. Hum Immunol 1991; 30: 41–4.

    Article  PubMed  CAS  Google Scholar 

  370. Fan LA, Smith AG, Chandanayingyong D et al. DRB1*1504 (DR2Dai): a new DR2 allele identified in the Dai minority population of southwest China. Tissue Antigens 1994; 44: 326–8.

    Article  PubMed  CAS  Google Scholar 

  371. Fei H, Lu Y, Lin B et al. The nucleotide sequence of a new HLA DR15(2) allele in Chinese. Chin Microbiol Immunol 1995; 15: 45–8.

    CAS  Google Scholar 

  372. Shinno K, Tsuboyama K, Mine H et al. Nucleotide sequence of a New DRB1*15 variant, 1505, in a Japanese family. Tissue Antigens 1995; 46: 411–3.

    Article  PubMed  CAS  Google Scholar 

  373. van den Berg-Loonen EM, Rani R, Singal D et al. A new DRB1*15 allele (DRB1 *1506) identified by sequence based typing. Tissue Antigens 1997; 49: 189–91.

    Article  Google Scholar 

  374. White JM, Baxter-Lowe LA. Sequence of DRB1*1601. Tissue Antigens 1997; 49: 192–3.

    Article  PubMed  CAS  Google Scholar 

  375. Liu CP, Bach FH, Wu SK. Molecular studies of a rare DR2/LD-5a/DQw3 HLA class II haplotype. Multiple genetic mechanisms in the generation of polymorphic HLA class II genes [published erratum appears in J Immunol 1990; 144:1544]. J Immunol 1988; 140: 3631–9.

    CAS  Google Scholar 

  376. Trejaut J, Bhatia K, Greville WD et al. HLA-DR2 haplotypic diversity in four populations of Southeast Asia and Northern China, and five Melanesian populations using PCR-RFLP for DRBI, DRB5, DQB1 and DQA1. Eur J Immunogenetics 1996; 23: 437–49.

    Article  CAS  Google Scholar 

  377. Rosenlicht JW, Hartung K, Deicher H et al. A novel HLA-DRB1–DR2 allele associated with HLA mistyping. Immunogenetics 1993; 37: 479.

    Article  PubMed  CAS  Google Scholar 

  378. Laforet M, Urlacher A, Tongio MM. A new HLA DR16 allele (DRB1*1604) with a short DR8 sequence. Tissue Antigens 1994; 43: 257–60.

    Article  PubMed  CAS  Google Scholar 

  379. Bettinotti MP, McNicholas A, Keller E et al. DRB 1 * 1605: a new DR2–DRB1 allele found in a German family. Immunogenetics 1994; 39: 300.

    Article  PubMed  CAS  Google Scholar 

  380. Anholts JDH, Bouwens AGM, Verduyn W et al. Sequence of HLA-DRB1*1606 is incorrect. Hum Immunol 1996; 46: 65–6.

    Article  PubMed  CAS  Google Scholar 

  381. Israel S, Smith AG, Miller K et al. Two new DR2 alleles; DRB1*1607 identified in a Jewish Ashkenazi family and DRBI*15022 found in a single caucasian donor. Tissue Antigens 1997; 49: 173–5.

    Article  PubMed  CAS  Google Scholar 

  382. Gorski J. HLA-DR beta-chain polymorphism. Second domain polymorphism reflects evolutionary relatedness of alleles and may explain public serologic epitopes. J Immunol 1989; 143: 329–33.

    Google Scholar 

  383. Long EO, Wake CT, Gorski J et al. Complete sequence of an HLA-DR beta chain deduced from a cDNA clone and identification of multiple non-allelic DR beta chain genes. EMBO J 1983; 2: 389–94.

    PubMed  CAS  Google Scholar 

  384. Didier DK, Schiffenbauer J, Shuman S et al. Characterization of two distinct DR beta chain alleles at the beta III locus of the DR5 haplotype: beta III alleles are highly conserved. J Immunol 1986; 137: 2627–31.

    PubMed  CAS  Google Scholar 

  385. Gorski J, Irle C, Mickelson EM et al. Correlation of structure with T cell responses of the three members of the HLA-DRw52 allelic series. J Exp Med 1989; 170: 1027–32.

    Article  PubMed  CAS  Google Scholar 

  386. Sutton VR, Knowles RW. An aberrant DRB4 null gene transcript is found that could encode a novel HLA-DR beta chain. Immunogenetics 1990; 31: 112–7.

    Article  PubMed  CAS  Google Scholar 

  387. Andersson G, Larhammar D, Widmark E et al. Class II genes of the human major histocompatibility complex. Organization and evolutionary relationship of the DR beta genes [published erratum appears in J Biol Chem 1988; 263: 8551]. J Biol Chem 1987; 262: 8748–58.

    CAS  Google Scholar 

  388. Canck I, Demant C, Mersch G et al. Characterisation of a new DRB4 allele (DRB4*0104). Tissue Antigens 1996; 48: 213–6.

    Article  PubMed  Google Scholar 

  389. Voorter CEM, Emonds M, van den BergLoonen EM. Identification of a new DRB4 allele (DRB4*0105) by sequence based typing. In Press] Tissue Antigens 1997.

    Google Scholar 

  390. Poli F, Bianchi P, Crespiatico L et al. Characterisation of a new HLA-DRB5 allele (DRB5*0105) by PCR-SSP and direct sequencing. Tissue Antigens 1996; 47: 338–40.

    Article  PubMed  CAS  Google Scholar 

  391. Freeman SM, Saunders TL, Madden M et al. Comparison of DR[31 alleles from diabetic and normal individuals. Hum Immunol 1987; 19: 1–6.

    Article  PubMed  CAS  Google Scholar 

  392. Grooms A, Dunckley H, Gao X et al. DRB5*HK: a new HLA-DRB5 allele in Cantonese. Tissue Antigens 1992; 40: 210–1.

    Article  PubMed  CAS  Google Scholar 

  393. Corell A, Martin Villa JM, Morales P et al. Exon-2 nucleotide sequences, polymorphism and haplotype distribution of a new HLA-DRB gene: HLA-DRB sigma. Mol Immunol 1991; 28: 533–43.

    Article  PubMed  CAS  Google Scholar 

  394. Figueroa F, O’hUigin C, Inoki H et al. Primate DRB6 pseudogenes: clue to the evolutionary origin of the HLA-DR2 haplotype. Immunogenetics 1991; 34: 324–37.

    Article  PubMed  CAS  Google Scholar 

  395. Corell A, Morales P, Varela P et al. Allelic diversity at the primate major histocompatibility complex DRB6 locus. Immunogenetics 1992; 36: 404–5.

    PubMed  CAS  Google Scholar 

  396. Larhammar D, Servenius B, Rask L et al. Characterization of an HLA DR beta pseudogene. Proc Natl Acad Sci U S A 1985; 82: 1475–9.

    Article  PubMed  CAS  Google Scholar 

  397. Yasunaga S, Kimura A, Hamaguchi K et al. Different contribution of HLA-DR and -DQ genes in susceptibility and resistance to Insulin-dependant Diabetes Mellitus (IDDM). Tissue Antigens 1996; 47: 37–48.

    Article  PubMed  CAS  Google Scholar 

  398. Horn GT, Bugawan TL, Long CM et al. Allelic sequence variation of the HLADQ loci: relationship to serology and to insulin-dependent diabetes susceptibility. Proc Natl Acad Sci U S A 1988; 85: 6012–6.

    Article  PubMed  CAS  Google Scholar 

  399. Auffray C, Lillie JW, Arnot D et al. Isotypic and allotypic variation of human class II histocompatibility antigen alpha-chain genes. Nature 1984; 308: 327–33.

    Article  PubMed  CAS  Google Scholar 

  400. Fogdell A, Olerup O. The DQA1*0104 allele is carried by DRB1*1001- and DRB1*1401-positive haplotypes in Caucasians, Africans and Orientals. Tissue Antigens 1994; 44: 19–24.

    Article  PubMed  CAS  Google Scholar 

  401. Lee KW, Johnson AH, Hurley CK. New DQw1 diversity identified within DRw12 and DRw14 haplotypes. Tissue Antigens 1991; 38: 231–4.

    Article  PubMed  CAS  Google Scholar 

  402. Chang HC, Moriuchi T, Silver J. The heavy chain of human B-cell alloantigen HLA-DS has a variable N-terminal region and a constant immunoglobulin-like region. Nature 1983; 305: 813–5.

    Article  PubMed  CAS  Google Scholar 

  403. Auffray C, Korman AI, Roux Dosseto M et al. cDNA clone for the heavy chain of the human B cell alloantigen DC1: strong sequence homology to the HLA-DR heavy chain. Proc Natl Acad Sci U S A 1982; 79: 6337–41.

    Article  PubMed  CAS  Google Scholar 

  404. Jonsson AK, Hyldig Nielsen JJ, Servenius B et al. Class II genes of the human major histocompatibility complex. Comparisons of the DQ and DX alpha and beta genes. J Biol Chem 1987; 262: 8767–77.

    PubMed  CAS  Google Scholar 

  405. Bell JI, Todd JA, McDevitt HO. The molecular basis of HLA-disease association. Adv Hum Genet 1989; 18: 1–41.

    Article  PubMed  CAS  Google Scholar 

  406. Moriuchi J, Moriuchi T, Silver J. Nucleotide sequence of an HLA-DQ alpha chain derived from a DRw9 cell line: genetic and evolutionary implications. Proc Natl Acad Sci U S A 1985; 82: 3420–4.

    Article  PubMed  CAS  Google Scholar 

  407. Jonsson AK, Andersson L, Rask L. Complete sequences of DQA1 and DQB1 cDNA clones corresponding to the DQw4 specificities. Immunogenetics 1989; 30: 232–4.

    Article  PubMed  CAS  Google Scholar 

  408. Hurley CK, Gregersen P, Steiner N et al. Polymorphism of the HLA-D region in American blacks. A DR3 haplotype generated by recombination. J Immunol 1988; 140: 885–92.

    PubMed  CAS  Google Scholar 

  409. Schenning L, Larhammar D, Bill P et al. Both alpha and beta chains of HLA-DC class II histocompatibility antigens display extensive polymorphism in their amino-terminal domains. EMBO J 1984; 3: 447–52.

    PubMed  CAS  Google Scholar 

  410. Zimmerman PA, Phadke PM, Lee A et al. Migration of a novel DQA1* allele (DQA1*0502) from African origin to North and South America. Hum Immunol 1995; 42: 233–40.

    Article  PubMed  CAS  Google Scholar 

  411. Hall MA, Lanchbury JS, Lee JS et al. HLA-DQ2 second-domain polymorphisms may explain increased trans-associated risk in celiac disease and dermatitis herpetiformis. Hum Immunol 1993; 38: 284–92.

    Article  PubMed  CAS  Google Scholar 

  412. Boss JM, Strominger JL. Cloning and sequence analysis of the human major histocompatibility complex gene DC-3 beta. Proc Natl Acad Sci U S A 1984; 81: 5199–203.

    Article  PubMed  CAS  Google Scholar 

  413. Trachtenberg EA, Keyeux G, Bernal J et al. Results of Expedicion Humana. II. Analysis of HLA class II alleles in three African American populations from Colombia using the PCR/SSOP: Identification of a novel DQB*02 (*0203) allele. Tissue Antigens 1996; 48: 192–8.

    Article  PubMed  CAS  Google Scholar 

  414. Olerup O, Aldener-Cannava A, FogdellHahn A et al. DQB1*0202 and the new DQB1*0203 allele: A fourth pair of DQB1 alleles only differing at coding 57. Tissue Antigens 1997; 49: 271–3.

    Article  PubMed  CAS  Google Scholar 

  415. Michelsen B, Lernmark A. Molecular cloning of a polymorphic DNA endonuclease fragment associates insulin-dependent diabetes mellitus with HLA-DQ. J Clin Invest 1987; 79: 1144–52.

    Article  PubMed  CAS  Google Scholar 

  416. Larhammar D, Hyldig-Nielsen JJ, Servenius B et al. Exon-intron organization and complete nucleotide sequence of a human major histocompatibility antigen DC beta gene. Proc Natl Acad Sci U S A 1983; 80: 7313–7.

    Article  PubMed  CAS  Google Scholar 

  417. Briata P, Radka SF, Sartoris S et al. Alternative splicing of HLA-DQB transcripts and secretion of HLA-DQ beta-chain proteins: allelic polymorphism in splicing and polyadenylation sites. Proc Natl Acad Sci U S A 1989; 86: 1003–7.

    Article  PubMed  CAS  Google Scholar 

  418. Giorda R, Turco E, Trucco M. Full length beta chain cDNAs of DQw9 and DQw8 molecules encode proteins that differ only at amino acid 57. Immunogenetics 1991; 33: 404–8.

    Article  PubMed  CAS  Google Scholar 

  419. Tautz C, Zwollo P, Marsh DG et al. Sequence of a novel HLA-DQB1 allele. Immunogenetics 1992; 35: 42 1–4.

    Google Scholar 

  420. Fenske TS, Baxter-Lowe LA. Character ization of a novel DQB1 allele associated with HLA-DQw3: implications for oligotyping. Hum Immunol 1992; 33: 224–7.

    Article  PubMed  CAS  Google Scholar 

  421. Cucca F, Frau F, Lampis R et al. HLADQB1*0305 and -DQB1*0304 alleles among Sardinians. Evolutionary and practical implications for oligotyping. Hum Immunol 1994; 40: 143–9.

    Article  PubMed  CAS  Google Scholar 

  422. Cucca F, Muntoni F, Lampis R et al. A novel HLA-DQB1 allele: evidence for gene conversion event promoted by chi-like sequence at DQB1 locus. Tissue Antigens 1993; 41: 263–6.

    Article  PubMed  CAS  Google Scholar 

  423. Saito S, Ota S, Hashizume K et al. A new HLA-DQB1*0306 allele sharing DQB1 *03032 and DQB1*04 sequences. Tissue Antigens 1996; 48: 580–5.

    Article  PubMed  CAS  Google Scholar 

  424. Thye T, Muntau B, Stelma FE, Horst-mann RD. Novel allele DQB1*0307 in a West African family. [In Press] Tissue Antigens 1997.

    Google Scholar 

  425. Lee BS, Bell JI, Rust NA et al. Structural and functional variability among DQ beta alleles of DR2 subtypes. Immunogenetics 1987; 26: 85–91.

    Article  PubMed  CAS  Google Scholar 

  426. Wu SK, Lu D, Madden M et al. Full-length DQ beta cDNA sequences of HLA-DR2/DQw1 subtypes: genetic interactions between two DQ beta loci generate human class II HLA diversity. Hum Immunol 1990; 27: 305–22.

    Article  PubMed  CAS  Google Scholar 

  427. Scharf SJ, Freidmann A, Steinman L et al. Specific HLA-DQB and HLA-DRB1 alleles confer susceptibility to pemphigus vulgaris [published erratum appears in Proc Natl Acad Sci U S A 1989; 86:10023]. Proc Natl Acad Sci U S A 1989; 86: 6215–9.

    Article  PubMed  CAS  Google Scholar 

  428. Bugawan TL, Erlich HA. Rapid typing of HLA-DQB1 DNA polymorphism using nonradioactive oligonucleotide probes and amplified DNA. Immunogenetics 1991; 33: 163–70.

    Article  PubMed  CAS  Google Scholar 

  429. Tsukamoto K, Yasunami M, Kimura A et al. DQw1 beta gene from HLA-DR2Dw12 consists of six exons and expresses multiple DQw1 beta polypeptides through alternative splicing. Immunogenetics 1987; 25: 343–6.

    Article  PubMed  CAS  Google Scholar 

  430. Schranz P, Nessler G, Schindera F et al. Nucleotide sequence of the corrected DQB1*06011 allele. Tissue Antigens 1996; 48: 139–40.

    Article  PubMed  CAS  Google Scholar 

  431. Singal DP, Qiu X, Sood SK. Molecular analysis of novel HLA-DR2.DQw1 haplotypes in Asian Indians. Tissue Antigens 1992; 40: 104–7.

    Article  PubMed  CAS  Google Scholar 

  432. Turco E, Care A, Compagnone Post P et al. Allelic forms of the alpha-and beta-chain genes encoding DQwl-positive heterodimers. Immunogenetics 1987; 26: 282–90.

    Article  PubMed  CAS  Google Scholar 

  433. Fronek Z, Timmerman LA, McDevitt HO. A rare HLA DQB allele sequenced from patients with systemic lupus erythematosus. Hum Immunol 1991; 30: 77–84.

    Article  PubMed  CAS  Google Scholar 

  434. Meyer CG, Spauke D. DQB1*MDvR-I: a synonymous mutation at DQB1 codon 57 (DQB1*06052). Tissue Antigens 1994; 43: 314–5.

    Article  PubMed  CAS  Google Scholar 

  435. Meyer CG, Gallin M, Erttmann K et al. DQB1*WA1-a new DQB1 allele identified in West Africa. Tissue Antigens 1992; 39: 147–9.

    Article  PubMed  CAS  Google Scholar 

  436. Aldener A, Olerup O. Characterization of a novel DQB1 (DQB1*0609) allele by PCR amplification with sequence-specific primers (PCR-SSP) and nucleotide sequencing. Tissue Antigens 1993; 42: 536–8.

    Article  PubMed  CAS  Google Scholar 

  437. Mersch G, Semana G, De Canck I et al. Characterization of a new DQB1 allele (DQB1*0610) which differs from DQB1 *0602 at the highly polymorphic 57-codon. Tissue Antigens 1996; 48: 217–20.

    Article  PubMed  CAS  Google Scholar 

  438. Williams TM, Bassinger S, Moehlenkamp C et al. Strategy for distinguishing a new DQB1 allele (DQB1*0611) from the closely related DQB1*0602 allele via sequence specific PCR or direct DNA sequencing. Tissue Antigens 1996; 48: 143–7.

    Article  PubMed  CAS  Google Scholar 

  439. Vilches C, Garcia-Pacheco J, de Pablo R et al. Complete coding region of the HLA-DQB1*0612 allele, obtained by RTPCR. Tissue Antigens 1996; 48: 589–92.

    Article  PubMed  CAS  Google Scholar 

  440. Rozemuller EH, Bouwens AG, van Oort E et al. Sequencing-based typing reveals new insight in HLA-DPA1 polymorphism. Tissue Antigens 1995; 45: 57–62.

    Article  PubMed  CAS  Google Scholar 

  441. Gustafsson K, Widmark E, Jonsson AK et al. Class II genes of the human major histocompatibility complex. Evolution of the DP region as deduced from nucleotide sequences of the four genes. J Biol Chem 1987; 262: 8778–86.

    PubMed  CAS  Google Scholar 

  442. Trowsdale J, Young JA, Kelly AP et al. Structure, sequence and polymorphism in the HLA-D region. Immunol Rev 1985; 85: 5–43.

    Article  PubMed  CAS  Google Scholar 

  443. Lawrance SK, Das HK, Pan J et al. The genomic organisation and nucleotide sequence of the HLA-SB(DP) alpha gene. Nucleic Acids Res 1985; 13: 7515–28.

    Article  PubMed  CAS  Google Scholar 

  444. Bugawan TL, Horn GT, Long CM et al. Analysis of HLA-DP allelic sequence polymorphism using the in vitro enzymatic DNA amplification of DP-alpha and DP-beta loci. J Immunol 1988; 141: 4024–30.

    PubMed  CAS  Google Scholar 

  445. Okada K, Prentice HL, Boss JM et al. SB subregion of the human major histocompatibility complex: gene organization, allelic polymorphism and expression in transformed cells. EMBO J 1985; 4: 739–48.

    PubMed  CAS  Google Scholar 

  446. May J, Kretschmer C, Schnittger L et al. DPA1*0105, a novel DPA1-variant in a negroid population. Tissue Antigens 1996; 48: 593–4.

    Article  PubMed  CAS  Google Scholar 

  447. Meyer CG, May J, Spauke D et al. DPA1*02012: a DPA1*0201-related Mhc class II allele in west Africa. Immunogenetics 1994; 40: 309

    Article  PubMed  CAS  Google Scholar 

  448. Guethlein LA, Bias WB, Schmeckpeper BJ. New DP sequences: three DPA1 and one DPB1. Tissue Antigens 1993; 41: 269–72.

    Article  PubMed  CAS  Google Scholar 

  449. Harada H, Kimura A, Dong RP et al. Sequencing and population analysis of four novel HLA-DPA1 alleles. Hum Immunol 1992; 35: 173–8.

    Article  PubMed  CAS  Google Scholar 

  450. Muntau B, Thye T, Pirmez C, Horst-mann RD. A novel DPA1 allele (*0203) composed of known epitopes. [In Press] Tissue Antigens 1997.

    Google Scholar 

  451. Lee JS, Sartoris S, Briata P et al. Sequence polymorphism of HLA-DP beta chains. Immunogenetics 1989; 29: 346–9.

    Article  PubMed  CAS  Google Scholar 

  452. Korioth F, Hartung K, Deicher H et al. A new HLA-DPB1 allele from a patient with systemic lupus erythematosus. Tissue Antigens 1992; 39: 216–9.

    Article  PubMed  CAS  Google Scholar 

  453. Meyer CG, Schnittger L. A silent mutation in HLA-DPB1*0101 and its evolutionary implications. Hum Immunol 1993; 38: 123–6.

    Article  PubMed  CAS  Google Scholar 

  454. Kappes DJ, Arnot D, Okada K et al. Structure and polymorphism of the HLA class II SB light chain genes. EMBO J 1984; 3: 2985–93.

    PubMed  CAS  Google Scholar 

  455. Roux Dosseto M, Auffray C, Lillie JW et al. Genetic mapping of a human class II antigen beta-chain cDNA clone to the SB region of the HLA complex. Proc Natl Acad Sci U S A 1983; 80: 6036–40.

    Article  PubMed  CAS  Google Scholar 

  456. Schranz P, Renz M, Wojtzyk I et al. Nucleotide sequence of a new HLADPB1 allele, DPB1*02013. Immunogenetics 1996; 44: 159–60.

    Article  PubMed  CAS  Google Scholar 

  457. Kelly A, Trowsdale J. Complete nucleotide sequence of a functional HLA-DP beta gene and the region between the DP beta 1 and DP alpha 1 genes: comparison of the 5’ ends of HLA class II genes. Nucleic Acids Res 1985; 13: 1607–21.

    Article  PubMed  CAS  Google Scholar 

  458. Gustafsson K, Emmoth E, Widmark E et al. Isolation of a cDNA clone coding for an SB beta-chain. Nature 1984; 309: 768.

    Article  Google Scholar 

  459. Gorski J, Rollini P, Long E et al. Molecular organization of the HLA-SB region of the human major histocompatibility complex and evidence for two SB beta-chain genes. Proc Natl Acad Sci U S A 1984; 81: 3934–8.

    Article  PubMed  CAS  Google Scholar 

  460. Lair B, Alber C, Yu WY et al. A newly characterized HLA-DP beta-chain allele. Evidence for DP beta heterogeneity within the DPw4 specificity. J Immunol 1988; 141: 1353–7.

    PubMed  CAS  Google Scholar 

  461. Moonsamy PV, Aldrich CL, Petersdorf EW et al. Seven new DPBI alleles and their population distribution. Tissue Antigens 1994; 43: 249–52.

    Article  PubMed  CAS  Google Scholar 

  462. Bugawan TL, Angelini G, Larrick J et al. A combination of a particular HLA-DP beta allele and an HLA-DQ heterodimer confers susceptibility to coeliac disease. Nature 1989; 339: 470–3.

    Article  PubMed  CAS  Google Scholar 

  463. Begovich AB, Bugawan TL, Nepom BS et al. A specific HLA-DP beta allele is associated with pauciarticular juvenile rheumatoidarthritis but not adult rheumatoid arthritis. Proc Natl Acad Sci U S A 1989; 86: 9489–93.

    Article  PubMed  CAS  Google Scholar 

  464. Madsen HO, Ryder LP, Fugger L et al. New DPB1 alleles. Tissue Antigens 1992; 39: 102–3.

    Article  PubMed  CAS  Google Scholar 

  465. Savage DA, Middleton D, Trainor F et al. Frequency of HLA-DPB1 alleles, including a novel DPB1 sequence, in the Northern Ireland population. Hum Immunol 1992; 33: 235–42.

    Article  PubMed  CAS  Google Scholar 

  466. de Koster HS, Kenter MJ, D’Amaro J et al. Positive correlation between oligonucleotide typing and T-cell recognition of HLA-DP molecules. Immunogenetics 1991; 34: 12–22.

    Article  PubMed  Google Scholar 

  467. Hessner MJ, Baxter-Lowe LA. Characterization of novel HLA-DPB1 alleles by oligotyping and nucleotide sequencing. Tissue Antigens 1992; 40: 261–3.

    Article  PubMed  CAS  Google Scholar 

  468. Dekker JW, Croft L, Easteal S. Nucleotide sequence of a novel HLA-DPB1 allele. Immunogenetics 1992; 36: 341–3.

    Article  PubMed  CAS  Google Scholar 

  469. Moonsamy PV, Suraj VC, Bugawan TL et al. Genetic diversity within the HLA class II region: ten new DPB1 alleles and their population distribution. Tissue Antigens 1992; 40: 153–7.

    PubMed  CAS  Google Scholar 

  470. Gao X, Veale A, Serjeantson S. AB1: a novel HLA-DPB1 allele found in one third of an Australian population. Immunogenetics 1992; 36: 64–6.

    Article  PubMed  CAS  Google Scholar 

  471. Eiermann TH, Uhl S, Fakler J et al. A novel HLA-DPBI sequence, DPBI*2301. Tissue Antigens 1992; 40: 108–10.

    Article  PubMed  CAS  Google Scholar 

  472. Meyer CG, Schnittger L, Gallin M et al. DPBI*WA2 and DPB1*WA3-novel West African HLA DPBI alleles closely related to the allele DPBI*0101 common in negroid populations. Tissue Antigens 1992; 39: 144–6.

    Article  PubMed  CAS  Google Scholar 

  473. Meyer CG, Spauke D, Schnittger L. MHC class II DPB1*26012: a novel DPB1 sequence and its presumed origin. Tissue Antigens 1994; 43: 324–6.

    Article  PubMed  CAS  Google Scholar 

  474. Easteal S, Croft L. Two new HLA-DPB1 alleles from Java, Indonesia [published erratum appears in Immunogenetics 1994; 39:160]. Immunogenetics 1993; 37: 478

    Article  PubMed  CAS  Google Scholar 

  475. Easteal S, Grooms A, Croft L. A second new HLA-DPB1 allele from Santa Cruz Island, Solomon Islands. Immunogenetics 1993; 38: 79.

    Article  PubMed  CAS  Google Scholar 

  476. Ogawa K, Itho H, Nakajyo S et al. A novel HLA-DPBI allele, DPBI*3601 (DPB1*KT). Tissue Antigens 1994; 44: 134–6.

    Article  PubMed  CAS  Google Scholar 

  477. Mitsunaga S, Kuwata S, Tokunaga K et al. Family study on HLA-DPB1 polymorphism: linkage analysis with HLA-DR/ DQ and two “new” alleles. Hum Immunol 1992; 34: 203–11.

    Article  PubMed  CAS  Google Scholar 

  478. Meyer CG, Schnittger L, Begovich AB et al. DPB1*WA4-an additional HLA class II allele identified in west Africa. Tissue Antigens 1992; 40: 98–9.

    Article  PubMed  CAS  Google Scholar 

  479. Mizuki N, Ohno S, Sugimura K et al. Identification of a new HLA-DPB1 allele detected by PCR-RFLP and its nucleotide sequence determination by direct sequencing after PCR amplification. Tissue Antigens 1993; 41: 259–62.

    Article  PubMed  CAS  Google Scholar 

  480. Easteal S, Croft L. A new HLA-DPB1 allele from the Santa Cruz Islands, Solomon Islands. Immunogenetics 1993; 38: 78.

    Article  PubMed  CAS  Google Scholar 

  481. de Vries N, Meijerink JP, Tijssen H et al. A novel HLA-DPB1 allele (DPB1 *4501) in a Dutch Caucasian healthy control. Tissue Antigens 1993; 41: 255–8.

    Article  PubMed  Google Scholar 

  482. Rani R, Fernandez-Vina MA, Zhang S et al. HLA-DPB1 alleles in a population from north India and description of a new variant (DPB1*5601). Tissue Antigens 1995; 45: 264–9.

    Article  PubMed  CAS  Google Scholar 

  483. Koshizaka T, Taguchi M, Onishi H et al. A new HLA-DPB1 allele, DPBI*SUT (DPB1*4701). Tissue Antigens 1994; 43: 50–3.

    Article  PubMed  CAS  Google Scholar 

  484. Mitsunaga S, Shinno K, Maruya E et al. Nucleotide sequence of a novel DPB1 allele, DPB1*4701. Hum Immunol 1993; 37: 198–200.

    Article  PubMed  CAS  Google Scholar 

  485. Kaneshige T, Kinoshita T, Hashimoto M et al. Direct sequencing of a novel DPBI allele (DPB1*5101) of the heterozygote from the membrane of reverse dot blot analysis. Tissue Antigens 1994; 44: 204–7.

    Article  PubMed  CAS  Google Scholar 

  486. Argyris EG, Gibson CF, Cizman B et al. Identification of a new HLA-DPB1 allele (DPB1*5101) by oligotyping and nucleotide sequencing. Immunogenetics 1994; 40: 164.

    Article  PubMed  CAS  Google Scholar 

  487. Schnittger L, Aldrich C, Spauke D et al. DPB1*5101-a novel DPBI*0402-related allele in west Africa affects DPB1 genotyping. Tissue Antigens 1994; 44: 59–62.

    Article  PubMed  CAS  Google Scholar 

  488. Mersch G, Mytilineos J, De Canck I et al. Characterization of a new DPB1 allele (DPBI*5701) isolated from a Caucasian individual. Tissue Antigens 1995; 46: 208–12.

    Article  PubMed  CAS  Google Scholar 

  489. Versluis LF, Daly LN, Degli-Eposti MA et al. Identification of the novel HLADPBI*5801 allele detected by sequenced based typing. Immunogenetics 1995; 41: 173.

    Article  PubMed  CAS  Google Scholar 

  490. Naughton Ml, Limm TM, Ashdown ML et al. DPB1 locus PCR-RFLP typing of the fourth Asia-Oceania histocompatibility workshop cell panel reveals a novel DPB1 allele. Eur J Immunogenetics 1994; 21: 351–64.

    Article  Google Scholar 

  491. Noble JA, Cavalli AS, Erlich HA. DPB1 *5901: A novel HLA-DPBI allele from a caucasian IDDM family. Tissue Antigens 1996; 47: 159–62.

    Article  PubMed  CAS  Google Scholar 

  492. Noreen H, Steiner L, Davidson M et al. Six new DPB1 alleles identified in a study of 1,302 unrelated bone marrow donor-recipient pairs. Tissue Antigens 1997; 49: 512–6.

    Article  PubMed  CAS  Google Scholar 

  493. Zimmermann PA, Steiner LL, Titanji VPK et al. Three new DPB1 alleles identified in a Bantu-speaking population in central Cameroon. Tissue Antigens 1996; 47: 293–9.

    Article  Google Scholar 

  494. Steiner LL, McCurdy DK, Cavalli A et al. Two new DPB1 alleles identified in a study of the genetics of susceptibility to pauciarticular juvenile rheumatoid arthritis. Tissue Antigens 1997; 49 Part 1: 262–6.

    Google Scholar 

  495. Versluis LF, Phillipe M, van den Zwan A et al. Identification of a new HLADPB1*6501 allele in a Caucasian individual. Immunogenetics 1996; 44: 483–4.

    Article  PubMed  CAS  Google Scholar 

  496. Schnittger L, May J, Kretschmer C et al. DPB1*BR-an MHC class II DPB1 allele (DPB1*6601) of negroid origin. Immunogenetics 1996; 44: 405–6.

    PubMed  CAS  Google Scholar 

  497. Meyer CG, May J, Simon C et al. DPB1 *TF, a novel HLA class II DPB1 allele identified in a Turkish family. Tissue Antigens 1996; 48: 231–2.

    Article  PubMed  CAS  Google Scholar 

  498. Cresswell P, Androlewicz MJ, Ortmann B. Assembly and transport of class I MHC-peptide complexes. Ciba Found Symp 1994; 187: 150–69.

    PubMed  CAS  Google Scholar 

  499. Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 1991; 219: 277–319.

    Article  PubMed  CAS  Google Scholar 

  500. Hughes AL, Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 1988; 335: 167–70.

    Article  PubMed  CAS  Google Scholar 

  501. Hughes AL, Nei M. Maintenance of MHC polymorphism. Nature 1992; 355: 402–3.

    Article  PubMed  CAS  Google Scholar 

  502. Hughes AL, Nei M. Evolutionary relationships of the classes of major histocompatibility complex genes. Immunogenetics 1993; 37: 337–46.

    Article  PubMed  CAS  Google Scholar 

  503. Hughes AL, Nei M. Models of host-parasite interaction and MHC polymorphism. Genetics 1992; 132: 863–4.

    PubMed  CAS  Google Scholar 

  504. Wakeland EK, Boehme S, She JX. The generation and maintenance of MHC class II gene polymorphism in rodents. Immunol Rev 1990; 113: 207–26.

    Article  PubMed  CAS  Google Scholar 

  505. Okada K, Boss JM, Prentice H et al. Gene organization of DC and DX subregions of the human major histocompatibility complex. Proc Natl Acad Sci U S A 1985; 82: 3410–4.

    Article  PubMed  CAS  Google Scholar 

  506. Lawlor DA, Zemmour J, Ennis PD et al. Evolution of class-I MHC genes and proteins: from natural selection to thymic selection. Annu Rev Immunol 1990; 8: 23–63.

    Article  PubMed  CAS  Google Scholar 

  507. Riley EM, Olerup O, Bennett S et al. MHC and malaria: the relationship between HLA class II alleles and immune responses to Plasmodium falciparum. Int Immunol 1992; 4: 1055–63.

    Article  PubMed  CAS  Google Scholar 

  508. Hill AV. Genetic susceptibility to malaria and other infectious diseases: from the MHC to the whole genome. Parasitology 1996; 112 Suppl:s75–84.

    Google Scholar 

  509. Riley EM. The role of MHC- and nonMHC-associated genes in determining the human immune response to malaria antigens. Parasitology 1996; 112 Suppl:s39–51.

    Google Scholar 

  510. Klein J. Origin of major histocompatibility complex polymorphism: the trans-species hypothesis. Hum Immunol 1987; 19: 155–62.

    Article  PubMed  CAS  Google Scholar 

  511. Ciccone E, Colonna M, Viale O et al. Susceptibility or resistance to lysis by alloreactive natural killer cells is governed by a gene in the human major histocompatibility complex between BF and HLAB [published erratum appears in Proc Natl Acad Sci USA 1991; 88: 5477]. Proc Natl Acad Sci USA 1990; 87: 9794–7.

    PubMed  CAS  Google Scholar 

  512. Grossberger D, Hein W, Marcuz A. Class I major histocompatibility complex cDNA clones from sheep thymus: alternative splicing could make a long cytoplasmic tail. Immunogenetics 1990; 32: 77–87.

    Article  PubMed  CAS  Google Scholar 

  513. Salter-Cid L, Flajnik MF. Evolution and developmental regulation of the major histocompatibility complex. Crit Rev Immunol 1995; 15: 31–75.

    Article  PubMed  CAS  Google Scholar 

  514. Bjorkman PJ, Parham P. Structure, function, and diversity of class I major histocompatibility complex molecules. Annu Rev Biochem 1990; 59: 253–88.

    Article  PubMed  CAS  Google Scholar 

  515. Geraghty DE, Koller BH, Hansen JA et al. The HLA class I gene family includes at least six genes and twelve pseudogenes and gene fragments. J Immunol 1992; 149: 1934–46.

    PubMed  CAS  Google Scholar 

  516. Houlihan JM, Biro PA, Fergar Payne A et al. Evidence for the expression of nonHLA-A,-B,-C class I genes in the human fetal liver. J Immunol 1992; 149: 668–75.

    PubMed  CAS  Google Scholar 

  517. Koller BH, Geraghty DE, DeMars R et al. Chromosomal organization of the human major histocompatibility complex class I gene family [published erratum appears in J Exp Med 1989; 169:1517]. J Exp Med 1989; 169: 469–80.

    CAS  Google Scholar 

  518. el Kahloun A, Vernet C, Jouanolle AM et al. A continuous restriction map from HLA-E to HLA-F. Structural comparison between different HLA-A haplotypes. Immunogenetics 1992; 35: 183–9.

    Article  PubMed  Google Scholar 

  519. Shawar SM, Vyas JM, Rodgers JR et al. Antigen presentation by major histocompatibility complex class I-B molecules. Annu Rev Immunol 1994; 12: 839–80.

    Article  PubMed  CAS  Google Scholar 

  520. Bahram S, Bresnahan M, Geraghty DE et al. A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 1994; 91: 6259–63.

    Article  PubMed  CAS  Google Scholar 

  521. Geraghty DE, Wei XH, Orr HT et al. Human leukocyte antigen F (HLA-F). An expressed HLA gene composed of a class I coding sequence linked to a novel transcribed repetitive element. J Exp Med 1990; 171: 1–18.

    Article  PubMed  CAS  Google Scholar 

  522. Koller BH, Geraghty DE, Shimizu Y et al. HLA-E. A novel HLA class I gene expressed in resting T lymphocytes. J Immunol 1988; 141: 897–904.

    PubMed  CAS  Google Scholar 

  523. Ulbrecht M, Kellermann J, Johnson JP et al. Impaired intracellular transport and cell surface expression of nonpolymorphic HLA-E: evidence for inefficient peptide binding. J Exp Med 1992; 176: 1083–90.

    Article  PubMed  CAS  Google Scholar 

  524. Bahram S, Arnold D, Bresnahan M et al. Two putative subunits of a peptide pump encoded in the human major histocom- patibility complex class II region. Proc Natl Acad Sci U S A 1991; 88: 10094–8.

    Article  PubMed  CAS  Google Scholar 

  525. Bahram S, Mizuki N, Inoko H et al. Nucleotide sequence of the human MHC class I MICA gene. Immunogenetics 1996; 44: 80–1.

    Article  PubMed  CAS  Google Scholar 

  526. Bahram S, Spies T. Nucleotide sequence of a human MHC class I MICB cDNA. Immunogenetics 1996; 43: 230–3.

    PubMed  CAS  Google Scholar 

  527. Malissen M, Malissen B, Jordan BR. Exon/intron organization and complete nucleotide sequence of an HLA gene. Proc Natl Acad Sci U S A 1982; 79: 893–7.

    Article  PubMed  CAS  Google Scholar 

  528. Fodil N, Laloux L, Wanner V et al. Allelic repertoire of the human MHC class I MICA gene. Immunogenetics 1996; 44: 351–7.

    Article  PubMed  CAS  Google Scholar 

  529. Pham Dinh D, Jones EP, Pitiot G et al. Physical mapping of the human and mouse MOG gene at the distal end of the MHC class Ib region. Immunogenetics 1995; 42: 386–91.

    Article  PubMed  CAS  Google Scholar 

  530. Pham Dinh D, Mattei MG, Nussbaum JL et al. Myelin/oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex. Proc Natl Acad Sci U S A 1993; 90: 7990–4.

    Article  PubMed  CAS  Google Scholar 

  531. Steinman L. Connections between the immune system and the nervous system. Proc Natl Acad Sci USA 1993; 90: 7912–4.

    Article  PubMed  CAS  Google Scholar 

  532. Gardinier MV, Amiguet P, Linington C et al. Myelin/oligodendrocyte glycoprotein is a unique member of the immunoglobulin superfamily. J Neurosci Res 1992; 33: 177–87.

    Article  PubMed  CAS  Google Scholar 

  533. Roth MP, Malfroy L, Offer C et al. The human myelin oligodendrocyte glycoprotein (MOG) gene: complete nucleotide sequence and structural characterization. Genomics 1995; 28: 241–50.

    Article  PubMed  CAS  Google Scholar 

  534. Guillemot F, Billault A, Auffray C. Physical linkage of a guanine nucleotide-binding protein-related gene to the chicken major histocompatibility complex. Proc Natl Acad Sci U S A 1989; 86: 4594–8.

    Article  PubMed  CAS  Google Scholar 

  535. Kaufman J, Salomonsen J, Skjodt K. BG cDNA clones have multiple small repeats and hybridize to both chicken MHC regions. Immunogenetics 1989; 30: 440–5 1.

    Google Scholar 

  536. Kaufman J, Salomonsen J. B-G: we know what it is, but what does it do? Immunol Today 1992; 13: 1–3.

    Article  PubMed  CAS  Google Scholar 

  537. Kaufman J, Skjodt K, Salomonsen J. The B-G multigene family of the chicken major histocompatibility complex. Crit Rev Immunol 1991; 11: 113–43.

    PubMed  CAS  Google Scholar 

  538. Vernet C, Ribouchon MT, Chimini G et al. Structure and evolution of a member of a new subfamily of GTP-binding proteins mapping to the human MHC class I region. Mamm Genome 1994; 5: 100–5.

    Article  PubMed  CAS  Google Scholar 

  539. Guillaudeux T, Mattei MG, Depetris D et al. In situ hybridization localizes the human OTF3 to chromosome 6p21.3-p22 and OTF3L to 12p13. Cytogenet Cell Genet 1993; 63: 212–4.

    Article  PubMed  CAS  Google Scholar 

  540. Crouau Roy B, Amadou C, Bouissou C et al. Localization of the OTF3 gene within the human MHC class I region by physical and meiotic mapping. Genomics 1994; 21: 241–3.

    Article  PubMed  CAS  Google Scholar 

  541. Wei H, Fan WF, Xu H et al. Genes in one megabase of the HLA class I region. Proc Natl Acad Sci USA 1993; 90: 11870–4.

    Article  PubMed  CAS  Google Scholar 

  542. Chu TW, Capossela A, Coleman R et al. Cloning of a new “finger” protein gene (ZNF173) within the class I region of the human MHC. Genomics 1995; 29: 229–39.

    Article  PubMed  CAS  Google Scholar 

  543. el Kahloun A, Chauvel B, Mauvieux V et al. Localization of seven new genes around the HLA-A locus. Hum Mol Genet 1993; 2: 55–60.

    Article  PubMed  Google Scholar 

  544. Goei VL, Parimoo S, Capossela A et al. Isolation of novel non-HLA gene fragments from the hemochromatosis region (6p21.3) by cDNA hybridization selection. Am J Hum Genet 1994; 54: 244–51.

    PubMed  CAS  Google Scholar 

  545. Chien YH, Davis MM. How alpha beta T-cell receptors `see’ peptide/MHC complexes. Immunol Today 1993; 14: 597–602.

    Article  PubMed  CAS  Google Scholar 

  546. David-Watine B, Israel A, Kourilsky P. The regulation and expression of MHC class I genes. Immunol Today 1990; 11: 286–92.

    Article  PubMed  CAS  Google Scholar 

  547. Ting JP, Baldwin AS. Regulation of MHC gene expression. Curr Opin Immunol 1993; 5: 8–16.

    Article  PubMed  CAS  Google Scholar 

  548. Tatake RJ, Zeff RA. Regulated expression of the major histocompatibility complex class I genes. Proc Soc Exp Biol Med 1993; 203: 405–17.

    Article  PubMed  CAS  Google Scholar 

  549. Benoist C, Mathis D. Regulation of major histocompatibility complex class-II genes: X, Y and other letters of the alphabet. Annu Rev Immunol 1990; 8: 681–715.

    Article  PubMed  CAS  Google Scholar 

  550. Glimcher LH, Kara CJ. Sequences and factors: a guide to MHC class-II transcription. Annu Rev Immunol 1992; 10: 13–49.

    Article  PubMed  CAS  Google Scholar 

  551. Kara CJ, Liou HC, Ivashkiv LB et al. A cDNA for a human cyclic AMP response element-binding protein which is distinct from CREB and expressed preferentially in brain. Mol Cell Biol 1990; 10: 1347–57.

    PubMed  CAS  Google Scholar 

  552. Dey A, Thornton AM, Lonergan M et al. Occupancy of upstream regulatory sites in vivo coincides with major histocompatibility complex class I gene expression in mouse tissues. Mol Cell Biol 1992; 12: 3590–9.

    PubMed  CAS  Google Scholar 

  553. Miyazaki J, Appella E, Ozato K. Negative regulation of the major histocompatibility class I gene in undifferentiated embryonal carcinoma cells. Proc Nati Acad Sci U S A 1986; 83: 9537–41.

    Article  CAS  Google Scholar 

  554. Flanagan JR, Murata M, Burke PA et al. Negative regulation of the major histocompatibility complex class I promoter in embryonal carcinoma cells. Proc Natl Acad Sci U S A 1991; 88: 3145–9.

    Article  PubMed  CAS  Google Scholar 

  555. Ehrlich R, Maguire JE, Singer DS. Identification of negative and positive regulatory elements associated with a class I major histocompatibility complex gene. Mol Cell Biol 1988; 8: 695–703.

    PubMed  CAS  Google Scholar 

  556. Katoh S, Ozawa K, Kondoh S et al. Identification of sequences responsible for positive and negative regulation by E1A in the promoter of H-2Kbm’ class I MHC gene. EMBO J 1990; 9: 127–35.

    PubMed  CAS  Google Scholar 

  557. Nagata T, Segars JH, Levi BZ et al. Retinoic acid-dependent transactivation of major histocompatibility complex class I promoters by the nuclear hormone receptor H-2RIIBP in undifferentiated embryonal carcinoma cells. Proc Natl Acad Sci U S A 1992; 89: 937–41.

    Article  PubMed  CAS  Google Scholar 

  558. Marks MS, Hallenbeck PL, Nagata T et al. H-2RIIBP (RXR beta) heterodimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J 1992; 11: 1419–35.

    PubMed  CAS  Google Scholar 

  559. Hamada K, Gleason SL, Levi BZ et al. H2RIIBP, a member of the nuclear hormone receptor superfamily that binds to both the regulatory element of major histocompatibility class I genes and the estrogen response element. Proc Natl Acad Sci U S A 1989; 86: 8289–93.

    Article  PubMed  CAS  Google Scholar 

  560. Sugita K, Miyazaki J, Appella E et al. Interferons increase transcription of a major histocompatibility class I gene via a 5’ interferon consensus sequence. Mol Cell Biol 1987; 7: 2625–30.

    PubMed  CAS  Google Scholar 

  561. Korber B, Hood L, Stroynowski I. Regulation of murine class I genes by inter-ferons is controlled by regions located both 5’ and 3’ to the transcription initiation site. Proc Natl Acad Sci U S A 1987; 84: 3380–4.

    Article  PubMed  CAS  Google Scholar 

  562. Bikoff EK, Jaffe L, Ribaudo RK et al. MHC class I surface expression in embryo-derived cell lines inducible with peptide or interferon. Nature 1991; 354: 235–8.

    Article  PubMed  CAS  Google Scholar 

  563. Trowsdale J, Hanson I, Mockridge I et al. Sequences encoded in the class II region of the MHC related to the `ABC’ superfamily of transporters. Nature 1990; 348: 741–4.

    Article  PubMed  CAS  Google Scholar 

  564. Goldberg AL, Rock KL. Proteolysis, proteasomes and antigen presentation. Nature 1992; 357: 375–9.

    Google Scholar 

  565. Wan YJ, Orrison BM, Lieberman R et al. Induction of major histocompatibility class I antigens by interferons in undifferentiated F9 cells. J Cell Physiol 1987; 130: 276–83.

    Article  PubMed  CAS  Google Scholar 

  566. Hanson I, Ragoussis J, Trowsdale J. Organization of the human HLA-class-II region. Int J Cancer Suppl 1991; 6: 18–9.

    Article  PubMed  CAS  Google Scholar 

  567. Hanson IM, Poustka A, Trowsdale J. New genes in the class II region of the human major histocompatibility complex. Genomics 1991; 10: 417–24.

    Article  PubMed  CAS  Google Scholar 

  568. Howard JC. Supply and transport of peptides presented by class I MHC molecules. Curr Opin Immunol 1995; 7: 69–76.

    Article  PubMed  CAS  Google Scholar 

  569. Klein D, Ono H, O’hUigin C et al. Extensive MHC variability in cichlid fishes of Lake Malawi. Nature 1993; 364: 330–4.

    Article  PubMed  CAS  Google Scholar 

  570. Trowsdale J. “Both man and bird and beast”: comparative organization of MHC genes. Immunogenetics 1995; 41:1–17.

    Google Scholar 

  571. Stern LJ, Brown JH, Jardetzky TS et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994; 368: 215–21.

    Article  PubMed  CAS  Google Scholar 

  572. Campbell RD, Trowsdale J. Map of the human MHC. Immunol Today 1993; 14: 349–52.

    Article  PubMed  CAS  Google Scholar 

  573. Boss JM, Mengler R, Okada K et al. Sequence analysis of the human major histocompatibility gene SX alpha. Mol Cell Biol 1985; 5: 2677–83.

    PubMed  CAS  Google Scholar 

  574. Servenius B, Gustafsson K, Widmark E et al. Molecular map of the human HLASB (HLA-DP) region and sequence of an SB alpha (DP alpha) pseudogene. EMBO J 1984; 3: 3209–14.

    PubMed  CAS  Google Scholar 

  575. Young JA, Trowsdale J. A processed pseudogene in an intron of the HLA-DP beta 1 chain gene is a member of the ribosomal protein L32 gene family. Nucleic Acids Res 1985; 13: 8883–91.

    Article  PubMed  CAS  Google Scholar 

  576. Young JA, Trowsdale J. The HLA-DNA (DZA) gene is correctly expressed as a 1.1 kb mature mRNA transcript. Immunogenetics 1990; 31: 386–8.

    Article  PubMed  CAS  Google Scholar 

  577. Karlsson L, Peterson PA. The alpha chain gene of H-20 has an unexpected location in the major histocompatibility complex. J Exp Med 1992; 176: 477–83.

    Article  PubMed  CAS  Google Scholar 

  578. Karlsson L, Surh CD, Sprent J et al. A novel class II MHC molecule with unusual tissue distribution. Nature 1991; 351: 485–8.

    Article  PubMed  CAS  Google Scholar 

  579. Trowsdale J, Kelly A. The human HLA class II alpha chain gene DZ alpha is distinct from genes in the DP, DQ and DR subregions. EMBO J 1985; 4: 2231–7.

    PubMed  CAS  Google Scholar 

  580. Kelly AP, Monaco JJ, Cho SG et al. A new human HLA class II-related locus, DM. Nature 1991; 353: 571–3.

    Article  PubMed  CAS  Google Scholar 

  581. Shaman J, von Scheven E, Morris P et al. Analysis of HLA-DMB mutants and -DMB genomic structure. Immunogenetics 1995; 41: 117–24.

    Article  PubMed  CAS  Google Scholar 

  582. Radley E, Alderton RP, Kelly A et al. Genomic organization of HLA-DMA and HLA-DMB. Comparison of the gene organization of all six class II families in the human major histocompatibility complex. J Biol Chem 1994; 269: 18834–8.

    PubMed  CAS  Google Scholar 

  583. Carrington M, Yeager M, Mann D. Characterization of HLA-DMB polymorphism. Immunogenetics 1993; 38: 446–9.

    Article  PubMed  CAS  Google Scholar 

  584. Sanderson F, Powis SH, Kelly AP et al. Limited polymorphism in HLA-DM does not involve the peptide binding groove. Immunogenetics 1994; 39: 56–8.

    Article  PubMed  CAS  Google Scholar 

  585. Kern I, Steimle V, Siegrist CA et al. The two novel MHC class II transactivators RFX5 and CIITA both control expression of HLA-DM genes. Int Immunol 1995; 7: 1295–9.

    Article  PubMed  CAS  Google Scholar 

  586. Chang CH, Flavell RA. Class II trans-activator regulates the expression of multiple genes involved in antigen presentation. J Exp Med 1995; 181: 765–7.

    Article  PubMed  CAS  Google Scholar 

  587. Kropshofer H, Hämmerling GJ, Vogt AB. How HLA-DM edits the MHC class II peptide repertoire: survival of the fittest? Immunol Today 1997; 18: 77–82.

    Article  PubMed  CAS  Google Scholar 

  588. Cho S, Attaya M, Brown MG et al. A cluster of transcribed sequences between the Pb and Ob genes of the murine major histocompatibility complex. Proc Natl Acad Sci U S A 1991; 88: 5197–201.

    Article  PubMed  CAS  Google Scholar 

  589. Hermel E, Yuan J, Monaco JJ. Characterization of polymorphism within the H2-M MHC class II loci. Immunogenetics 1995; 42: 136–42.

    PubMed  CAS  Google Scholar 

  590. Walter W, Loos M, Maeurer MJ. H2-M polymorphism in mice susceptible to collagen-induced arthritis involves the peptide binding groove. Immunogenetics 1996; 44: 19–26.

    PubMed  CAS  Google Scholar 

  591. Hermel E, Monaco JJ. RT1.DMa and RT1.DMb: the rat homologues of H2DMa and H2-DMb. Immunogenetics 1995; 42: 446–7.

    PubMed  CAS  Google Scholar 

  592. Beck S, Hanson I, Kelly A et al. A homologue of the Drosophila female sterile homeotic (fsh) gene in the class II region of the human MHC. DNA Seq 1992; 2: 203–10.

    PubMed  CAS  Google Scholar 

  593. Salter-Cid L, Du Pasquier L, Flajnik M. RING3 is linked to the Xenopus major histocompatibility complex. Immunogenetics 1996; 44: 397–9.

    PubMed  CAS  Google Scholar 

  594. Beck S, Kelly A, Radley E et al. DNA sequence analysis of 66 kb of the human MHC class II region encoding a cluster of genes for antigen processing. J Mol Biol 1992; 228: 433–41.

    Article  PubMed  CAS  Google Scholar 

  595. Glynne R, Powis SH, Beck S et al. A proteasome-related gene between the two ABC transporter loci in the class II region of the human MHC. Nature 1991; 353: 357–60.

    Article  PubMed  CAS  Google Scholar 

  596. Monaco JJ. Genes in the MHC that may affect antigen processing. Curr Opin Immunol 1992; 4: 70–3.

    Article  Google Scholar 

  597. Martinez CK, Monaco JJ. Post-translational processing of a major histocompatibility complex-encoded proteasome subunit, LMP-2. Mol Immunol 1993; 30: 1177–83.

    Article  PubMed  CAS  Google Scholar 

  598. Kelly A, Powis SH, Glynne R et al. Second proteasome-related gene in the human MHC class II region. Nature 1991; 353: 667–8.

    Article  PubMed  CAS  Google Scholar 

  599. Glynne R, Kerr LA, Mockridge I et al. The major histocompatibility complex-encoded proteasome component LMP7: alternative first exons and post-translational processing. Eur J Immunol 1993; 23: 860–6.

    Article  PubMed  CAS  Google Scholar 

  600. Powis SH, Tonks S, Mockridge I et al. Alleles and haplotypes of the MHC-encoded ABC transporters TAPI and TAP2 [published erratum appears in Immunogenetics 1993; 37: 480]. Immunogenetics 1993; 37: 373–80.

    CAS  Google Scholar 

  601. Powis SH, Mockridge I, Kelly A et al. Polymorphism in a second ABC transporter gene located within the class II region of the human major histocompatibility complex. Proc Natl Acad Sci U S A 1992; 89: 1463–7.

    Article  PubMed  CAS  Google Scholar 

  602. Belich MP, Glynne RJ, Senger G et al. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol 1994; 4: 769–76.

    Article  PubMed  CAS  Google Scholar 

  603. Carrington M, Colonna M, Spies T et al. Haplotypic variation of the transporter associated with antigen processing (TAP) genes and their extension of HLA class II region haplotypes. Immunogenetics 1993; 37: 266–73.

    Article  PubMed  CAS  Google Scholar 

  604. Cerundolo V, Kelly A, Elliott T et al. Genes encoded in the major histocompatibility complex affecting the generation of peptides for TAP transport [published erratum appears in Eur J Immunol 1995; 25:1485]. Eur J Immunol 1995; 25: 554–62.

    CAS  Google Scholar 

  605. Kelly A, Powis SH, Kerr LA et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 1992; 355: 641–4.

    Article  PubMed  CAS  Google Scholar 

  606. Belich MP, Trowsdale J. Proteasome and class I antigen processing and presentation. Mol Biol Rep 1995; 21: 53–6.

    Article  PubMed  CAS  Google Scholar 

  607. Martinez CK, Monaco JJ. Homology of proteasome subunits to a major histocompatibility complex-linked LMP gene. Nature 1991; 353: 664–7.

    Article  PubMed  CAS  Google Scholar 

  608. Zhou P, Zanelli E, Smart M et al. Genomic organization and tissue expression of mouse proteasome gene Lmp-2. Genomics 1993; 16: 664–8.

    Article  PubMed  CAS  Google Scholar 

  609. Zanelli E, Zhou P, Cao H et al. Genetic polymorphism of the mouse major histocompatibility complex-associated proteasome subunit Lmp7. Immunogenetics 1995; 41: 251–4.

    Article  PubMed  CAS  Google Scholar 

  610. Spies T, Bresnahan M, Bahram S et al. A gene in the human major histocompatibility complex class II region controlling the class I antigen presentation pathway. Nature 1990; 348: 744–7.

    Article  PubMed  CAS  Google Scholar 

  611. Monaco JJ, Cho S, Attaya M. Transport protein genes in the murine MHC: possible implications for antigen processing. Science 1990; 250: 1723–6.

    Article  PubMed  CAS  Google Scholar 

  612. Androlewicz MJ, Cresswell P. How selective is the transporter associated with antigen processing? Immunity 1996; 5: 1–5.

    Article  PubMed  CAS  Google Scholar 

  613. Momburg F, Roelse J, Hammerling GI et al. Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J Exp Med 1994; 179: 1613–23.

    Article  PubMed  CAS  Google Scholar 

  614. Momburg F, Roelse J, Howard JC et al. Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 1994; 367: 648–51.

    Article  PubMed  CAS  Google Scholar 

  615. Attaya M, Jameson S, Martinez CK et al. Ham-2 corrects the class I antigen-processing defect in RMA-S cells. Nature 1992; 355: 647–9.

    Article  PubMed  CAS  Google Scholar 

  616. Fruh K, Gossen M, Wang K et al. Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J 1994; 13: 3236–44.

    PubMed  CAS  Google Scholar 

  617. Akiyama K, Yokota K, Kagawa S et al. cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y. Science 1994; 265: 1231–4.

    Article  PubMed  CAS  Google Scholar 

  618. Daar AS, Fuggle SV, Fabre JW et al. The detailed distribution of MHC Class II antigens in normal human organs. Transplantation 1984; 38: 293–8.

    Article  PubMed  CAS  Google Scholar 

  619. Seidl C, Saraiya C, Osterweil Z et al. Genetic complexity of regulatory mutants defective for HLA class II gene expression. J Immunol 1992; 148: 1576–84.

    PubMed  CAS  Google Scholar 

  620. Sültmann H, Mayer WE, Figueroa F et al. Zebrafish Mhc class II alpha chain-encoding genes: polymorphism, expression, and function. Immunogenetics 1993; 38: 408–20.

    Article  PubMed  Google Scholar 

  621. Sültmann H, Mayer WE, Figueroa F et al. Organization of Mhc class II B genes in the zebrafish (Brachydanio rerio). Genomics 1994; 23: 1–14.

    Article  PubMed  Google Scholar 

  622. Brown AM, Wright KL, Ting JPY. Human major histocompatibility complex class II-associated invariant chain gene promoter. Functional analysis and in vivo protein/DNA interactions of constitutive and IFN-gamma-induced expression. J Biol Chem 1993; 268: 26328–33.

    PubMed  CAS  Google Scholar 

  623. Guardiola J, Maffei A. Control of MHC class II gene expression in autoimmune, infectious, and neoplastic diseases. Crit Rev Immunol 1993; 13: 247–68.

    PubMed  CAS  Google Scholar 

  624. Sloan JH, Hasegawa SL, Boss JM. Single base pair substitutions within the HLA-DRA gene promoter separate the functions of the X1 and X2 boxes. J Immunol 1992; 148: 2591–9.

    PubMed  CAS  Google Scholar 

  625. Reith W, Ucla C, Barras E et al. RFX1, a transactivator of hepatitis B virus enhancer I, belongs to a novel family of homodimeric and heterodimeric DNA-binding proteins. Mol Cell Biol 1994; 14: 1230–44.

    PubMed  CAS  Google Scholar 

  626. van Huijsduijnen RH, Li XY, Black D et al. Co-evolution from yeast to mouse: cDNA cloning of the two NF-Y (CP-1/ CBF) subunits. EMBO J 1990; 9: 3119–27.

    Google Scholar 

  627. Hasegawa SL, Boss JM. Two B-cell factors bind the HLA-DRA X box region and recognize different subsets of HLA class II promoters. Nucleic Acids Res 1991; 19: 6269–76.

    Article  PubMed  CAS  Google Scholar 

  628. Moreno CS, Emery P, West JE et al. Purified X2 binding protein (X2BP) cooperatively binds the class II MHC X box in the presence of purified RFX, the X box factor deficient in the bare lymphocyte syndrome. J Immunol 1995; 155: 4313–21.

    PubMed  CAS  Google Scholar 

  629. Mach B, Steimle V, Martinez-Soria E et al. Regulation of MHC class II genes: Lessons from a Disease. Ann Rev Immunol 1996; 14: 301–31.

    Article  CAS  Google Scholar 

  630. Steimle V, Siegrist CA, Mottet A et al. Regulation of MHC class II expression by interferon-gamma mediated by the trans-activator gene CIITA. Science 1994; 265: 106–9.

    Article  PubMed  CAS  Google Scholar 

  631. Steimle V, Mach B. Complementation cloning of mammalian transcriptional regulators: the example of MHC class II gene regulators. Curr Opin Genet Dev 1995; 5: 646–51.

    Article  PubMed  CAS  Google Scholar 

  632. Mach B, Steimle V, Reith W. MHC class II-deficient combined immunodeficiency: a disease of gene regulation. Immunol Rev 1994; 138: 207–21.

    Article  PubMed  CAS  Google Scholar 

  633. Riley JL, Westerheide SD, Price JA et al. Activation of class II MHC genes requires both the X box region and the class II transactivator (CIITA). Immunity 1995; 2: 533–43.

    Article  PubMed  CAS  Google Scholar 

  634. Chang CH, Fontes JD, Peterlin M et al. Class II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J Exp Med 1994; 180: 1367–74.

    Article  PubMed  CAS  Google Scholar 

  635. Lennon A, Ottone C, Rigaud G et al. Isolation of a B-cell-specific promotor for the human class II transactivator. Immunogenetics 1997; 45: 266–73.

    Article  PubMed  CAS  Google Scholar 

  636. Martinez-Soria E, Siegrist CA, Mach B. Highly efficient peptide binding and T cell activation by MHC class II molecules of CIITA-transfected cells. Int Immunol 1996; 8: 543–9.

    Article  PubMed  CAS  Google Scholar 

  637. Sims TN, Elliott JF, Ramassar V et al. Mouse class II transactivator: cDNA sequence and amino acid comparison with the human class II transactivator. Immunogenetics 1997; 45: 220–2.

    Article  PubMed  CAS  Google Scholar 

  638. Nepom GT, Erlich H. MHC class-II molecules and autoimmunity. Annu Rev Immunol 1991; 9: 493–525.

    Article  PubMed  CAS  Google Scholar 

  639. Andersen LC, Beaty JS, Nettles JW et al. Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes. J Exp Med 1991; 173: 181–92.

    Article  PubMed  CAS  Google Scholar 

  640. Woolfrey AE, Andersen LC, Shewey L et al. Analysis of differential HLA-DQB expression in autologous B cell lines. J Leukoc Biol 1993; 53: 697–706.

    PubMed  CAS  Google Scholar 

  641. Louis P, Vincent R, Cavadore P et al. Differential transcriptional activities of HLA-DR genes in the various haplotypes. J Immunol 1994; 153: 5059–67.

    PubMed  CAS  Google Scholar 

  642. Vincent R, Louis P, Gongora C et al. Quantitative analysis of the expression of the HLA-DRB genes at the transcriptional level by competitive polymerase chain reaction. J Immunol 1996; 156: 603–10.

    PubMed  CAS  Google Scholar 

  643. Symington FW, Levine F, Braun M et al. Differential la antigen expression by autologous human erythroid and B lymphoblastoid cell lines. J Immunol 1985; 135: 1026–32.

    PubMed  CAS  Google Scholar 

  644. Lee JS. Regulation of HLA class II gene expression. In:Dupont B, ed. Immunology of HLA, Vol II. New York: Springer-Verlag, 1989: 49–61.

    Google Scholar 

  645. Morzycka-Wroblewska E, Harwood JI, Smith JR et al. Structure and evolution of the promoter regions of the DQA genes. Immunogenetics 1993; 37: 364–72.

    Article  PubMed  CAS  Google Scholar 

  646. Dorn A, Benoist C, Mathis D. New B-lymphocyte-specific enhancer-binding protein. Mol Cell Biol 1989; 9: 312–20.

    PubMed  CAS  Google Scholar 

  647. Morzycka-Wroblewska E, Munshi A, Ostermayer M et al. Differential expression of HLA-DQA1 alleles associated with promoter polymorphisms. Immunogenetics 1997; 45: 163–70.

    Article  PubMed  CAS  Google Scholar 

  648. Newell WR, Trowsdale J, Beck S. MHCDB-database of the human MHC. Immunogenetics 1994; 40: 109–15.

    Article  PubMed  CAS  Google Scholar 

  649. Globerman H, Amor M, Parker KL et al. Nonsense mutation causing steroid 21hydroxylase deficiency. J Clin Invest 1988; 82: 139–44.

    Article  PubMed  CAS  Google Scholar 

  650. Higashi Y, Tanae A, Inoue H et al. Evidence for frequent gene conversion in the steroid 21-hydroxylase P-450(C21) gene: implications for steroid 21-hydroxylase deficiency. Am J Hum Genet 1988; 42: 17–25.

    PubMed  CAS  Google Scholar 

  651. Kawaguchi H, O’hUigin C, Klein J. In: Klein J, Klein D, eds.Molecular Evolution of the Major Histocompatibility Complex. Berlin, Heidelberg: Springer-Verlag; 1991: 357–81.

    Chapter  Google Scholar 

  652. Carroll MC, Campbell RD, Porter RR. Mapping of steroid 21-hydroxylase genes adjacent to complement component C4 genes in HLA, the major histocompatibility complex in man. Proc Natl Acad Sci USA 1985; 82: 521–5.

    Article  PubMed  CAS  Google Scholar 

  653. Spies T, Morton CC, Nedospasov SA et al. Genes for the tumor necrosis factors alpha and beta are linked to the human major histocompatibility complex. Proc Natl Acad Sci U S A 1986; 83: 8699–702.

    Article  PubMed  CAS  Google Scholar 

  654. Higashi Y, Yoshioka H, Yamane M et al. Complete nucleotide sequence of two steroid 21-hydroxylase genes tandemly arranged in human chromosome: a pseudogene and a genuine gene. Proc Natl Acad Sci U S A 1986; 83: 2841–5.

    Article  PubMed  CAS  Google Scholar 

  655. Higashi Y, Tanae A, Inoue H et al. Aberrant splicing and missense mutations cause steroid 21-hydroxylase [P-450 (C21)1 deficiency in humans: possible gene conversion products. Proc Natl Acad Sci U S A 1988; 85: 7486–90.

    Article  PubMed  CAS  Google Scholar 

  656. Sottrup-Jensen L, Stepanik TM, Kristensen T et al. Common evolutionary origin of alpha 2-macroglobulin and complement components C3 and C4. Proc Natl Acad Sci U S A 1985; 82: 9–13.

    Article  PubMed  CAS  Google Scholar 

  657. Carroll MC, Alper CA. Polymorphism and molecular genetics of human C4. Br Med Bull 1987; 43: 50–65.

    PubMed  CAS  Google Scholar 

  658. Prentice HL, Schneider PM, Strominger JL. C4B gene polymorphism detected in a human cosmid clone. Immunogenetics 1986; 23: 274–6.

    Article  PubMed  CAS  Google Scholar 

  659. Yu CY, Belt KT, Giles CM et al. Structural basis of the polymorphism of human complement components C4A and C4B: gene size, reactivity and antigenicity. EMBO J 1986; 5: 2873–81.

    PubMed  CAS  Google Scholar 

  660. So AK, Fielder AH, Warner CA et al. DNA polymorphism of major histocompatibility complex class II and class III genes in systemic lupus erythematosus. Tissue Antigens 1990; 35: 144–7.

    Article  PubMed  CAS  Google Scholar 

  661. Raum D, Glass D, Carpenter CB et al. Mapping of the structural gene for the second component of complement with respect to the human major histocompatibility complex. Am J Hum Genet 1979; 31: 35–41.

    PubMed  CAS  Google Scholar 

  662. Dunham I, Sargent CA, Trowsdale J et al. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis. Proc Natl Acad Sci U S A 1987; 84: 7237–41.

    Article  PubMed  CAS  Google Scholar 

  663. Campbell RD, Porter RR. Molecular cloning and characterization of the gene coding for human complement protein factor B. Proc Natl Acad Sci U S A 1983; 80: 4464–8.

    Article  PubMed  CAS  Google Scholar 

  664. Ruddle NH. Activation of human polymorphonuclear neutrophil functions by interferon-gamma and tumor necrosis factors. J Immunol 1986; 136: 2335–6.

    Google Scholar 

  665. Kehrl JH, Alvarez Mon M, Delsing GA et al. Lymphotoxin is an important T cell-derived growth factor for human B cells. Science 1987; 238: 1144–6.

    Article  PubMed  CAS  Google Scholar 

  666. Levi-Strauss M, Carroll MC, Steinmetz M et al. A previously undetected MHC gene with an unusual periodic structure. Science 1988; 240: 201–4.

    Article  PubMed  CAS  Google Scholar 

  667. Speiser PW, White PC. Structure of the human RD gene: a highly conserved gene in the class III region of the major histocompatibility complex. DNA 1989; 8: 745–51.

    Article  PubMed  CAS  Google Scholar 

  668. Harrison GS, Drabkin HA, Kao FT et al. Chromosomal location of human genes encoding major heat-shock protein HSP70. Somat Cell Mol Genet 1987; 13: 119–30.

    Article  PubMed  CAS  Google Scholar 

  669. Sargent CA, Dunham I, Trowsdale J et al. Human major histocompatibility complex contains genes for the major heat shock protein HSP70. Proc Natl Acad Sci U S A 1989; 86: 1968–72.

    Article  PubMed  CAS  Google Scholar 

  670. Moseley WS, Watson ML, Kingsmore SF et al. CD1 defines conserved linkage group border between human chromosomes 1 and mouse chromosomes 1 and 3. Immunogenetics 1989; 30: 378–82.

    Article  PubMed  CAS  Google Scholar 

  671. Yu CY, Wu LC, Buluwela L et al. Cosmid cloning and walking to map human CD1 leukocyte differentiation antigen genes. Methods Enzymol 1993; 217: 378–98.

    Article  PubMed  CAS  Google Scholar 

  672. Martin LH, Calabi F, Lefebvre FA et al. Structure and expression of the human thymocyte antigens CD la, CD1b, and CD1c. Proc Natl Acad Sci U S A 1987; 84: 9189–93.

    Article  PubMed  CAS  Google Scholar 

  673. Aida Y, Kohda C, Morooka A et al. Cloning of cDNAs and the molecular evolution of a bovine MHC class II DRA gene. Biochem Biophys Res Commun 1994; 204: 195–202.

    Article  PubMed  CAS  Google Scholar 

  674. Beckman EM, Porcelli SA, Morita CT et al. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 1994; 372: 691–4.

    Article  PubMed  CAS  Google Scholar 

  675. Goodfellow PN, Jones EA, Van Heyningen V et al. The beta2-microglobulin gene is on chromosome 15 and not in the HL-A region. Nature 1975; 254: 267–9.

    Article  PubMed  CAS  Google Scholar 

  676. McAdam SN, Boyson JE, Liu X et al. Chimpanzee MHC class I A locus alleles are related to only one of the six families of human A locus alleles. J Immunol 1995; 154: 6421–9.

    PubMed  CAS  Google Scholar 

  677. Lawlor DA, Warren E, Taylor P et al. Gorilla class I major histocompatibility complex alleles: comparison to human and chimpanzee class I. J Exp Med 1991; 174: 1491–509.

    Article  PubMed  CAS  Google Scholar 

  678. Lawlor DA, Warren E, Ward FE et al. Comparison of class I MHC alleles in humans and apes. Immunol Rev 1990; 113: 147–85.

    Article  PubMed  CAS  Google Scholar 

  679. Miller MD, Yamamoto H, Hughes AL e al. Definition of an epitope and MH class I molecule recognized by gag-specific cytotoxic T lumphocytes in SIV mac-infected rhesus monkeys. J Immunol 1991; 147: 320–9.

    PubMed  CAS  Google Scholar 

  680. Watkins DI, Letvin NL, Hughes AL et al. Molecular cloning of cDNA that encode MHC class I molecules from a New World primate (Saguinus oedipus). Natural selection acts at positions that may affect peptide presentation to T cells. J Immunol 1990; 144: 1136–43.

    PubMed  CAS  Google Scholar 

  681. Yuhki N, O’Brien SJ. DNA recombination and natural selection pressure sustain genetic sequence diversity of the feline MHC class I genes. J Exp Med 1990; 172: 621–30.

    Article  PubMed  CAS  Google Scholar 

  682. Burnett RC, Geraghty DE. Structure and expression of a divergent canine class I gene. J Immunol 1995; 155: 4278–85.

    PubMed  CAS  Google Scholar 

  683. Ellis SA, Martin AJ, Holmes EC et al. At least four MHC class I genes are transcribed in the horse: phylogenetic analysis suggests an unusual evolutionary history for the MHC in this species. Eur J Immunogenet 1995; 22: 249–60.

    Article  PubMed  CAS  Google Scholar 

  684. Frels WI, Bordallo C, Golding H et al. Expression of a class I MHC transgene: regulation by a tissue-specific negative regulatory DNA sequence element. New Biol 1990; 2: 1024–33.

    PubMed  CAS  Google Scholar 

  685. Tykocinski ML, Marche PN, Max EE et al. Rabbit class I MHC genes: cDNA clones define full-length transcripts of an expressed gene and a putative pseudo-gene. J Immunol 1984; 133: 2261–9.

    PubMed  CAS  Google Scholar 

  686. Salgar SK, Sawai H, Kunz HW et al. Cloning and expression of the rat class I MHC gene RT1.Al. Immunogenetics 1994; 39: 447

    Article  PubMed  CAS  Google Scholar 

  687. Duran LW, Horton RM, Birschbach CW et al. Structural relationships among the H-2 D-regions of murine MHC haplotypes. J Immunol 1989; 142: 288–96.

    PubMed  CAS  Google Scholar 

  688. Brown P, Spooner RL, Clark AJ. Cloning and characterization of a BoLA class I cDNA clone. Immunogenetics 1989; 29: 58–60.

    Article  PubMed  CAS  Google Scholar 

  689. Wettstein PJ, Strausbauch M, Lamb T et al. Phylogeny of six Sciurus aberti subspecies based on nucleotide sequences of cytochrome b. Mol Phylogenet Evol 1995; 4: 150–62.

    Article  PubMed  CAS  Google Scholar 

  690. Kroemer G, Zoorob R, Auffray C. Structure and expression of a chicken MHC class I gene. Immunogenetics 1990; 31: 405–9.

    Article  PubMed  CAS  Google Scholar 

  691. Grossberger D, Parham P. Reptilian class I major histocompatibility complex genes reveal conserved elements in class I structure. Immunogenetics 1992; 36: 166–74.

    Article  PubMed  CAS  Google Scholar 

  692. Sammut B, Laurens V, Tournefier A. Isolation of MHC class I cDNAs from the axolotl Ambystoma mexicanum. Immunogenetics 1997; 45: 285–94.

    Article  PubMed  CAS  Google Scholar 

  693. Flajnik MF, Kasahara M, Shum BP et al. A novel type of class I gene organization in vertebrates: a large family of nonMHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 1993; 12: 4385–96.

    PubMed  CAS  Google Scholar 

  694. Hashimoto K, Nakanishi T, Kurosawa Y. Isolation of carp genes encoding major histocompatibility complex antigens. Proc Natl Acad Sci U S A 1990; 87: 6863–7.

    Article  PubMed  CAS  Google Scholar 

  695. Eccles SJ, McMaster WR. DNA sequence analysis of a rat RT1 class II A beta gene. Immunogenetics 1985; 22: 653–63.

    Article  PubMed  CAS  Google Scholar 

  696. Kenter M, Otting N, Anholts J et al. MHC-DRB diversity of the chimpanzee (Pan troglodytes). Immunogenetics 1992; 37: 1–11.

    Article  PubMed  CAS  Google Scholar 

  697. Trtkova K, Mayer WE, O’hUigin C et al. MHC-DRB genes and the origin of New World monkeys. Mol Phylogenet Evol 1995; 4: 408–19.

    Article  PubMed  CAS  Google Scholar 

  698. Zhu ZF, Vincek V, Figueroa F et al. MhcDRB genes of the pigtail macaque (Macaca nemestrina): implications for the evolution of human DRB genes. Mol Biol Evol 1991; 8: 563–78.

    PubMed  CAS  Google Scholar 

  699. Gaur LK, Nepom GT. Ancestral major histocompatibility complex DRB genes beget conserved patterns of localized polymorphisms. Proc Natl Acad Sci U S A 1996; 93: 5380–3.

    Article  PubMed  CAS  Google Scholar 

  700. Figueroa F, O’hUigin C, Tichy H et al. The origin of the primate MHC-DRB genes and allelic lineages as deduced from the study of prosimians. J Immunol 1994; 152: 4455–65.

    PubMed  CAS  Google Scholar 

  701. Swarbrick PA, Schwaiger FW, Epplen JT et al. Cloning and sequencing of expressed DRB genes of the red deer (Cervus elaphus) MHC. Immunogenetics 1995; 42: 1–9.

    Article  PubMed  CAS  Google Scholar 

  702. Gustafsson K, Andersson L. Structure and polymorphism of horse MHC class II DRB genes: convergent evolution in the antigen binding site. Immunogenetics 1994; 39: 355–8.

    Article  PubMed  CAS  Google Scholar 

  703. Vage DI, Olsaker I, Lingaas F et al. Isolation and sequence determination of porcine class II DRB alleles amplified by PCR. Anim Genet 1994; 25: 73–5.

    PubMed  CAS  Google Scholar 

  704. Mikko S, Andersson L. Low major histocompatibility complex class II diversity in European and North American moose. Proc Natl Acad Sci U S A 1995; 92: 4259–63.

    Article  PubMed  CAS  Google Scholar 

  705. Fraser DC, Craigmile S, Campbell JD et al. Functional expression of a cattle MHC class II DR-like antigen on mouse L cells. Immunogenetics 1996; 43: 296–303.

    Article  PubMed  CAS  Google Scholar 

  706. Ballingall KT, Dutia BM, Hopkins J et al. Analysis of the fine specificities of sheep major histocompatibility complex class II-specific monoclonal antibodies using mouse L-cell transfectants. Anim Genet 1995; 26: 79–84.

    Article  PubMed  CAS  Google Scholar 

  707. Zoorob R, Bernot A, Renoir DM et al. Chicken major histocompatibility complex class II B genes: analysis of inter-allelic and interlocus sequence variance. Eur J Immunol 1993; 23: 1139–45.

    Article  PubMed  CAS  Google Scholar 

  708. Kobari F, Sato K, Shum BP et al. Exonintron organization of Xenopus MHC class II beta chain genes. Immunogenetics 1995; 42: 376–85.

    Article  PubMed  CAS  Google Scholar 

  709. Schneider S, Vincek V, Tichy H et al. MHC class II genes of a marsupial, the red-necked wallaby (Macropus rufogriseus): identification of new gene families. Mol Biol Evol 1991; 8: 753–66.

    PubMed  CAS  Google Scholar 

  710. Edwards SV, Grahn M, Potts WK. Dynamics of MHC evolution in birds and crocodilians: amplification of class II genes with degenerate primers. Mol Ecol 1995; 4: 719–29.

    Article  PubMed  CAS  Google Scholar 

  711. van Erp SH, Dixon B, Figueroa F et al. Identification and characterization of a novel class I gene in carp (Cyprinus carpio L.). Immunogenetics 1996; 44: 49–61.

    Article  PubMed  Google Scholar 

  712. Miller KM, Withler RE. Sequence analysis of a polymorphic MHC class II gene in Pacific salmon. Immunogenetics 1996; 43: 337–51.

    Article  PubMed  CAS  Google Scholar 

  713. Bohme J, Andersson M, Andersson G et al. HLA-DR beta genes vary in number between different DR specificities, whereas the number of DQ beta genes is constant. J Immunol 1985; 135: 2149–55.

    PubMed  CAS  Google Scholar 

  714. Kawai J, Ando A, Sato T et al. Analysis of gene structure and antigen determinants of DR2 antigens using DR gene transfer into mouse L cells. J Immunol 1989; 142: 312–7.

    PubMed  CAS  Google Scholar 

  715. Kasahara M, Klein D, Vincek V et al. Comparative anatomy of the primate major histocompatibility complex DR subregion: evidence for combinations of DRB genes conserved across species. Genomics 1992; 14: 340–9.

    Article  PubMed  CAS  Google Scholar 

  716. Schönbach C, Vincek V, Mayer WE et al. Multiplication of MHC-DRB5 loci in the orangutan: implications for the evolution of DRB haplotypes. Mamm Genome 1993; 4: 159–70.

    Article  PubMed  Google Scholar 

  717. Grahovaé B, Mayer WE, Vincek V et al. Major-histocompatibility-complex DRB genes of a New-World monkey, the cottontop tamarin (Saguinus oedipus). Mol Biol Evol 1992; 9: 403–16.

    Google Scholar 

  718. Brändle U, Ono H, Vincek V et al. Trans-species evolution of MHC-DRB haplotype polymorphism in primates: organization of DRB genes in the chimpanzee. Immunogenetics 1992; 36: 39–48.

    Article  PubMed  Google Scholar 

  719. Grahovaé B, Schönbach C, Brändle U et al. Conservative evolution of the MhcDP region in anthropoid primates. Hum Immunol 1993; 37: 75–84.

    Article  Google Scholar 

  720. Gasser DL, Sternberg NL, Pierce JC et al. P1 and cosmid clones define the organization of 280 kb of the mouse H-2 complex containing the Cps-1 and Hsp70 loci. Immunogenetics 1994; 39: 48–55.

    Article  PubMed  CAS  Google Scholar 

  721. Kawaguchi H, Klein J. Organization of C4 and CYP21 loci in gorilla and orangutan. Hum Immunol 1992; 33: 153–62.

    Article  PubMed  CAS  Google Scholar 

  722. Seeger A, Mayer WE, Klein J. A complement factor B-like cDNA clone from the zebrafish (Brachydanio rerio). Mol Immunol 1996; 33: 511–20.

    Article  PubMed  CAS  Google Scholar 

  723. Trtkova K, Kupfermann H, Grahovaé B et al. MHC-DRB genes of platyrrhine primates. Immunogenetics 1993; 38: 210–22.

    Article  PubMed  CAS  Google Scholar 

  724. Marché PN, Tykocinski ML, Max EE et al. Structure of a functional rabbit class I MHC gene: similarity to human class I genes. Immunogenetics 1985; 21: 71–82.

    Article  PubMed  Google Scholar 

  725. Sittisombut N, Mordacq J, Knight KL. Rabbit MHC. II. Sequence analysis of the R-DP alpha-and beta-genes. J Immunol 1988; 140: 3237–43.

    Google Scholar 

  726. LeGuern C, Marché PN, Kindt TJ. Molecular evidence for five distinct MHC class II alpha genes in the rabbit. Immunogenetics 1985; 22: 141–8.

    Article  PubMed  CAS  Google Scholar 

  727. Rebière MC, Marché PN, Kindt TJ. A rabbit class I major histocompatibility complex gene with a T cell-specific expression pattern. J Immunol 1987; 139: 2066–74.

    PubMed  Google Scholar 

  728. Chouchane L, Brown TJ, Kindt TJ. Structure and expression of a nonpolymorphic rabbit class II gene with homology to HLA-DOB. Immunogenetics 1993; 38: 64–6.

    Article  PubMed  CAS  Google Scholar 

  729. Yuhki N, Heidecker GF, O’Brien SJ. Characterization of MHC cDNA clones in the domestic cat. Diversity and evolution of class I genes. J Immunol 1989; 142: 3676–82.

    PubMed  CAS  Google Scholar 

  730. Yuhki N, O’Brien SJ. Exchanges of short polymorphic DNA segments predating speciation in feline major histocompatibility complex class I genes. J Mol Evol 1994; 39: 22–33.

    Article  PubMed  Google Scholar 

  731. Sarmiento UM, Storb R. Nucleotide sequence of a dog class I cDNA clone. Immunogenetics 1990; 31: 400–4.

    Article  PubMed  CAS  Google Scholar 

  732. Sarmiento UM, Sarmiento JI, Storb R. Allelic variation in the DR subregion of the canine major histocompatibility complex. Immunogenetics 1990; 32: 13–9.

    Article  PubMed  CAS  Google Scholar 

  733. Sarmiento UM, Storb R. Nucleotide sequence of a dog DRB cDNA clone. Immunogenetics 1990; 31: 396–9.

    Article  PubMed  CAS  Google Scholar 

  734. Wettstein PJ, Lager P, Jin L et al. Phylogeny of mitochondrial DNA clones in tassel-eared squirrels Sciurus aberti. Mol Ecol 1994; 3: 541–50.

    Article  PubMed  CAS  Google Scholar 

  735. McGuire KL, Duncan WR, Tucker PW. Structure of a class I gene from Syrian 746. hamster. J Immunol 1986; 137: 366–72.

    PubMed  CAS  Google Scholar 

  736. Ellegren H, Hartman G, Johansson M et al. Major histocompatibility complex 747. monomorphism and low levels of DNA fingerprinting variability in a reintroduced and rapidly expanding population of beavers. Proc Natl Acad Sci U S A 1993; 90: 8150–3.

    Article  PubMed  CAS  Google Scholar 

  737. Lafuse WP. Molecular biology of murine MHC class II genes. Crit Rev Immunol 1991; 11:167–94.

    Google Scholar 

  738. Hanson IM, Trowsdale J. Colinearity of novel genes in the class II regions of the MHC in mouse and human. Immunogenetics 1991; 34: 5–11.

    Google Scholar 

  739. Weiss E, Golden L, Zakut R et al. The DNA sequence of the H-2K(b) gene: evi- 750. dence for gene conversion as a mechanism for the generation of polymorphism in histocompatibility antigens. EMBO J 1983; 2: 453–62. 751.

    Google Scholar 

  740. Kvist S, Roberts L, Dobberstein B. Mouse histocompatibility genes: structure and organisation of a Kd gene. EMBO J 1983; 2: 245–54.

    PubMed  CAS  Google Scholar 

  741. Horton RM, Hildebrand WH, Martinko JM et al. Structural analysis of H-2K and 752. H-2Kfm’ by using H-2K locus-specific sequences. J Immunol 1990; 145: 1782–7.

    PubMed  CAS  Google Scholar 

  742. Watts S, Vogel JM, Harriman WD et al. DNA sequence analysis of the C3H H2Kk and H-2Dk loci. Evolutionary rela- 753. tionships to H-2 genes from four other mouse strains. J Immunol 1987; 139: 3878–85.

    PubMed  CAS  Google Scholar 

  743. Jaulin C, Perrin A, Abastado JP et al. Polymorphism in mouse and human class I H-2 and HLA genes is not the 754. result of random independent point mutations. Immunogenetics 1985; 22: 453–70.

    Article  PubMed  CAS  Google Scholar 

  744. Morita T, Delarbre C, Kress M et al. An H-2K gene of the tw32 mutant at the T/ 755. t complex is a close parent of an H-2K9 gene. Immunogenetics 1985; 21: 367–83.

    Article  PubMed  CAS  Google Scholar 

  745. Nairn R, Nathenson SG, Coligan JE. Amino acid sequence of cyanogen bro- 756. mide fragment CN-C (residues 24–98) of the mouse histocompatibility antigen H2Dd. A comparison of the amino-terminal 100 residues of H-2Dd, Db, Kd, and Kb reveals discrete areas of diversity. Biochemistry 1981; 20: 4739–45.

    Article  PubMed  CAS  Google Scholar 

  746. Cai ZL, Pease LR. An intragenic recombinant class I gene: H-2Ddx. Immunogenetics 1991; 34: 273–6.

    Google Scholar 

  747. Hildebrand WH, Horton RM, Pease LR et al. Nucleotide sequence analysis of H2Df and the spontaneous in vivo H-2Dfm2 mutation. Mol Immunol 1992; 29: 61–9.

    Article  PubMed  CAS  Google Scholar 

  748. Schepart BS, Takahashi H, Cozad KM et al. The nucleotide sequence and comparative analysis of the H-2DP class I H2 gene. J Immunol 1986; 136: 3489–95.

    PubMed  CAS  Google Scholar 

  749. Lee DR, Rubocki RJ, Lie WR et al. The murine MHC class I genes, H-21)q and H-2Lq, are strikingly homologous to each other, H-2Ld, and two genes reported to encode tumor-specific antigens. J Exp Med 1988; 168: 1719–39.

    Article  PubMed  CAS  Google Scholar 

  750. Cai ZL, Pease LR. Locus-specific cDNA cloning in the class I multigene family: structure of H-2D’ and H-2D’. Immunogenetics 1990; 32: 456–9.

    Article  PubMed  CAS  Google Scholar 

  751. Hemmi S, Geliebter J, Zeff RA et al. Three spontaneous H-2Db mutants are generated by genetic micro-recombination (gene conversion) events. Impact on the H-2-restricted immune responsiveness. J Exp Med 1988; 168: 2319–35.

    Article  PubMed  CAS  Google Scholar 

  752. Lalanne JL, Transy C, Guerin S et al. Expression of class I genes in the major histocompatibility complex: identification of eight distinct mRNAs in DBA/2 mouse liver. Cell 1985; 41: 469–78.

    Article  PubMed  CAS  Google Scholar 

  753. Lalanne JL, Cochet M, Kummer AM et al. Different exon-intron organization at the 5’ part of a mouse class I gene is used to generate a novel H-2Kd-related mRNA. Proc Natl Acad Sci U S A 1983; 80: 7561–5.

    Article  PubMed  CAS  Google Scholar 

  754. Lalanne JL, Delarbre C, Gachelin G et al. A cDNA clone containing the entire coding sequence of a mouse H-2Kd histocompatibility antigen. Nucleic Acids Res 1983; 11: 1567–77.

    Article  PubMed  CAS  Google Scholar 

  755. Moore KW, Sher BT, Sun YH et al. DNA sequence of a gene encoding a BALB/c mouse Ld transplantation antigen. Science 1982; 215: 679–82.

    Article  PubMed  CAS  Google Scholar 

  756. Rubocki RJ, Lee DR, Lie WR et al. Molecular evidence that the H-2D and H-2L genes arose by duplication. Differences between the evolution of the class I genes in mice and humans. J Exp Med 1990; 171: 2043–61.

    Article  PubMed  CAS  Google Scholar 

  757. Matsumura M, Fremont DH, Peterson PA et al. Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 1992; 257: 9 2734.

    Google Scholar 

  758. Landais D, Matthes H, Benoist C et al. A molecular basis for the Ia.2 and Ia.19 antigenic determinants. Proc Natl Acad Sci U S A 1985; 82: 2930–4.

    Article  PubMed  CAS  Google Scholar 

  759. Benoist CO, Mathis DJ, Kanter MR et al. The murine la alpha chains, E alpha and A alpha, show a surprising degree of sequence homology. Proc Natl Acad Sci U S A 1983; 80: 534–8.

    Article  CAS  Google Scholar 

  760. Mathis DJ, Benoist CO, Williams VE 2d et al. The murine E alpha immune response gene. Cell 1983; 32: 745–54.

    CAS  Google Scholar 

  761. Hyldig-Nielsen JJ, Schenning L, Hämmerling U et al. The complete nucleotide sequence of the I-E alpha d immune response gene. Nucleic Acids Res 1983; 11: 5055–71.

    Article  PubMed  CAS  Google Scholar 

  762. Kasahara M, Stojlkovic I, Mayer WE et al. The nucleotide sequence of the mouse H-2E alpha w28 gene. Immunogenetics 1986; 24: 324–7.

    Article  PubMed  CAS  Google Scholar 

  763. She JX, Boehme SA, Wang TW et al. Amplification of major histocompatibility complex class II gene diversity by intraexonic recombination. Proc Natl Acad Sci U S A 1991; 88: 453–7.

    Article  PubMed  CAS  Google Scholar 

  764. Holmdahl R, Karlsson M, Andersson ME et al. Localization of a critical restriction site on the I-A beta chain that determines susceptibility to collagen-induced arthritis in mice. Proc Nati Acad Sci U S A 1989; 86: 9475–9.

    Article  CAS  Google Scholar 

  765. Malissen M, Hunkapillar T and Hood LE. Nucleotide sequence of light chain gene of the mouse I-A subregion.A(3a. Science 1983; 221: 750–4.

    Article  PubMed  CAS  Google Scholar 

  766. Choi E, McIntyre K, Germain RN et al. Murine I-A beta chain polymorphism: nucleotide sequences of three allelic I-A beta genes. Science 1983; 221: 283–6.

    Article  PubMed  CAS  Google Scholar 

  767. Estess P, Begovich AB, Koo M et al. Sequence analysis and structure-function correlation of murine q, k, u, s, and f haplotype I-A-beta cDNA clones. Proc Natl Acad Aci USA 1986; 83: 3594–8.

    Article  CAS  Google Scholar 

  768. Ayane M, Mengle Gaw L, McDevitt HO et al. E alpha u and E beta u chain association: where lies the anomaly? J Immunol 1986; 137: 948–51.

    CAS  Google Scholar 

  769. Ogawa S, Nishimura H, Awaji M et al. Nucleotide sequence analysis of MHC class II genes in autoimmune disease-prone (NZB x NZW)F1 mice. Immunogenetics 1990; 32: 63–7.

    Article  PubMed  CAS  Google Scholar 

  770. Widera G, Flavell RA. The nucleotide sequence of the murine I-E beta b immune response gene: evidence for gene conversion events in class II genes of the major histocompatibility complex. EMBO J 1984; 3: 1221–5.

    PubMed  CAS  Google Scholar 

  771. Padgett KA, Shreffler DC, Saha BK. Molecular mapping of murine I region recombinants. III. Crossing over at two discrete sites within the beta 1-beta 2 intron of the E beta gene. J Immunol 1991; 147: 2764–70.

    CAS  Google Scholar 

  772. King LB, Sharma S, Corley RB. Complet coding region sequence of E beta k cDNA clones: lack of polymorphism in the NH2-terminus between E beta k and E beta b molecules. J Immunogenet 1988; 15: 209–14.

    CAS  Google Scholar 

  773. Braunstein NS, Germain RN. The mouse E beta 2 gene: a class II MHC beta gene with limited intraspecies polymorphism and an unusual pattern of transcription. EMBO J 1986; 5: 2469–76.

    CAS  Google Scholar 

  774. Begovich AB, Vu TH, Jones PP. Characterization of the molecular defects in the mouse E beta f and E beta q genes. Implications for the origin of MHC polymorphism J Immunol 1990; 144: 1957–64.

    CAS  Google Scholar 

  775. Wei BY, Cao H, Pan S et al. Sequence analysis of MHC class II Eb cDNAs from H2r and H2p haplotypes. Immunogenetics 1996; 44: 231–2.

    PubMed  CAS  Google Scholar 

  776. Stroynowski I, Fischer-Lindahl K. Antigen presentation by non-classical class I molecules. Curr Opin Immunol 1994; 6: 38–44.

    Article  PubMed  CAS  Google Scholar 

  777. Teitell M, Cheroutre H, Panwala C et al. Structure and function of H-2 T (Tla) region class I MHC molecules. Grit Rev Immunol 1994; 14: 1–27.

    CAS  Google Scholar 

  778. Hedrick SM. Dawn of the hunt for nonclassical MHC function. Cell 1992; 70: 177–80.

    Article  PubMed  CAS  Google Scholar 

  779. Joyce S, Tabaczewski P, Angeletti RH et al. A nonpolymorphic major histocompatibility complex class Ib molecule binds a large array of diverse self-peptides. J Exp Med 1994; 179: 579–88.

    Article  PubMed  CAS  Google Scholar 

  780. Rodgers JR, Mehta V, Cook RG. Surface expression of beta 2-microglobulin-associated thymus-leukemia antigen is independent of TAP2. Eur J Immunol 1995; 25: 1001–7.

    Article  PubMed  CAS  Google Scholar 

  781. Fischer-Lindahl K, Hermel E, Loveland BE et al. Maternally transmitted antigen of mice: a model transplantation antigen. Annu Rev Immunol 1991; 9: 351–72.

    Article  PubMed  CAS  Google Scholar 

  782. Xin JH, Kvist S, Dobberstein B. Identification of an H-2Kd gene using a specific cDNA probe. EMBO J 1982; 1: 467–71.

    PubMed  CAS  Google Scholar 

  783. Cho SG, Attaya M, Monaco JJ. New class II-like genes in the murine MHC. Nature 1991; 353: 573–6.

    Article  PubMed  CAS  Google Scholar 

  784. Newell WR, Trowsdale J, Beck S. MHCDB: database of the human MHC (release 2). Immunogenetics 1996; 45: 6–8.

    Article  PubMed  CAS  Google Scholar 

  785. Carter CA, Murphy G, Fabre JW et al. Physical mapping of the rat MHC class II genes shows a high level of interspecies conservation. Genomics 1994; 22: 451–5.

    Article  PubMed  CAS  Google Scholar 

  786. Walter L, Heine L, Günther E. Sequence, expression, and mapping of a rat Mhc class Ib gene. Immunogenetics 1994; 39: 351–4.

    Article  PubMed  CAS  Google Scholar 

  787. Howard JC. Restrictions on the use of antigenic peptides by the immune system. Proc Natl Acad Sci U S A 1993; 90: 3777–9.

    Article  PubMed  CAS  Google Scholar 

  788. Colonna M, Bresnahan M, Bahram S et al. Allelic variants of the human putative peptide transporter involved in antigen processing. Proc Natl Acad Sci U S A 1992; 89: 3932–6.

    Article  PubMed  CAS  Google Scholar 

  789. Powis SH, Trowsdale J. Human major histocompatibility complex genes. Behring Inst Mitt 1994; 17–25.

    Google Scholar 

  790. Heemels MT, Ploegh HL. Substrate specificity of allelic variants of the TAP peptide transporter. Immunity 1994; 1: 775–84.

    Article  PubMed  CAS  Google Scholar 

  791. Heemels MT, Schumacher TN, Wonigeit K et al. Peptide translocation by variants of the transporter associated with antigen processing. Science 1993; 262: 2059–63.

    Article  PubMed  CAS  Google Scholar 

  792. Momburg F, Neefjes JJ, Hammerling GJ. Peptide selection by MHC-encoded TAP transporters. Curr Opin Immunol 1994; 6: 32–7.

    Article  PubMed  CAS  Google Scholar 

  793. Momburg F, Armandola EA, Post M et al. Residues in TAP2 peptide transporters controlling substrate specificity. J Immunol 1996; 156: 1756–63.

    PubMed  CAS  Google Scholar 

  794. Walter L, Fischer K, Günther E. Physical mapping of the Ringl, Ring2, Ke6, Ke4, Rxrb, Collla2, and RT1.Hb genes in the rat major histocompatibility complex. Immunogenetics 1996; 44: 218–21.

    Article  PubMed  CAS  Google Scholar 

  795. Ennis PD, Jackson AP, Parham P. Molecular cloning of bovine class I MHC cDNA. J Immunol 1988; 141: 642–51.

    PubMed  CAS  Google Scholar 

  796. Bensaid A, Kaushal A, Baldwin CL et al. Identification of expressed bovine class I MHC genes at two loci and demonstration of physical linkage. Immunogenetics 1991; 33: 247–54.

    Article  PubMed  CAS  Google Scholar 

  797. Barbis DP, Maher JK, Stanek J et al. Horse cDNA clones encoding two MHC class I genes. Immunogenetics 1994; 40: 163.

    Article  PubMed  CAS  Google Scholar 

  798. Cameron PU, Tabarias HA, Pulendran B et al. Conservation of the central MHC genome: PFGE mapping and RFLP analysis of complement, HSP70, and TNF genes in the goat. Immunogenetics 1990; 31: 253–64.

    Article  PubMed  CAS  Google Scholar 

  799. Wright H, Ballingall KT, Redmond J. The DY sub-region of the sheep MHC contains an A/B gene pair. Immunogenetics 1994; 40: 230–4.

    Article  PubMed  CAS  Google Scholar 

  800. Skow LC, Snaples SN, Davis SK et al. Localization of bovine lymphocyte antigen (BoLA) DYA and class I loci to different regions of chromosome 23. Mamm Genome 1996; 7: 388–9.

    Article  PubMed  CAS  Google Scholar 

  801. Skow LC, Nall CA. A second polymorphism in exon 2 of the BoLA-DYA gene. Anim Genet 1996; 27: 216–7.

    Article  PubMed  CAS  Google Scholar 

  802. Stone RT, Muggli-Cockett NE. BoLADIB: species distribution, linkage with DOB, and northern analysis. Anim Genet 1993; 24: 41–5.

    Article  PubMed  CAS  Google Scholar 

  803. Willison K, Kelly A, Dudley K et al. The human homologue of the mouse t-complex gene, TCP1, is located on chromosome 6 but is not near the HLA region. EMBO J 1987; 6: 1967–74.

    PubMed  CAS  Google Scholar 

  804. Russell GC, Oliver RA, Sawhney SMS. Cloning, transfection, and DNA sequence of a second gene from the BoLA-A11 haplotype. Immunogenetics 1996; 44: 315–8.

    Article  PubMed  CAS  Google Scholar 

  805. Ennis PD, Jackson AP, Parham P. Molecular cloning of bovine class I MHC cDNA.) Immunol 1988; 141: 642–51.

    CAS  Google Scholar 

  806. Niimi M, Nakai Y, Aida Y. Nucleotide sequences and the molecular evolution of the DMA and DMB genes of the bovine major histocompatibility complex. Biochem Biophys Res Commun 1997; 217: 522–8.

    Article  Google Scholar 

  807. Chardonnens X, Du Pasquier L. Induction of skin allograft tolerance during metamorphosis of the toad Xenopus laevis: a possible model for studying generation of self tolerance to histocompatibility antigens. Eur J Immunol 1973; 3: 569–73.

    Article  PubMed  CAS  Google Scholar 

  808. Flajnik MF, Kaufman JF, Riegert P et al. Identification of class I major histocompatibility complex encoded molecules in the amphibian Xenopus. Immunogenetics 1984; 20: 433–42.

    Article  PubMed  CAS  Google Scholar 

  809. Kaufman JF, Flajnik MF, Du Pasquier L et al. Xenopus MHC class II molecules. I. Identification and structural characterization. J Immunol 1985; 134: 3248–57.

    PubMed  CAS  Google Scholar 

  810. Shum BP, Avila D, Du Pasquier L et al. Isolation of a classical MHC class I cDNA from an amphibian. Evidence for only one class I locus in the Xenopus MHC. J Immunol 1993; 151: 5376–86.

    PubMed  CAS  Google Scholar 

  811. Sato K, Flajnik MF, Du Pasquier L et al. Evolution of the MHC: isolation of class II beta-chain cDNA clones from the amphibian Xenopus laevis. J Immunol 1993; 150: 2831–43.

    PubMed  CAS  Google Scholar 

  812. Salter-Cid L, Kasahara M, Flajnik MF. Hsp70 genes are linked to the Xenopus major histocompatibility complex. Immunogenetics 1994; 39: 1–7.

    Article  PubMed  CAS  Google Scholar 

  813. Kato Y, Salter-Cid L, Flajnik MF et al. Isolation of the Xenopus complement factor B complementary DNA and linkage of the gene to the frog MHC. J Immunol 1994; 153: 4546–54.

    PubMed  CAS  Google Scholar 

  814. Plachy J, Pink JR, Hala K. Biology of the chicken MHC (B complex). Crit Rev Immunol 1992; 12: 47–79.

    PubMed  CAS  Google Scholar 

  815. Guillemot F, Billault A, Pourquie O et al. A molecular map of the chicken major histocompatibility complex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer. EMBO J 1988; 7: 2775–85.

    PubMed  CAS  Google Scholar 

  816. Pharr GT, Bacon LD, Dodgson JB. Analysis of B-L beta-chain gene expresSinn in two chicken cDNA libraries. Immunogenetics 1993; 37: 381–5.

    Article  PubMed  CAS  Google Scholar 

  817. Kaufman J, Andersen R, Avila D et al. Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and beta 2-microglobulin sequences reveal invariant surface residues. J Immunol 1992; 148: 1532–46.

    PubMed  CAS  Google Scholar 

  818. Koch C. A genetic polymorphism of the complement component factor B in chickens not linked to the major histocompatibility complex (MHC). Immunogenetics 1986; 23: 364–7.

    Article  PubMed  CAS  Google Scholar 

  819. Miller MM, Goto RM, Taylor RL Jr et al. Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. Proc Natl Acad Sci U S A 1996; 93: 3958–62.

    Article  PubMed  CAS  Google Scholar 

  820. Miller MM, Goto R, Bernot A et al. Two Mhc class I and two Mhc class II genes map to the chicken Rfp-Y system outside the B complex. Proc Natl Acad Sci USA 1994; 91: 4397–401.

    Article  PubMed  CAS  Google Scholar 

  821. Chen Y, Lillehoj HS, Hsu C et al. Functional characterization of a chicken major histocompatibility commplex class II B gene promoter. Immunogenetics 1997; 45: 242–8.

    Article  PubMed  CAS  Google Scholar 

  822. Mayer WE, Williams NS, O’hUigin C et al. Class I major histocompatibility complex genes of the red-necked Wallaby, Macropus rufogriseus. Mol Phylogenet Evol 1993; 2: 23–30.

    Article  PubMed  CAS  Google Scholar 

  823. Hashimoto K, Nakanishi T, Kurosawa Y. Identification of a shark sequence resembling the major histocompatibility complex class I alpha 3 domain. Proc Natl Acad Sci USA 1992; 89: 2209–12.

    Article  PubMed  CAS  Google Scholar 

  824. Bartl S, Weissman IL. Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark. Proc Natl Acad Sci U S A 1994; 91: 262–6.

    Article  PubMed  CAS  Google Scholar 

  825. Kasahara M, McKinney EC, Flajnik MF et al. The evolutionary origin of the major histocompatibility complex: polymorphism of class II alpha chain genes in the cartilaginous fish. Eur J Immunol 1993; 23: 2160–5.

    Article  PubMed  CAS  Google Scholar 

  826. Ono H, O’hUigin C, Vincek V et al. New beta chain-encoding Mhc class II genes in the carp. Immunogenetics 1993; 38: 146–9.

    PubMed  CAS  Google Scholar 

  827. Okamura K, Nakanishi T, Kurosawa Y et al. Expansion of genes that encode MHC class I molecules in cyprinid fishes. J Immunol 1993; 151: 188–200

    PubMed  CAS  Google Scholar 

  828. Grimholt U, Hordvik I, Fosse VM et al. Molecular cloning of major histocompat ibility complex class I cDNAs from At-lantic salmon (Salmo salar). Immunoge netics 1993; 37: 469–73.

    CAS  Google Scholar 

  829. Juul-Madsen HR, Glamann J, Madsen HO et al. MHC class II beta-chain ex pression in the rainbow trout. Scand J Immunol 1992; 35: 687–94.

    Article  PubMed  CAS  Google Scholar 

  830. Takeuchi H, Figueroa F, O’hUigin C et al. Cloning and characterization of class I Mhc genes of the zebrafish, Brachydanio rerio. Immunogenetics 1995; 42: 77–84.

    Article  PubMed  CAS  Google Scholar 

  831. Ono H, O’hUigin C, Vincek V et al. Exon-intron organization of fish major histocompatibility complex class II B genes. Immunogenetics 1993; 38: 223–34

    PubMed  CAS  Google Scholar 

  832. Ono H, Klein D, Vincek V et al. Major histocompatibility complex class II genes of zebrafish. Proc Natl Acad Sci U S A 1992; 89: 11886–90.

    Article  PubMed  CAS  Google Scholar 

  833. Sato A, Figueroa F, O’hUigin C et al. Identification of major histocompatibility complex genes in the guppy, Poecilia reticulata. Immunogenetics 1996; 43: 38–49.

    PubMed  CAS  Google Scholar 

  834. Betz UA, Mayer WE, Klein J. Major histocompatibility complex class I genes of the coelacanth Latimeria chalumnae. Proc Natl Acad Sci USA 1994; 91: 11065–9.

    Article  PubMed  CAS  Google Scholar 

  835. Brenner S, Elgar G, Sandford R et al. Characterization of the pufferfish (Fugu) genome as a compact model vertebrate genome. Nature 1993; 366: 265–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rammensee, HG., Bachmann, J., Stevanović, S. (1997). The MHC Genes. In: MHC Ligands and Peptide Motifs. Molecular Biology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22162-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22162-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22164-8

  • Online ISBN: 978-3-662-22162-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics